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On the generalized trapezoid and midpoint type
inequalities involving Euler’s beta function

MEHMET ZEKI SARIKAYA and GIZEM KOZAN

ABSTRACT. The main object of this paper is to present some generalizations of fractional integral inequalities
involving Euler’s beta function of Hermite-Hadamard type which cover the previously published result such as
Riemann integral, Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral.

1. INTRODUCTION

The usefulness of inequalities involving convex functions is realized from the very be-
ginning and is now widely acknowledged as one of the prime driving forces behind the
development of several modern branches of mathematics and has been given consider-
able attention. Some famous results for such estimations consist of Hermite-Hadamard,
trapezoid, midpoint, Simpson or Jensen inequalities ect.

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real numbers and
a, b ∈ I , with a < b. The following double inequality is well known in the literature as the
Hermite-Hadamard inequalities [16]:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
. (1.1)

The most well-known inequalities related to the integral mean of a convex function
are the Hermite Hadamard inequalities. It gives an estimate from both sides of the mean
value of a convex function and also ensure the integrability of convex function. It is also
a matter of great interest and one has to note that some of the classical inequalities for
means can be obtained from Hadamard’s inequality under the utility of peculiar convex
functions f : These inequalities for convex functions play a crucial role in analysis and as
well as in other areas of pure and applied mathematics. The absolute value of the dif-
ference of the second part of the (1.1) inequalities is known as the trapezoidal inequality
in the literature and was given by Dragomir and Agarwal in 1998 [5]. Then, in 2004, the
absolute value of the difference of the first part of the (1.1) inequalities, known as the mid-
point inequality by Kirmanci, was given [11]. Thus, these two important inequalities have
attracted the attention of many readers to date, and many studies have been carried out
for different types of convex functions. For recent results and generalizations concerning
Hermite-Hadamard’s inequalities see [6], [9], [12]-[14], [20]-[23], [33] and the references
given therein.

In [5], Dragomir and Agarwal proved the following results connected to the right part
of (1.1).
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Lemma 1.1. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ (I◦ is the interior
of I) with a < b. If f ′ ∈ L[a, b], then the following equality holds:

f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx =
b− a

2

∫ 1

0

(1− 2t)f ′(ta+ (1− t)b)dt. (1.2)

Theorem 1.1. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
|f ′| is convex on [a, b], then the following inequality holds:∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ (b− a)

8
(|f ′(a)|+ |f ′(b)|) . (1.3)

In [11], Kirmaci proved the following results connected to the left part of (1.1). In [11]
some inequalities of Hermite-Hadamard type for differentiable convex mappings were
proved using the following lemma.

Lemma 1.2. Let f : I◦ ⊂ R → R, be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
f ′ ∈ L ([a, b]), then we have

1

b− a

∫ b

a

f(x)dx− f

(
a+ b

2

)
(1.4)

= (b− a)

[∫ 1
2

0

tf ′(ta+ (1− t)b)dt+

∫ 1

1
2

(t− 1) f ′(ta+ (1− t)b)dt

]
.

Theorem 1.2. Let f : I◦ ⊆ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with a < b. If
|f ′| is convex on [a, b], then we have∣∣∣∣∣ 1

b− a

∫ b

a

f(x)dx− f

(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)

8
(|f ′(a)|+ |f ′(b)|) . (1.5)

The subject of the fractional calculus (integrals and derivatives) has gained consider-
able popularity and importance during the past there decades or so, due mainly to its
demostrated applications in nemerous seemingly diverse and widespread fields of sci-
ence and engineering. The fractional integral does indeed provide several potentially
useful tools for various problems involving special functions of mathematical science as
well as their extensions and generalizations in one and more variables. This subject is
still being studied extensively by many authors, see for instance ([1], [2], [10], [15], [17]-
[32]). One of the important applications of fractional integrals is Hermite-Hadamard in-
tegral inequality, see [3], [7], [8], [18], [24]-[32]. First, let’s recall the above concepts of the
Riemann-Liouville fractional integral are defined as follows [10], [15] and [17]:

Jα

a+
f(x) =

1

Γ (α)

∫ x

a

(x− t)
α−1

f(t)dt, x > a,

Jα
b−f(x) =

1

Γ (α)

∫ b

x

(t− x)
α−1

f(t)dt, x < b.

The k-Riemann-Liouville fractional integral are defined by follows:

Jα

a+,k
f(x) =

1

kΓk (α)

∫ x

a

(x− t)
α
k −1

f(t)dt, x > a,

Jα
b−,kf(x) =

1

kΓk (α)

∫ b

x

(t− x)
α
k −1

f(t)dt, x < b
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where

Γk (α) =

∫ ∞

0

tα−1e−
tk

k dt, R(α) > 0

and
Γk (α) = k

α
k −1Γ

(α
k

)
, R(α) > 0; k > 0

are given by Mubeen and Habibullah in [30].
Now, let’s recall the basic expressions of Hermite-Hadamard inequality for fractional

integrals as proved by Sarikaya et al. in [24] as follows:

Theorem 1.3. Let f : [a, b] → R be a function with a < b and f ∈ L1([a, b]). If f is a convex
function on [a, b], then the following inequalities for fractional integrals hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)
α

[
Jα
a+f(b) + Jα

b−f(a)
]
≤ f (a) + f (b)

2
(1.6)

with α > 0.

