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Hausdorff series in semigroup rings of rectangular bands

OSMAN KELEKCI

ABSTRACT. The Hausdorff series provides a solution to the equation w = log(euev) given by a recursive
formula which can be expressed as nested commutators of u and v. Evolutions of the Haussdorff series in
various algebras and rings has been considered in obtaining a closed form of this formula. We consider the
rectangular band Lm × Rn determined by the left zero semigroup Lm and the right zero semigroup Rn of
order m and n, respectively. Let R⟨Lm × Rn⟩ be the semigroup ring spanned on Lm × Rn together with the
identity element 1. We provide a closed form of the formula for solving the equation in R⟨Lm ×Rn⟩.

1. INTRODUCTION

In relation to the problem of construction a Lie group from a given Lie algebra, Camp-
bell [3, 4] published two papers in 1897, without overcoming the convergence problem.
These studies were followed by the Baker [2] in 1905 and Hausdorff [10] in 1906 solving
the convergence problem, although they did not mention Lie groups. Thus, Campbell-
Baker-Hausdorff (CBH) formula dedicated to the names of three influential mathemati-
cians John Edward Campbell, Henry Frederick Baker, and Felix Hausdorff was revealed.

The Campbell-Baker–Hausdorff (CBH) series is of fundamental importance in the the-
ory of Lie groups, their applications, physics, and physical chemistry. The CBH formula
is a general result for the quantity w = w(u, v) = log(euev) or ew = euev , where u and
v are not necessarily commutative. Standard methods for the explicit construction of the
CBH terms yield polynomial representations, which must be translated into the usually
required commutator representation.

The expression of the CBH formula suggests that w can be presented as a series of
nested commutators of u and v, which does not provide a general formula. Dynkin [6] in
1947 derived an explicit expression for the terms as a sum of iterated commutators over a
certain set of sequences. The first few terms are shown below.

w = u+ v +
1

2
[u, v] +

1

12
[u, [u, v]] +

1

12
[v, [v, u]]− 1

24
[u, [v, [u, v]]]

− 1

720
[v, [v, [v, [v, u]]]− 1

720
[u, [u, [u, [u, v]]] +

1

360
[u, [v, [v, [v, u]]] + · · ·

Although the expression is known in the recursive form, evolutions of the Haussdorff
series in various algebras and rings has been considered in obtaining a closed form of this
formula. One may see the works by Gerritzen [9], Kurlin [12], and Drensky and Fındık
[7].

Baker [1] gave evaluations of the Hausdorff series in some finite dimensional Lie alge-
bras and computed the coefficients according to a fixed basis set.

In the theory of semigroups, a semigroup S is a rectangular band if s1s2s1 = s1 for
each s1, s2 ∈ S. The initial equivalent definition of rectangular bands was first given by
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Clifford [5]. It is well known, see e.g. [11], that each rectangular band can be expressed as
a cartesian product of a left zero semigroup and a right zero semigroup.

Given a finite semigroup S one may consider the semigroup ring R⟨S⟩ spanned on the
elements of S together with the identity element 1, and compute the evolution of the CBH
formula inside R⟨S⟩. Recently Fındık and the author [8] considered the semigroup rings
R⟨Lm⟩ and R⟨Rn⟩ of the left and right semigroups of order m and n, respectively. They
gave a solution to the equation w = log(euev), where u, v are in R⟨Lm⟩ or in R⟨Rn⟩ for
which a closed formula was obtained in these semigroup rings.

In the present paper, as a generalization of the paper [8] on R⟨Lm⟩ and R⟨Rn⟩, we com-
pute the evolution of CBH formula in the semigroup ring R⟨Lm × Rn⟩ of the rectangular
band Lm ×Rn of order mn.

2. MAIN RESULTS

Let Lm = {l1, . . . , lm} and Rn = {r1, . . . , rn} be the left zero semigroup and right
semigroup, respectively. We consider the rectangular band

Amn = Lm ×Rn = {aij = (li, rj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

with the multiplication rule aijakl = ail. Note that Amn is isomorphic to a left or a right
zero semigroup when n = 1 or m = 1, respectively. Since these cases has been considered
in [8], we assume that m,n ≥ 2 throughout the paper.

Now let R⟨Amn⟩ denote the semigroup ring spanned on the basis {1} ∪ Amn over the
field R of real numbers. Each element u of R⟨Amn⟩ is of the form

u = x00 · 1 +
m∑
i=1

n∑
j=1

xij · aij = x00 +
∑
i,j

xijaij

for some x00, xij ∈ R. Now let us define the following notations.

x =

m∑
i=1

n∑
j=1

xij , rxi
=

n∑
j=1

xij , cxj
=

m∑
i=1

xij

Clearly x, rxi
, and cxj

are the sum of all entries, of entries of i-th row, and of entries of j-th
column of the matrix [xij ]m×n, respectively.

