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An iterative method involving a class of
quasi-phi-nonexpansive mappings for solving split
equality fixed point problems

C. E. CHIDUME1, AISHA A. ADAM1 and ABUBAKAR ADAMU2∗

ABSTRACT. A new inertial iterative algorithm for approximating solution of split equality fixed point prob-
lem (SEFPP) for quasi-ϕ- nonexpansive mappings is introduced and studied in p-uniformly convex and uni-
formly smooth real Banach spaces, p > 1. A strong convergence theorem is proved without imposing any
compactness-type condition on the mappings. Our theorems complement several important recent results that
have been proved in 2-uniformly convex and uniformly smooth real Banach spaces. It is well known that these
spaces do not include Lp, lp and the Sobolev spaces Wm

p(Ω), for 2 < p < ∞. Our theorems, in particular,
are applicable in these spaces. Furthermore, application of our theorem to split equality variational inclusion
problem is presented. Finally, numerical examples are presented to illustrate the convergence of our algorithms.

1. INTRODUCTION

Let D be a nonempty closed and convex subset of a real Banach space E and K : D → D
be any mapping. A point x ∈ D is called a fixed point of K if Kx = x. We shall denote
the set of fixed points of a mapping K, by F (K). Let H1, H2 and H3 be real Hilbert
spaces, C and Q be nonempty closed and convex subsets of H1 and H2, respectively. Let
A : H1 → H3 and B : H2 → H3 be bounded linear maps. The split equality problem (SEP)
introduced by Moudafi [14] is the following problem:

find x∗ ∈ C, y∗ ∈ Q, such that Ax∗ = By∗. (1.1)

We shall denote the solution set of problem (1.1) by

Γ = {x ∈ C, y ∈ Q : Ax = By}.

Observe that if B = I (the identity map on H2) and H3 = H2, then problem (1.1) reduces
to the following split feasibility problem (SFP):

find x∗ ∈ C, such that Ax∗ ∈ Q. (1.2)

Numerous research efforts have been devoted to the study of the SEP due to its useful-
ness in applications. For example, the SEP has applications in game theory, in intensity-
modulated radiation therapy preparation, in decomposition methods for partial differ-
ential equations, in fully discretized models of inverse problems which arise from phase
retrievals and in medical image reconstruction (see, for example [5] [6], [4], and the refer-
ences therein).

Remark 1.1. Let T : C → C and S : Q → Q be any two mappings, setting C = F (T ) and
Q = F (S), problem (1.1) reduces to the following split equality fixed point problem (SEFPP):
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find x∗ ∈ F (T ), y∗ ∈ F (S) such that Ax∗ = By∗. (1.3)
If H2 = H3 and B = I , the identity mapping on H2, then the SEFPP (1.3) reduces to the
following split common fixed point problem (SCFPP) introduced by Censor and Segal in [6]:

find x ∈ F (T ) such that Ax ∈ F (S).

In 2014, Zhao [17] proposed and studied an iterative algorithm for approximating a solu-
tion of SEFPP in real Hilbert spaces, and proved weak convergence.
Various algorithms for approximating solution of the SEFPP in a real Hilbert space have
been proposed and studied by several authors (see, e.g, [15], [18], [17]). However, it is
well known that most of the mathematical problems that arise in real life lie in Banach
spaces more general than Hilbert spaces. This fact was rightly captured by Hazewinkel
who wrote: “···many, and probably most, mathematical objects and models do not naturally live
in a Hilbert space” [13], pg. viii.
The Theorems of Chidume et al. [11] extend the results of Zhao [17] from real Hilbert
space to 2-uniformly convex and uniformly smooth real Banach spaces that have weakly
sequentially continuous duality maps. Such spaces include the sequence spaces lp , for 1 <
p ≤ 2. They do not include the important real Banach spaces lp, 2 < p < ∞; Lp(1 < p <
∞, p ̸= 2) and the Sobolev spaces Wm

p (Ω), 1 < p < ∞, p ̸= 2. Chidume et al. [11] proved
weak convergence of the sequence of their algorithm to a solution of the SEFFP. Under the
assumption that the operators are semi-compact, they proved strong convergence.
In 2018, Chidume et al. [12] introduced a new iterative algorithm involving generalized
projections in 2-uniformly convex and uniformly smooth real Banach spaces without re-
quiring that the spaces admit weak sequential continuous duality mappings. These spaces
include Lp, lp and the Sobolev spaces Wm

p (Ω) for 2 < p < ∞. They proved that the se-
quence generated by their algorithm converges strongly to a solution of the SEFFP with-
out requiring that the operators be semi-compact.

