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On the Quinary Fibonacci-Padovan Sequences

ORHAN DIŞKAYA and HAMZA MENKEN

ABSTRACT. In this paper, we consider the Fibonacci and Padovan sequences. We introduce the quinary
Fibonacci-Padovan sequences whose compounds are the Fibonacci and Padovan sequences. We derive the
Binet-like formulas, the generating functions and exponential generating functions of these sequences. Also,
we obtain some binomial identities, series and sums for them.

1. INTRODUCTION

Special numbers and the corresponding recurrence relations and their generalizations
have many applications to every field of science and they have many interesting proper-
ties [17–19]. Second order linear recurrences related to Fibonacci and Lucas numbers and
their generalizations are investigated in [8,14,15,21]. Fourth order linear recurrences and
their generalizations are studied in [9, 10, 20, 23]. On algebraic identities on a new integer
sequence with four parameters are investigated in [24].

In [3] the authors studied on the quadra Fibona-Pell and hexa Fibona-Pell-Jacobsthal
sequences.

In [9] and [10] various fourth order linear recurrences and their polynomials are defined
and studied.

In [23] the author define the quadrapell numbers and quadrapell polynomials as fourth
order linear recurrences.

In [20] the author defines the quadra Fibona-Pell integers sequences and she gives some
algebraic identities.

In the present work we consider fifth orders linear recurrences and we define the
quinary Fibonacci-Padovan sequences. We give some properties of them.

The Fibonacci and Padovan sequences {Fn} and {Pn} are defined by second and third
order recurrences for n ≥ 0, respectively,

Fn+2 = Fn+1 + Fn,

Pn+3 = Pn+1 + Pn,

with the initial conditions are given as follow, respectively,

F0 = 0, and F1 = 1,

P0 = 1, P1 = 1 and P2 = 1,

The first few members of these sequences are given as follow, respectively,
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n 0 1 2 3 4 5 6 7 8 9 10 11 . . .
Fn 0 1 1 2 3 5 8 13 21 34 55 89 . . .
Pn 1 1 1 2 2 3 4 5 7 9 12 16 . . .

TABLE 1. The first few members of these sequences

The recurrences involve the characteristic equations, respectively,

x2 − x− 1 = 0,

y3 − y − 1 = 0,

The roots of the equations are as follows, respectively,
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Then the following equalities follow directly from Vieta’s formulas, respectively,

α+ β = 1, α− β =
√
5, αβ = −1,

λ+ δ + γ = 0, λδ + λγ + δγ = −1, λδγ = 1.

Moreover, the Binet and Binet-like formulas for the Fibonacci and Padovan sequences
are, respectively,

Fn =
αn − βn

α− β
,

Pn = aλn + bδn + cγn,

where

a =
(δ − 1)(γ − 1)

(λ− δ)(λ− γ)
, b =

(λ− 1)(γ − 1)

(δ − λ)(δ − γ)
and c =

(λ− 1)(δ − 1)

(γ − λ)(γ − δ)
.

The generating functions for the Fibonacci and Padovan sequences are, respectively,

GF (x) =

∞∑
n=0

Fnx
n =

x

1− x− x2
,

GP (x) =

∞∑
n=0

Pnx
n =

1 + x

1− x2 − x3
.
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The exponential generating functions for the Fibonacci and Padovan sequences are, re-
spectively,

EF (x) =

∞∑
n=0

Fn

n!
xn =

eαx − eβx

α− β
,

EP (x) =

∞∑
n=0

Pn

n!
xn = aeλx + beδx + ceγx.

The series for the Fibonacci and Padovan sequences are, respectively,

SF (x) =

∞∑
n=0

Fn

xn
=

x

x2 − x− 1
,

SP (x) =

∞∑
n=0

Pn

xn
=

x2(x+ 1)

x3 − x− 1
.

The sum formulas for the Fibonacci and Padovan sequences are, respectively,

TF (x) =

m∑
n=0

Fn = Fm+2 − 1,

TP (x) =

m∑
n=0

Pn = Pm+5 − 2.

The Fibonacci and Padovan sequences and identities in the above passage are available
in [1–6, 11–13, 17, 18, 22, 25].

2. ON THE QUINARY FIBONACCI-PADOVAN SEQUENCES

In this section, we aim to obtain a new sequence whose characteristic equation has
the same roots as the characteristic equations of the Fibonacci and Padovan sequences.
Then we will examine the situation of these new sequences in the initial conditions, find
the Binet-like formula and reach the generating function, series, sum and binomial sum.
Similar investigations were given in [16, 20, 23]. In [23] the quadra Pell numbers are de-
fined and some properties are given. In [20] the Fibona-Pell integer sequence is defined
and some algebraic identities are obtained. In [16] the Quadra Lucas-Jacobsthal Numbers
were investigated.

Definition 2.1. The quinary Fibonacci-Padovan (or Fibona-Padovan) sequence {FPn}n≥0

is defined by a fifth order recurrence;

FPn+5 = FPn+4 + 2FPn+3 − 2FPn+1 − FPn (2.3)

with the initial conditions FP0 = 0, FP1 = 1, FP2 = 2, FP3 = 4 and FP4 = 8.