The multiplication in R⟨Amn⟩ is as follows. Let

u = x00 +
∑
i,j

xijaij , and v = y00 +
∑
i,j

yijaij

for some x00, xij , y00, yij ∈ R. Then it is straightforward to see that

uv = x00v + y00u+

m∑
i=1

n∑
j=1

(rxi
cyj

)aij = x00v + y00u+
∑
i,j

rxi
cyj

aij .

Solving the equation w = log(euev) = z00 +
∑

i,j zijaij , it is sufficient to consider the
elements u, and v without constant terms by Lemma 2.1 of [8], which implies that ew−z00 =
eu−x00ev−y00 . The next lemma supports our main result considering the exponent of a
given element in the subsemigroup ring of A spanned on aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Lemma 2.1. Let u =
∑

i,j xijaij , v =
∑

i,j yijaij , x =
∑

i,j xij , and y =
∑

i,j yij . Then the
following assertions hold.



Hausdorff series in semigroup rings of rectangular bands 51

(a) uk = xk−2u2 = xk−2
∑

i,j rxi
cxj

aij for each k ≥ 3, and

eu = 1 + u+

(
ex − 1− x

x2

)
u2.

(b)

u2 =
∑
i,j

rxi
cxj

aij , v2 =
∑
i,j

ryi
cyj

aij , uv =
∑
i,j

rxi
cyj

aij

u2v = x
∑
i,j

rxi
cyj

aij , uv2 = y
∑
i,j

rxi
cyj

aij , u2v2 = xy
∑
i,j

rxi
cyj

aij .

Proof. We shall prove only (a), since the proof of (b) is obtained by direct computations.
One may easily obtain that u3 = xu2, which implies by induction that uk = xk−2u2, k ≥ 3.
The following computations complete the proof.

eu =
∑
k≥0

uk

k!
= 1 + u+

∑
m≥2

xk−2u2

k!
= 1 +

(
ex − 1− x

x2

)
u2.

□

Now we are ready to state the main result of our paper.

Theorem 2.1. Let u, v, w ∈ A such that ew = euev , where u =
∑

i,j xijaij , v =
∑

i,j yijaij ,
and w =

∑
i,j zijaij . Then for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, we have the following.

zij = tij − rziczj
ex+y − 1− x− y

(x+ y)2
,

where
tij = xij + yij + rxi

cyj
B1 + rxi

cxj
B2 + ryi

cyj
B3

rzi =
x+ y

ex+y − 1
[rxi

(1 + yB1 + xB2) + ryi
(1 + yB3)]

czj =
x+ y

ex+y − 1

[
cxj

(1 + xB2) + cyj
(1 + xB1 + yB3)

]
B1 =

(ex − 1)(ey − 1)

xy
, B2 =

ex − 1− x

x2
, B3 =

ey − 1− y

y2
.

Proof. Lemma 2.1 together with euev = ew give

(1 + u+
ex − 1− x

x2
u2)(1 + v +

ey − 1− y

y2
v2) = 1 + w +

ez − 1− z

z2
w2

and

1 + u+ v + uv +
ex − 1− x

x2
u2 +

ey − 1− y

y2
v2 +

ey − 1− y

y2
uv2

+
ex − 1− x

x2
u2v +

ex − 1− x

x2

ey − 1− y

y2
u2v2 = 1 + w +

ez − 1− z

z2
w2

The coefficient of aij for each pair (i, j) from both sides, by Lemma 2.1 (b), is

xij + yij + rxi
cyj

[
1 +

ex − 1− x

x
+

ey − 1− y

y
+

ex − 1− x

x

ey − 1− y

y

]
+ rxicxj

ex − 1− x

x2
+ ryicyj

ey − 1− y

y2
= zij +

ey − 1− y

y2
rziczj
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or
tij = xij + yij + rxicyjB1 + rxicxjB2 + ryicyjB3 = zij +

ez − 1− z

z2
rziczj

where

B1 = 1 +
ex − 1− x

x
+

ey − 1− y

y
+

ex − 1− x

x

ey − 1− y

y
=

(ex − 1)(ey − 1)

xy

B2 =
ex − 1− x

x2
, B3 =

ey − 1− y

y2
.