Motivated by the research on inertial algorithms to speed up convergence, Adamu and
Adam [1] incorporated the inertial extrapolation term in an algorithm for approximating
solution(s) of the SEFPP so as to obtain a method which accelerates the approximation
of solution of the SEFPP in the setting of 2-uniformly convex and smooth real Banach
spaces. They proved strong convergence of the sequence generated by their algorithm to
a solution of the SEFPP.

Remark 1.2. It is well known that 2-uniformly convex and uniformly smooth real Banach
spaces are more general than real Hilbert spaces, (they include Lp, lp,Wm

p (Ω)spaces, for
1 < p ≤ 2). However, they exclude some very important real Banach spaces. In particular,
they exclude Lp, lp,Wp

m(Ω) spaces, for 2 < p < ∞. Consequently, all theorems proved in
the literature in 2-uniformly convex real Banach spaces are not applicable in the following
very important Banach spaces: Lp, lp and the Sobolev spaces Wp

m(Ω) spaces, for 2 < p <
∞, because these spaces are not 2-uniformly convex.

Recently, Chidume [8] established new geometric inequalities in real Banach spaces which
will be useful tools in p-uniformly convex and uniformly smooth real Banach spaces.
These spaces include in particular, Lp, lp and the Sobolev spaces, for 2 < p < ∞. As
an application, he proposed a new iterative algorithm for approximating a solution of a
split equality fixed point problem (SEFPP) for quasi-ϕ-nonexpansive semigroups. Using
some of the new geometric inequalities, he proved that the sequence generated by the
algorithm converges strongly to a solution of the SEFPP in p-uniformly convex and uni-
formly smooth real Banach spaces, p > 2. These new geometric inequalities established
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by Chidume [8] are now generating considerable research interest in the study of iterative
methods, (see, e.g., [9, 10]).
It is our purpose in this paper to introduce new inertial iterative algorithms for approx-
imating solutions of the SEFPP in real Banach spaces that will include Lp, lp, and the
Sobolev spaces, Wm

p (Ω), for 2 < p < ∞. Consequently, our theorems will complement, in
particular, the results of Zhao [17], Chidume et al. [12], Chidume et al. [11], Adamu and
Adam [1], and a host of other results to provide iterative algorithms for approximating
solutions of the SEFPP, assuming existence in Lp, lp and the Sobolev spaces for 2 < p < ∞.

2. PRELIMINARIES

Let E be a strictly convex and smooth real Banach space. For p > 1, the generalized
duality mapping Jp from E to 2E

∗
is defined by

Jpx := {u∗ ∈ E∗ : ⟨x, u∗⟩ = ∥x∥∥u∗∥, ∥u∗∥ = ∥x∥p−1, ∀ x ∈ E}.

If p = 2, J2 is called the normalized duality mapping and is denoted by J . It is easy to see
from the definition that Jp(x) = ∥x∥p−2Jx and ⟨x, Jpx⟩ = ∥x∥p;∀x ∈ E.

Remark 2.3. If E is smooth, then Jp is single-valued and if E is strictly convex, Jp is one-
to-one, and if E is reflexive, then Jp is surjective. Furthermore, if E is uniformly smooth
and uniformly convex, then the dual space E∗ is also uniformly smooth and uniformly
convex and the normalized duality map Jp and its inverse, J−1

p , are both uniformly con-
tinuous on bounded sets.

Let E be a reflexive, strictly convex and smooth real Banach space with dual space E∗.
For p > 1, Chidume [8] defined the following functionals:
ϕp : E × E → R by,

ϕp(x, y) = ∥x∥p − p⟨x, Jpy⟩+ (p− 1)∥y∥p, ∀x, y ∈ E, (2.4)

Vp : E × E∗ → R by

Vp(x, x
∗) = ∥x∥p − p⟨x, x∗⟩+ (p− 1)∥x∗∥

p
p−1 .

It is easy to see from the definition that

Vp(x, x
∗) = ϕp(x, J

−1
p x∗),∀x ∈ E, x∗ ∈ E∗.