A similar definition has been made in [7]. The first few members of this sequence are
given as follow

n 0 1 2 3 4 5 6 7 8 9 10 . . .
FPn 0 1 2 4 8 14 25 43 73 123 205 . . .

TABLE 2. The first few members of the quinary Fibonacci-Padovan sequence
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We note that in Definition 2.1, if we take the initial conditions as follows we generate
the Fibonacci and Padovan numbers.

n 0 1 2 3 4 Numbers
FPn 0 1 1 2 3 Fibonacci numbers
FPn 1 1 1 2 2 Padovan numbers

TABLE 3. The first few members with the different initial conditions

The characteristic equation associated to the recurrence relation (2.3) is

z5 − z4 − 2z3 + 2z + 1 = 0. (2.4)

The roots of the equation (2.4) are the root in (1.1) and (1.2). Then the following equalities
follow directly from Vieta’s formulas

α+ β + λ+ δ + γ = 1 and αβλδγ = −1.

Theorem 2.1. The Binet-like formula for the quinary Fibonacci-Padovan sequence is

FPn = a1α
n + a2β

n + a3λ
n + a4δ

n + a5γ
n,

where,

a1 =
3α+ 2

(α− β)(α− λ)(α− δ)(α− γ)
,

a2 =
3β + 2

(β − α)(β − λ)(β − δ)(β − γ)
,

a3 =
λ+ δγ + 3

(λ− α)(λ− β)(λ− δ)(λ− γ)
,

a4 =
δ + λγ + 3

(δ − α)(δ − β)(δ − λ)(δ − γ)
,

a5 =
γ + λδ + 3

(γ − α)(γ − β)(γ − λ)(γ − δ)
.

such that α, β, λ, δ and γ are the roots of the characteristic equation of the quinary Fibonacci-
Padovan sequence.

Proof.

F0 = a1 + a2 + a3 + a4 + a5 = 0,

F1 = a1α+ a2β + a3λ+ a4δ + a5γ = 1,

F2 = a1α
2 + a2β

2 + a3λ
2 + a4δ

2 + a5γ
2 = 2,

F3 = a1α
3 + a2β

3 + a3λ
3 + a4δ

3 + a5γ
3 = 4,

F4 = a1α
4 + a2β

4 + a3λ
4 + a4δ

4 + a5γ
4 = 8.

By the Cramer’s rule or the Gauss-Jordan elimination method, we can easily compute the
coefficients ai’s of the system of linear equations above this completes the proof.

□

Theorem 2.2. The generating function for the quinary Fibonacci-Padovan sequence is

GFP (x) =

∞∑
n=0

FPnx
n =

x2 + x

1− x− 2x2 + 2x4 + x5
.
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Proof. Let

GFP (x) =

∞∑
n=0

FPnx
n = FP0 + FP1x+ FP2x

2 + FP3x
3 + · · ·+ FPnx

n + . . .

be the generating function of the quinary Fibonacci-Padovan sequence. Multiply both of
side of the equality by the term −x, −2x2 2x4 and x5, respectively, such as

−xGFP (x) = −FP0x− FP1x
2 − FP2x

3 − FP3x
4 − · · · − FPnx

n+1 − . . .

−2x2GFP (x) = −2FP0x
2 − 2FP1x

3 − 2FP2x
4 − 2FP3x

5 − · · · − 2FPnx
n+2 − . . .

2x4GFP (x) = 2FP0x
4 + 2FP1x

5 + 2FP2x
6 + 2FP3x

7 + · · ·+ 2FPnx
n+4 + . . .

x5GFP (x) = FP0x
5 + FP1x

6 + FP2x
7 + FP3x

8 + · · ·+ FPnx
n+5 + . . .

Then, we write

(1− x− 2x2 + 2x4 + x5)GFP (x) = FP0 + (FP1 − FP0)x+ (FP2 − FP1 − 2FP0)x
2

+(FP3−FP2− 2FP1)x
3+(FP4− FP3− 2FP2+2FP0)x

4

+ (FP5 − FP4 − 2FP3 + 2FP1 + FP0)x
5 . . .

+ (FPn − FPn−1 − 2FPn−2 + 2FPn−4 + FPn−5)x
n + . . .

Now, by using the initial conditions of the quinary Fibonacci-Padovan sequence and

FPn − FPn−1 − 2FPn−2 + 2FPn−4 + FPn−5 = 0,

we obtain that

GFP (x) =

∞∑
n=0

FPnx
n =

x2 + x

1− x− 2x2 + 2x4 + x5
.