Meanwhile, in [24], Sarikaya et al. gave the following interesting trapeozid identity for
Riemann-Liouville integral:

Lemma 1.3. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If f ′ ∈ L [a, b] ,
then the following equality for fractional integrals holds:

f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α

[
Jα
a+f(b) + Jα

b−f(a)
]

(1.7)

=
b− a

2

∫ 1

0

[(1− t)
α − tα] f ′ (ta+ (1− t)b) dt.

Theorem 1.4. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If |f ′| is convex
on [a, b], then the following inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α

[
Jα
a+f(b) + Jα

b−f(a)
]∣∣∣∣

(1.8)

≤ b− a

2 (α+ 1)

(
1− 1

2α

)
[f ′(a) + f ′(b)] .

On the other hand, in [28] Iqbal et al. gave the following results connected to the left
part of Riemann-Liouville integral inequalities of Hermite-Hadamard type (1.6) by using
the following Midpoint identity as follows.

Lemma 1.4. Let f : [a, b] → R be a differentiable function on (a, b). If f ′ ∈ L1 [a, b] , then the
following identity for Riemann-Liouville fractional integrals holds:

f

(
a+ b

2

)
− Γ(α+ 1)

2 (b− a)
α

[
Jα
a+f(b) + Jα

b−f(a)
]
=

b− a

2

4∑
k=1

Ik, (1.9)

where

I1 =

1
2∫
0

tαf ′ (tb+ (1− t)a) dt, I2 =

1
2∫
0

(−tα) f ′ (ta+ (1− t)b) dt,

I3 =
1∫
1
2

(tα − 1) f ′ (tb+ (1− t)a) dt, I4 =
1∫
1
2

(1− tα) f ′ (ta+ (1− t)b) dt.
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Many papers study the Riemann-Liouville fractional integrals and give new and inter-
esting generalizations of Hermite-Hadamard type inequalities using these kind of inte-
grals, see for instance see ([1]-[3], [18], [24]-[32]).

The purpose of this paper is to establish new Hermite-Hadamard type inequalities
involving Euler’s beta functions. Using functions whose first derivatives absolute values
are convex, we obtained new trapezoid and midpoint inequalities that are connected with
the celebrated Hermite-Hadamard type which cover the previously published results.

2. HERMITE-HADAMARD INEQUALITIES INVOLVING EULER’S BETA FUNCTION

In 1997, Chaudhry et al. [4] presented the following extension of Euler’s beta function

β (m,n; ν) =

1∫
0

tm−1 (1− t)
n−1

e
−ν

t(1−t) dt, for m,n, ν > 0

and they proved that this extension has connections with the Macdonald, error and Whit-
takers function. It clearly seems that β (m,n; ν) = β (m,n), where β (m,n) is the classical
beta function.

In this section, using Euler’s beta function, we begin by the following theorem:

Theorem 2.5. Let f : [a, b] → R be a convex function on [a, b] with a < b, then the following
inequalities hold:

f

(
a+ b

2

)
β (m,n; ν) (2.10)

≤ 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx

≤ β (m,n; ν)
f (a) + f (b)

2

where β (m,n; ν) is Euler’s beta function and

Ω (x) = (b− x)
m−1

(x− a)
n−1

+ (b− x)
n−1

(x− a)
m−1

for m,n, ν > 0.

Proof. For t ∈ [0, 1], let x = ta+ (1− t)b, y = (1− t)a+ tb. The convexity of f yields

f

(
a+ b

2

)
= f

(
x+ y

2

)
≤ f (x) + f (y)

2
(2.11)

i.e.,

2f

(
a+ b

2

)
≤ f (ta+ (1− t)b) + f ((1− t)a+ tb) . (2.12)
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Multiplying both sides of (2.12) by tm−1 (1− t)
n−1

e
−ν

t(1−t) , then integrating the resulting
inequality with respect to t over [0, 1], we obtain

2f

(
a+ b

2

)∫ 1

0

tm−1 (1− t)
n−1

e−
ν

t(1−t) dt

≤
1∫

0

tm−1 (1− t)
n−1

f (ta+ (1− t)b) e−
ν

t(1−t) dt

+

1∫
0

tm−1 (1− t)
n−1

f ((1− t)a+ tb) e−
ν

t(1−t) dt.