If p = 2, we denote ϕ2 by ϕ and V2 by V . So,

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀x, y ∈ E.

V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩+ ∥x∗∥2.

Definition 2.1. Let E be a real normed space with dimension E ≥ 2. The modulus of
convexity of E is the function δE(ϵ) : (0, 2] → [0, 1] defined by

δE(ϵ) :=
{
1− ∥u+ v

2
∥ : ∥u∥ = ∥v∥ = 1; ϵ = ∥u− v∥

}
.

Let p > 1 be a real number and δE(ϵ) : (0, 2] → [0, 1] be the modulus of convexity of E.
Then, a normed space E is said to be p-uniformly convex if there exists a constant c > 0
such that

δE(ϵ) ≥ cϵp

.
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Definition 2.2. Let E be a smooth, strictly convex and reflexive real Banach space and
let C be a nonempty closed and convex subset of E. The map ΠC : E → C defined by
x̃ = ΠC(x) ∈ C such that ϕ(x̃, x) = infy∈C ϕ(y, x) is called the generalized projection of E
onto C. Clearly, in a real Hilbert space H , the generalized projection ΠC coincides with
the metric projection PC from H onto C.

Lemma 2.1 ([2]). Let C be a nonempty closed and convex subset of a reflexive, strictly convex
and smooth Banach space E. Then

ϕ(u,ΠCy) + ϕ(ΠCy, y) ≤ ϕ(u, y), ∀ u ∈ C, y ∈ E.

Definition 2.3. Let E1 and E2 be two reflexive, strictly convex and smooth real Banach
spaces. The collection of mappings A : E1 → E2 that are linear and continuous is a
normed linear space with norm defined by ∥A∥ = sup∥x∥≤1 ∥Ax∥. The dual operator
A∗ : E∗

2 −→ E∗
1 defined by ⟨A∗y∗, x⟩ = ⟨y∗, Ax⟩, ∀ x ∈ E1, y∗ ∈ E∗

2 is called the adjoint
operator of A. The adjoint operator A∗ has the property ∥A∗∥ = ∥A∥.

Definition 2.4. Let C be a nonempty closed and convex subset of a real Banach space
E and let T : C → C be any mapping. Then: T is said to be quasi-ϕ-nonexpansive if
F (T ) := {x ∈ C : Tx = x} ≠ ∅ and

ϕp(x, Ty) ≤ ϕp(x, y) ∀ x ∈ F (T ), y ∈ C.

Lemma 2.2 ([8]). Let E be a p-uniformly convex and smooth real Banach space, and let {xn},{yn}
be sequences in E. If lim

n→∞
ϕp(xn, yn) = 0, then, lim

n→∞
||xn − yn|| = 0.

Lemma 2.3 ([8]). Let E be a reflexive, strictly convex and smooth real Banach space with dual
E∗. Then, for p > 1,

Vp(x, x
∗) + p⟨J−1

p x∗ − x, y∗⟩ ≤ Vp(x, x
∗ + y∗), ∀ x ∈ E, x∗, y∗ ∈ E∗.

Lemma 2.4 ([8]). Let E be p-uniformly convex and smooth real Banach space with dual space E∗.
For p > 1, let Jp : E → E∗ be the generalized duality map. Then,

∥J−1
p u− J−1

p v∥ ≤ κp∥u− v∥
1

p−1 , ∀ u, v ∈ E∗.

where κp = ( 1c )
1

p−1 , for some c > 0.

Lemma 2.5 ([16]). Let C be a nonempty closed and convex subset of a reflexive, strictly convex
and smooth Banach space E, A : E → 2E

∗
be a maximal monotone operator with A−1(0) ̸= ∅,

then for any x ∈ E, y ∈ A−1(0) and r > 0 we have

ϕ(y,QA
r x) + ϕ(QA

r x, x) ≤ ϕ(y, x),

where QA
r : E → E is defined by QA

r x := (J + rA)−1Jx.

Remark 2.4. We observe that since E1 and E2 are p- uniformly convex, they are reflexive
and strictly convex. By our hypothesis, they are smooth. So, Lemma 2.1 and Lemma
2.5 are applicable. Hence we can use the functional ϕ in these Lemmas instead of the
functional ϕp.