Thus, the proof is completed. □

The generating function of the quinary Fibonacci-Padovan sequence is the multiplica-
tion of the generating function of the Fibonacci and Padovan sequence as seen following,

GF (x)GP (x) =

(
x

1− x− x2

)(
1 + x

1− x− x3

)
=

x2 + x

x5 + 2x4 − 2x2 − x+ 1
= GFP (x)

Theorem 2.3. The exponential generating function for the quinary Fibonacci-Padovan sequence
is

EFP (x) = a1e
αx + a2e

βx + a3e
λx + a4e

δx + a5e
γx =
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FPn
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Proof. We know that,
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Multiplying each side of the identities, respectively, by a1, a2, a3, a4 and a5 and adding of
them, we obtain that

EFP (x) = a1e
αx + a2e

βx + a3e
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δx + a5e
γx

=

∞∑
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(a1α
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□

Theorem 2.4. The series for the quinary Fibonacci-Padovan sequence is

SFP (x) =

∞∑
n=0

FPn

xn
=

x4 + x3

x5 − x4 − 2x3 + 2x+ 1
.

Proof. Let

SFP (x) =

∞∑
n=0

FPn

xn
= FP0 +

FP1

x
+

FP2

x2
+

FP3

x3
+ · · ·+ FPn

xn
+ . . .

be the series of the quinary Fibonacci-Padovan sequence. Multiply both of side of the
equality by the term x5, −x4 −2x3 and 2x respectively, such as

x5SFP (x) = x5FP0 + x4FP1 + x3FP2 + x2FP3 + · · ·+ FPn

xn−5
+ . . .

−x4SFP (x) = −x4FP0 − x3FP1 − x2FP2 − xFP3 − · · · − FPn

xn−4
− . . .

−2x3SFP (x) = −2x3FP0 − 2x2FP1 − 2xFP2 − 2FP3 − · · · − 2
FPn

xn−3
− . . .

2xSFP (x) = 2xFP0 + 2FP1 + 2
FP2

x
+ 2

FP3

x2
+ · · ·+ 2

FPn

xn−1
+ . . .

Then, we write

(x5 − x4 − 2x3 + 2x+ 1)SFP (x) = FP0 + (FP1 − FP0)x
4 + (FP2 − FP1 − 2FP0)x

3

+(FP3− FP2− 2FP1)x
2+ (FP4− FP3−2FP2+ 2FP0)x

+ (FP5 − FP4 − 2FP3 + 2FP1 + FP0) + . . .

+(FPn − FPn−1−2FPn−2+2FPn−4+FPn−5)
1

xn−5
+ . . .

Now, by using the initial conditions of the quinary Fibonacci-Padovan sequence and

FPn − FPn−1 − 2FPn−2 + 2FPn−4 + FPn−5 = 0,

we obtain that

SFP (x) =

∞∑
n=0

FPn

xn
=

x4 + x3

x5 − x4 − 2x3 + 2x+ 1
.

Thus, the proof is completed. □

The series for the quinary Fibonacci-Padovan sequence is the multiplication of the se-
ries for the Fibonacci and Padovan sequence as seen following,

SF (x)SP (x) =

(
x

x2 − x− 1

)(
x3 + x2

x3 − x− 1

)
=

x4 + x3

x5 − x4 − 2x3 + 2x+ 1
= SFP (x)

Theorem 2.5. The sum of the first n terms of FPn is
n∑

i=0

FPi = 2FPn+3 + 2FPn+2 − FPn+5 + 2, n ≥ 0.
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Proof. We know that

FPn+5 = FPn+4 + 2FPn+3 − 2FPn+1 − FPn

So,

FPn+5 − FPn+4 = 2FPn+3 − 2FPn+1 − FPn

Applying to the identity above, we deduce that

FP5 − FP4 = 2FP3 − 2FP1 − FP0,

FP6 − FP5 = 2FP4 − 2FP2 − FP1,

FP7 − FP6 = 2FP5 − 2FP3 − FP2,

. . . ,

FPn+3 − FPn+2 = 2FPn+1 − 2FPn−1 − FPn−2,

FPn+4 − FPn+3 = 2FPn+2 − 2FPn − FPn−1,

FPn+5 − FPn+4 = 2FPn+3 − 2FPn+1 − FPn

If we sum of both of sides of the identities above, we obtain,

FPn+5 − FP4 = 2FPn+3 + 2FPn+2 − 2FP2 − 2FP1 −
n∑

i=0

FPi.

Hence, we get the desired result. □

3. CONCLUSION

In this paper, we define a new compound sequence as the Fibonacci-Padovan sequence.
We prove that their characteristic equation is a multiplication of the characteristic equa-
tions of Fibonacci and Padovan. We show that by certain initial conditions from these
sequences we derive all of the compound sequences: the Fibonacci and Padovan. We
give the Binet-like formula for quinary Fibonacci-Padovan sequence. Finally, we obtain
their generating functions, series and sums. Also, we see that the generating functions of
these sequences arise from the multiplication of the generating functions of Fibonacci and
Padovan sequences.

REFERENCES

[1] Boussayoud, A.; Kerada, M.; Araci, S.; Acikgoz, M. Symmetric functions of the k-Fibonacci and k-Lucas
numbers. Asian-Eur. J. Math. 14(03) (2021) 2150031.

[2] Cook C. K.; Bacon, M. R. Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher
order recurrence relations. Ann. Math. Inform. 41 (2013), 27–39.
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