Considering the sum of all mn equations we get that
m∑
i=1

n∑
j=1

tij = x+ y + xyB1 + x2B2 + y2B3 = z +
ez − 1− z

z2
z

or
ex+y − 1 = ez − 1

which gives that z = x + y. Now going back to the definition tij , we need rzi and czj for
obtaining the explicit expressions of zij . The following computations complete the proof
by giving the desired expressions stated in the theorem.

n∑
j=1

tij = rxi + ryi + rxiyB1 + rxixB2 + ryiyB3 =
ez − 1

z
rzi

m∑
i=1

tij = cxj
+ cyj

+ cyj
xB1 + cxj

xB2 + cyj
yB3 =

ez − 1

z
czj

□

Let us illustrate the result by an example as follows. Let m = n = 2, and

a11 =

 1 1 0
0 0 0
0 0 0

 , a12 =

 1 1 1
0 0 0
0 0 0

 , a21 =

 0 0 0
1 1 0
0 0 0

 , a22 =

 0 0 0
1 1 1
0 0 0

 .

Then it is easy to check that aijakl = ail for 1 ≤ i, j ≤ 2. Hence A22 = {a11, a12, a21, a22} is
a rectangular band of order 4. Now let

u =
∑
i,j

xijaij = 2a11 − a12 + a21 + 3a22,

v =
∑
i,j

yijaij = −a11 + a12 − 2a21 − a22,

w =
∑
i,j

zijaij = log(euev).

Then we have that
x =

∑
i,j

xij = 2− 1 + 1 + 3 = 5,

rx1
=

∑
j

x1j = 2− 1 = 1,

rx2 =
∑
j

x2j = 1 + 3 = 4,

cx1
=

∑
i

xi1 = 2 + 1 = 3,
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cx2
=

∑
i

xi2 = −1 + 3 = 2,

and
y =

∑
i,j

yij = −1 + 1− 2− 1 = −3,

ry1 =
∑
j

y1j = −1 + 1 = 0,

ry2
=

∑
j

y2j = −2− 1 = −3,

cy1
=

∑
i

yi1 = −1− 2 = −3,

cy2 =
∑
i

yi2 = 1− 1 = 0.

Also,

B1 =
(ex − 1)(ey − 1)

xy
= − (e5 − 1)(e−3 − 1)

15
,

B2 =
ex − 1− x

x2
=

e5 − 6

25
,

B3 =
ey − 1− y

y2
=

e−3 + 2

9
.

If the calculated values are substituted in the tij , rzi and czj , then we find

t11 = 2− 1− 3B1 + 3B2 = 1 +
(e5 − 1)(e−3 − 1)

5
+

3(e5 − 6)

25
,

t12 = −1 + 1 + 2B2 =
2(e5 − 6)

25
,

t21 = 1− 2− 12B1 + 12B2 + 9B3 = −1 +
4(e5 − 1)(e−3 − 1)

5
+

12(e5 − 6)

25
+ (e−3 + 2)

t22 = 3− 1 + 8B2 = 2 +
8(e5 − 6)

25
,

rz1 =
2

e2 − 1

[
1 +

(e5 − 1)(e−3 − 1)

5
+

(e5 − 6)

5

]
,

rz2 =
2

e2 − 1

[
4(

(e5 − 1)(e−3 − 1)

5
+

(e5 − 6)

5
)− 3(1− (e−3 + 2)

3
)

]
,

cz1 =
2

e2 − 1

[
3(1 +

(e5 − 6)

5
)− 3(1− (e5 − 1)(e−3 − 1)

3
− (e−3 + 2)

3
)

]
,

cz2 =
2

e2 − 1

[
2(1 +

(e5 − 6)

5
)

]
.

Therefore

z11 = t11 − rz1cz1
e2 − 3

4
,

z12 = t12 − rz1cz2
e2 − 3

4
,
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z21 = t21 − rz2cz1
e2 − 3

4
,

z22 = t22 − rz2cz2
e2 − 3

4
,

with above values.

3. CONCLUSIONS

Let S be a semigroup and R⟨S⟩ be the semigroup ring with basis S ∪ {1}. Consider the
equation

w = log(euev)

where u, v ∈ R⟨S⟩. Clearly, w = u + v when S is commutative. However it is not easy to
compute w in the case of noncommutativity. The first step in this direction has been done
for left zero semigroup Lm and right zero semigroup Rn in [8].

A natural generalization of the recent result is the rectangular band Lm × Rn, and we
do not obtain a larger semigroup structure from this point, since the k − times product

(Lm ×Rn)× · · · × (Lm ×Rn)

is isomorphic to Lkm × Rkn which is already covered by the main result of the paper.
Notice that our findings are not consequences of [8] when km ̸= 1 or kn ̸= 1.

Hence we provide the description of w in R⟨Lm × Rn⟩ in the present paper. It would
be interesting to held the problem for some other noncommutative semigroups.
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