3. MAIN RESULTS

In the sequel, we assume that JpE1
, JpE2

, JpE3
are the generalized duality maps on E1,

E2, E3 respectively, and J−1
pE1

, J−1
pE2

, J−1
pE3

are the generalized duality maps on E∗
1 , E∗

2 , E∗
3

respectively.
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3.1. Strong convergence theorem.

Theorem 3.1. Let E1 and E2 be p-uniformly convex and uniformly smooth real Banach spaces,
p > 1 and E3 be a uniformly smooth real Banach space. Let A : E1 → E3 and B : E2 → E3

(such that A,B ̸= 0) be bounded linear operators with adjoints A∗ and B∗, respectively. Let
T : E1 → E1 and S : E2 → E2 be closed quasi-ϕ-nonexpansive mappings. Setting Γ = {(x, y) ∈
F (T )× F (S) : Ax = By} and assuming Γ ̸= ∅. Let {(xn, yn)} be a sequence generated by

x0, x1 ∈ E1, y0, y1 ∈ E2, C1 = E1, Q1 = E2, en = JpE3
(Awn −Btn);

wn = xn + αn(xn − xn−1), un = J−1
pE1

(JpE1
wn − γA∗en);

rn = J−1
pE1

(anJpE1
un + (1− an)JpE1

Tun);

tn = yn + αn(yn − yn−1), vn = J−1
pE2

(JpE2
tn + γB∗en);

zn = J−1
pE2

(anJpE2
vn + (1− an)JpE2

Svn);

Cn+1 = {u ∈ Cn : ϕp(u, rn) ≤ ϕp(u,wn)};
Qn+1 = {v ∈ Qn : ϕp(v, zn) ≤ ϕp(v, tn)};
xn+1 = ΠCn+1

x1, yn+1 = ΠQn+1
y1; n ≥ 1.

(3.5)

where 0 < an < 1, αn ∈ (0, 1), 0 < γ <
[

1

κp(∥A∥
p

p−1 +∥B∥
p

p−1 )

]p−1

, κp a positive constant as in

Lemma 2.4 . Then {(xn, yn)} converges to some point (x∗, y∗) in Γ.

Proof. We divide the proof into 4 steps.

Step 1. We show that Cn and Qn are closed and convex for any n ≥ 1.
Since C1 = E1, Q1 = E2, C1 and Q1 are closed and convex.
Assume Cn and Qn are closed and convex for some n ≥ 1. Since for any (u, v) ∈ Cn ×Qn,

ϕp(u, rn) ≤ ϕp(u,wn) ⇔ p⟨u, JpE1
wn − JpE1

rn⟩ ≤ ∥JpE1
wn∥p − ∥JpE1

rn∥p

and

ϕp(v, zn) ≤ ϕp(v, tn) ⇔ p⟨v, JpE2
tn − JpE2

zn⟩ ≤ ∥JpE2
tn∥p − ∥JpE2

zn∥p,

its easy to deduce that Cn+1 and Qn+1 are closed and convex. Therefore, Cn and Qn are
closed and convex for any n ≥ 1.

Step 2. We prove that Γ ⊂ Cn ×Qn, for any n ≥ 1. Let K1 := C1 ×Q1 and

Kn+1 := {(u, v) ∈ Cn ×Qn : ϕp(u, rn) + ϕp(v, zn) ≤ ϕp(u,wn) + ϕp(v, tn)}.

Then, by construction Kn ⊂ Cn ×Qn.

Claim. Γ ⊂ Kn, for any n ≥ 1. Clearly, Γ ⊂ C1 ×Q1. Assume Γ ⊂ Kn for some n ≥ 1. Let
(x, y) ∈ Γ, then

ϕp(x, rn) = ϕp(x, J
−1
pE1

(anJpE1
un + (1− an)JpE1

Tun))

= Vp(x, anJpE1
un + (1− an)JpE1

Tun)

≤ anVp(x, JpE1
un) + (1− an)Vp(x, JpE1

Tun)

= anϕp(x, un) + (1− an)ϕp(x, Tun)

≤ ϕp(x, un).

(3.6)
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By Lemma 2.3 we get

ϕp(x, un) = ϕp(x, J
−1
pE1

(JpE1
wn − γA∗JpE3

(Awn −Btn))

= Vp(x, JpE1
wn − γA∗JpE3

(Awn −Btn))

≤ Vp(x, JpE1
wn)− pγ⟨J−1

pE1
(JpE1

wn − γA∗en)− x,A∗en⟩
= ϕp(x,wn)− pγ⟨Aun −Ax, en⟩.

(3.7)

Thus,
ϕp(x, rn) ≤ ϕp(x,wn)− pγ⟨Aun −Ax, en⟩. (3.8)

Using a similar argument, we obtain that

ϕp(y, zn) ≤ ϕp(y, tn)− pγ⟨By −Bvn, en⟩. (3.9)

Adding inequalities (3.8) and (3.9) and using the fact that Ax = By, we get

ϕp(x, rn) + ϕp(y, zn) ≤ ϕp(x,wn) + ϕp(y, tn)− pγ⟨Aun −Bvn, en⟩. (3.10)

Using the fact that en = JpE3
(Awn −Btn), we estimate as follows

− pγ⟨Aun −Bvn, en⟩
= −pγ∥Awn −Btn∥p − pγ⟨Aun −Bvn, en⟩+ pγ⟨Awn −Btn, en⟩
= −pγ∥Awn −Btn∥p + pγ⟨A(wn − un), en⟩+ γ⟨B(vn − tn), en⟩
= −pγ∥Awn −Btn∥p + pγ⟨J−1

pE1
JpE1

wn − J−1
pE1

(JpE1
wn − γA∗en), A

∗en⟩

+ pγ⟨J−1
pE2

(JpE2
tn + γB∗en)− J−1

pE2
JpE2

tn, B
∗en⟩

≤ −pγ∥Awn −Btn∥p + pγ∥A∥∥en∥∥J−1
pE1

JpE1
wn − J−1

pE1
(JpE1

wn − γA∗en)∥

+ pγ∥B∥∥en∥∥J−1
pE2

(JpE2
tn + γB∗en)− J−1

pE2
JpE2

tn∥

≤ −pγ∥Awn −Btn∥p + pκpγ∥A∥∥en∥∥γA∗en∥
1

p−1 + pκpγ∥B∥∥en∥∥γB∗en∥
1

p−1

≤ −pγ∥Awn −Btn∥p + pκpγ
p

p−1 ∥en∥p∥A∥
p

p−1 + pκpγ
p

p−1 ∥en∥p∥B∥
p

p−1

= −pγ
(
1− κpγ

1
p−1 (∥A∥

p
p−1 + ∥B∥

p
p−1 )

)
∥(Awn −Btn)∥p. (3.11)

Substituting inequality (3.11) in inequality (3.10) and using the fact that

0 < γ <
[

1

κp(∥A∥
p

p−1 +∥B∥
p

p−1 )

]p−1

, we have that

ϕp(x, rn) + ϕp(y, zn) ≤ ϕp(x,wn) + ϕp(y, tn)

− pγ
(
1− κpγ

1
p−1 (∥A∥

p
p−1 + ∥B∥

p
p−1 )

)
∥(Awn −Btn)∥p (3.12)

≤ ϕp(x,wn) + ϕp(y, tn).

Hence Γ ⊂ Kn, for any n ≥ 1. Thus, Γ ⊂ Cn ×Qn, for any n ≥ 1.

Step 3. We shall show that lim
n→∞

(xn, yn) = (x∗, y∗) ∈ E1 × E2.

Let (u, v) ∈ Γ. Since Γ ⊂ Cn+1 × Qn+1 ⊂ Cn × Qn and xn+1 = ΠCn+1
x1 ⊂ Cn, then by

Lemma 2.1 we have that

ϕ(xn, x1) = ϕ(ΠCn
x1, x1) ≤ ϕ(u, x1)− ϕ(u, xn)

which implies {ϕ(xn, x1)} is bounded. Furthermore, ϕ(xn, x1) ≤ ϕ(xn+1, x1). Hence
{ϕ(xn, x1)} is nondecreasing. Thus, lim

n→∞
ϕ(xn, x1) exists. This implies that {xn} is bounded

and consequently {wn} is bounded. Similarly, ϕ(yn, y1) is convergent implies that, {yn} is
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bounded and consequently {tn} is bounded.

By Lemma 2.1 we have that

ϕ(xm, xn) = ϕ(xm,ΠCnx1) ≤ ϕ(xm, x1)− ϕ(xn, x1) → 0, as n,m → ∞.

Hence, by Lemma 2.2 we obtain that ∥xm − xn∥ → 0, as m,n → ∞, which implies that
xn → x∗ ∈ E1, as n → ∞. Following similar argument, we also obtain that yn → y∗ ∈ E2,
as n → ∞.

Step 4. We show that (x∗, y∗) ∈ Γ.

Using the definition of wn and tn, we have that

∥xn − wn∥ = ∥αn(xn−1 − xn)∥ ≤ ∥xn−1 − xn∥ → 0, as n → ∞,

∥yn − tn∥ = ∥αn(yn−1 − yn)∥ ≤ ∥yn−1 − yn∥ → 0, as n → ∞.

So, lim
n→∞

ϕp(xn, wn) = 0 = lim
n→∞

ϕp(yn, tn).

Since (xn+1, yn+1) ∈ Cn+1 ×Qn+1, we have that

ϕp(xn+1, rn) ≤ ϕp(xn+1, wn) → 0, as n → ∞,

ϕp(yn+1, zn) ≤ ϕp(yn+1, tn) → 0, as n → ∞.

Therefore, lim
n→∞

ϕp(xn+1, rn) = 0 = lim
n→∞

ϕp(yn+1, zn). Hence, by Lemma 2.2, we have that

lim
n→∞

∥xn+1 − rn∥ = 0 = lim
n→∞

∥yn+1 − zn∥.

Therefore, rn → x∗. and zn → y∗. as n → ∞. Let ε = pγ
(
1− κpγ

1
p−1 (∥A∥

p
p−1 + ∥B∥

p
p−1 )

)
,

then from inequality (3.12) we have that

ε∥(Awn −Btn)∥p ≤ ϕp(x,wn) + ϕp(y, tn)− ϕp(x,wn)− ϕp(y, tn).

This implies that

lim
n→∞

(
ε∥Awn −Btn∥p

)
≤ lim

n→∞

(
ϕp(x,wn) + ϕp(y, tn)− ϕp(x,wn)− ϕp(y, tn)

)
= ϕp(x, x

∗) + ϕp(y, y
∗)− ϕp(x, x

∗)− ϕp(y, y
∗) = 0.

Using the condition on γ we get

0 = lim
n→∞

∥Awn −Btn∥ = ∥Ax∗ −By∗∥ (3.13)

which implies
Ax∗ = By∗. (3.14)

Next, we show that (x∗, y∗) ∈ F (T )× F (S). Using Lemma 2.4 we obtain that

∥un − x∗∥ = ∥J−1
pE1

(JpE1
wn − γA∗en)− J−1

pE1
JpE1

x∗∥

≤ κp∥JpE1
wn − γA∗en − JpE1

x∗∥
1

p−1

≤ κp

(
∥JpE1

wn − JpE1
x∗∥+ γ∥A∥∥Awn −Btn∥

) 1
p−1 .
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Using equation (3.13) and the fact that the normalized duality mapping J−1
pE1

is uniformly
continuous on bounded subsets of E1, this implies that lim

n→∞
un = x∗. Also,

∥JpE1
rn − JpE1

x∗∥ = ∥anJpE1
un + (1− an)JpE1

Tun − JpE1
x∗∥

= ∥(1− an)(JpE1
Tun − JpE1

x∗)− an(JpE1
x∗ − JpE1

un)∥
≥ (1− an)∥JpE1

Tun − JpE1
x∗∥ − an∥JpE1

x∗ − JpE1
un∥,

implies that lim
n→∞

∥JpE1
Tun − JpE1

x∗∥ = 0. By norm-to-weak continuity of J−1
pE1

, we have
that Tun ⇀ x∗ as n → ∞. Furthermore,

|∥Tun∥ − ∥x∗∥| = |∥JpE1
Tun∥ − ∥JpE1

x∗∥| ≤ ∥JpE1
Tun − JpE1

x∗∥ → 0.

Thus, lim
n→∞

∥Tun∥ = ∥x∗∥. Hence, by Kadec-Klee property of E1, we have that

lim
n→∞

Tun = x∗. Using this, closedness of T and the fact that lim
n→∞

un = x∗, we have that

Tx∗ = x∗. Following the same argument, we also have that Sy∗ = y∗. Thus, (x∗, y∗) ∈
F (T )× F (S). This together with (3.14) imply that (x∗, y∗) ∈ Γ. This completes the proof.

□

Corollary 3.1. Let E1 and E2 be lp, Lp(G), or the Sobolev spaces W p
m(G), 1 < p < ∞ and

E3 be a uniformly smooth real Banach space. Let A : E1 → E3 and B : E2 → E3 (such that
A,B ̸= 0) be bounded linear operators with adjoints A∗ and B∗, respectively. Let T : E1 → E1

and S : E2 → E2 be closed quasi-ϕ-nonexpansive mappings. Setting Γ = {(x, y) ∈ F (T ) ×
F (S) : Ax = By} and assuming Γ ̸= ∅. Let {(xn, yn)} be a sequence generated by (3.5). where

0 < an < 1, α ∈ (0, 1) 0 < γ <
[

1

κp(∥A∥
p

p−1 +∥B∥
p

p−1 )

]p−1

. Then {(xn, yn)} converges to some

point (x∗, y∗) in Γ.

4. APPLICATIONS

4.1. Split Equality Variational Inclusion Problem (SEVIP).

Theorem 4.2. Let E1 and E2 be uniformly smooth and p-uniformly convex real Banach spaces
and E3 be a smooth real Banach space. Let M : E1 → 2E

∗
1 and N : E2 → 2E

∗
2 be maximal

montone operators such that M−1(0) and N−1(0) are nonempty. Let A : E1 → E3 and B :
E2 → E3 be bounded linear operators with adjoints A∗ and B∗ such that A,B ̸= 0. Assuming
that Ω = {(x, y) ∈ M−1(0)×N−1(0) : Ax = By} ̸= ∅. Let {(xn, yn)} be a sequence generated
by 

x0, x1 ∈ E1, y0, y1 ∈ E2, en = JpE3
(Awn −Btn);

wn = xn + αn(xn − xn−1), un = J−1
pE1

(JpE1
wn − γA∗en);

rn = J−1
pE1

(anJpE1
un + (1− an)JpE1

QM
r un);

tn = yn + αn(yn − yn−1), vn = J−1
pE2

(JpE2
tn + γB∗en);

zn = J−1
pE2

(anJpE2
vn + (1− an)JpE2

QN
r vn);

Cn+1 = {u ∈ Cn : ϕp(u, rn) ≤ ϕp(u,wn)};
Qn+1 = {v ∈ Qn : ϕp(v, zn) ≤ ϕp(v, tn)};
xn+1 = ΠCn+1x1, yn+1 = ΠQn+1y1; n ≥ 1,

(4.15)

where QM
r = (JpE1

+ rM)−1JpE1
, QN

r = (JpE2
+ rN)−1JpE2

, 0 < an < 1, α ∈ (0, 1),

0 < γ <
[

1

κp(∥A∥
p

p−1 +∥B∥
p

p−1 )

]p−1

. Then {(xn, yn)} converges to some point (x∗, y∗) in Ω.
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Proof. Setting T = QM
r and S = QN

r , from Lemma 2.5 we can see that QM
r and QN

r are
quasi-ϕ-nonexpansive. And by Theorem 3.1 we get the desired result. □

4.2. Split equality problem. The split equality problem is to find

x ∈ C, y ∈ Q such that Ax = By.

Theorem 4.3. Let E1 and E2 be uniformly smooth and p-uniformly convex real Banach spaces
and E3 be a smooth real Banach space. Let A : E1 → E3 and B : E2 → E3 be bounded linear
operators with adjoints A∗ and B∗ such that A,B ̸= 0. Assuming Γ ̸= ∅. Let {(xn, yn)} be a
sequence generated by

x0, x1 ∈ E1, y0, y1 ∈ E2, C1 = E1, Q1 = E2, en = JpE3
(Awn −Btn);

wn = xn + αn(xn − xn−1), un = J−1
pE1

(JpE1
wn − γA∗en);

rn = J−1
pE1

(anJpE1
un + (1− an)JpE1

ΠCun);

tn = yn + αn(yn − yn−1), vn = J−1
pE2

(JpE2
tn + γB∗en);

zn = J−1
pE2

(anJpE2
vn + (1− an)JpE2

ΠQvn);

Cn+1 = {u ∈ Cn : ϕp(u, rn) ≤ ϕ(u,wn)};
Qn+1 = {v ∈ Qn : ϕp(v, zn) ≤ ϕP (v, tn)};
xn+1 = ΠCn+1

x1, yn+1 = ΠQn+1
y1; n ≥ 1,

(4.16)

where 0 < an < 1, α ∈ (0, 1), 0 < γ <
[

1

κp(∥A∥
p

p−1 +∥B∥
p

p−1 )

]p−1

. Then {(xn, yn)} converges

to some point (x∗, y∗) in Γ.

Proof. Setting T = ΠC and S = ΠQ, from Lemma 2.1 we have that ΠC and ΠQ are quasi-
ϕ-nonexpansive. And by Theorem 3.1 we get the desired result.

□

5. ITERATIVE ALGORITHM OF KRASNOSELSKII-TYPE

Replacing αn in iterative algorithm 4.16 by a fixed constant, λ such that 0 < λ < 1, the
algorithm reduces to the following Krasnoselskii-type algorithm.

x0, x1 ∈ E1, y0, y1 ∈ E2, C1 = E1, Q1 = E2, en = JpE3
(Awn −Btn);

wn = xn + λ(xn − xn−1), un = J−1
pE1

(JpE1
wn − γA∗en);

rn = J−1
pE1

(anJpE1
un + (1− an)JpE1

ΠCun);

tn = yn + λ(yn − yn−1), vn = J−1
pE2

(JpE2
tn + γB∗en);

zn = J−1
pE2

(anJpE2
vn + (1− an)JpE2

ΠQvn);

Cn+1 = {u ∈ Cn : ϕp(u, rn) ≤ ϕ(u,wn)};
Qn+1 = {v ∈ Qn : ϕp(v, zn) ≤ ϕP (v, tn)};
xn+1 = ΠCn+1

x1, yn+1 = ΠQn+1
y1; n ≥ 1,

(5.17)

6. NUMERICAL ILLUSTRATION

In this section, we give a numerical implementation of our proposed algorithm (3.5) and
we show the effect of the inertial parameter in the performance of our algorithm.

Example 6.1. Consider the simplified version of algorithm 3.5 in Rn.
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x0, x1 ∈ R, y0, y1 ∈ R, C1 = R, Q1 = R, en = Awn −Btn;

wn = xn + αn(xn − xn−1);

rn = anun + (1− an)Tun, un = wn − γA∗en;

tn = yn + αn(yn − yn−1);

zn = anvn + (1− an)Svn, vn = tn + γB∗en;

Cn+1 = {u ∈ Cn : |u− rn| ≤ |u− wn|};
Qn+1 = {v ∈ Qn : |v − zn| ≤ |v − tn|};
xn+1 = PCn+1

x1, yn+1 = PQn+1
y1; n ≥ 1.

(6.18)

In algorithm (6.18) let A : R → R2, B : R → R2, T : R → R and S : R → R be defined by

Ax :=
(x
2
,
x

3

)
, then A∗(u, v) =

u

2
+

v

3
, Bx :=

(x
4
,
x

5

)
, then B∗(u, v) =

u

4
+

v

5
,

and set Tx = x
4 , Sx = sinx. In algorithm (6.18), we take γ = 0.1, an = 0.5 and we vary the

inertial parameter αn. Setting maximum number of iteration n = 20 and tolerance 10−4.

TABLE 1. Numerical results of Example 6.1

Table of values choosing x0 = 1, x1 = 2, y0 = 2 and y1 = 3
20th Iterates of Algorithm 6.18
|xn+1 − 0| |yn+1 − 0|

αn = 0.05 0.0553 0.7702
αn = 0.2 0.0341 0.692
αn = 0.6 0.0041 0.1164
αn = 1

n 0.0248 0.6455
αn = 1

n2 0.0497 0.7582
αn = 4n

4n+5 0.0099 0.2258

(A) αn = 0.005 (B) αn = 0.2
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(C) αn = 0.6 (D) αn = 1
n

(E) αn = 1
n2 (F) αn = 4n

4n+5

FIGURE 1. Graph of the first 20 iterates of algorithm (6.18) for various αn

Remark 6.5. In general, Krasnoselskii-type algorithms are known to converge as fast as a
geometric progression. From Table 1 and Figure (A-F), for constant and variable choices
of αn as αn approaches 1

2 (λ = 1
2 ), we obtain better approximations.
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