By using the change of the variable, we obtain

f

(
a+ b

2

)
β (m,n; ν)

≤ 1

2 (b− a)
m+n−1

b∫
a

[
(b− x)

m−1
(x− a)

n−1
+ (b− x)

n−1
(x− a)

m−1
]
f (x) e

−ν(b−a)2

(b−x)(x−a) dx

and the first inequality is proved.
To prove the other half of the inequality in (2.10), since f is convex, we have,

f (ta+ (1− t)b) + f ((1− t)a+ tb) ≤ f (a) + f (b) (2.13)

for every t ∈ [0, 1]. Then multiplying both sides of (2.13) by tm−1 (1− t)
n−1

e
−ν

t(1−t) and
integrating the resulting inequality with respect to t over [0, 1], we obtain

1

2 (b− a)
m+n−1

b∫
a

[
(b− x)

m−1
(x− a)

n−1
+ (b− x)

n−1
(x− a)

m−1
]
f (x) e

−ν(b−a)2

(b−x)(x−a) dx

≤ f (a) + f (b)

2
β (m,n; ν)

and the second inequality is proved. □

Corollary 2.1. With the notations in Theorem 2.5, if we choose n = m = 1, we have

f

(
a+ b

2

)
≤ 1

(b− a)E (ν)

b∫
a

f (x) e
−ν(b−a)2

(b−x)(x−a) dx ≤ f (a) + f (b)

2
(2.14)

where E (ν) =
1∫
0

e
−ν

t(1−t) dt, ν > 0.

Remark 2.1. If in Corollary 2.1, we take ν → 0, then the inequalities (2.14) become the
inequalities (1.1).
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Corollary 2.2. With the notations in Theorem 2.5, if we choose m = 1, n = α,(or m = α, n = 1)
we have

f

(
a+ b

2

)
(2.15)

≤ 1

2E (α; ν) (b− a)
α

b∫
a

[
(x− a)

α−1
+ (b− x)

α−1
]
f (x) e

−ν(b−a)2

(b−x)(x−a) dx

≤ f (a) + f (b)

2

where E (α; ν) =
1∫
0

(1− t)
α−1

e
−ν

t(1−t) dt, α, ν > 0.

Remark 2.2. If in Corollary 2.2, we take ν → 0, then the inequalities (2.15) become the
inequalities (1.6).

In fact k-Riemann-Liouville fractional integrals of order α are generalization of Riemann-
Liouville fractional integrals of order α. If we take k → 1, the k-Riemann-Liouville frac-
tional integrals of order α turn out to be Riemann-Liouville fractional integrals of order α.
The following result is related to this;

Corollary 2.3. With the notations in Theorem 2.5, if we choose m = 1, n = α
k ,(or m = α

k , n = 1)
we have

f

(
a+ b

2

)
(2.16)

≤ 1

2Ek (α; ν) (b− a)
α
k

b∫
a

[
(x− a)

α
k −1

+ (b− x)
α
k −1

]
f (x) e

−ν(b−a)2

(b−x)(x−a) dx

≤ f (a) + f (b)

2

where Ek (α; ν) =
1∫
0

(1− t)
α
k −1

e
−ν

t(1−t) dt, α, ν, k > 0.

Remark 2.3. If in Corollary 2.3, we take ν → 0, then the inequalities (2.16) become the inequali-
ties

f

(
a+ b

2

)
≤ Γk (α+ k)

2 (b− a)
α
k

[
Jα

a+,k
f(b) + Jα

b−,k f(a)
]
≤ f (a) + f (b)

2

which are proved by Hussain et. al. in [31].

3. TRAPEZOID INEQUALITIES INVOLVING EULER’S BETA FUNCTION

In this section, we give an identity which use to assist us is proving our results as
follows:
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Lemma 3.5. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If f ′ ∈ L [a, b] ,
then the following equality holds:

f (a) + f (b)

2
β (m,n; ν)− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx (3.17)

=
(b− a)

2

1∫
0

βt (m,n; ν) [f ′ (tb+ (1− t)a)− f ′ (ta+ (1− t)b)] dt

where βt (m,n; v) is incomplete Euler’s beta function defiend by

βt (m,n; ν) =

t∫
0

sm−1 (1− s)
n−1

e
−ν

s(1−s) ds, 0 < t ≤ 1

for m,n, ν > 0.

Proof. Here, we apply integration by parts in integrals of right part of (3.17), and by using
the change of the variable x = tb+ (1− t)a, then we have

𭟋1 =

1∫
0

βt (m,n; ν) f ′ (tb+ (1− t)a) dt

=
f(b)

b− a
β (m,n; ν)− 1

b− a

1∫
0

tm−1 (1− t)
n−1

f(tb+ (1− t)a)e
−ν

t(1−t) dt

=
f(b)

b− a
β (m,n; ν)− 1

(b− a)
m+n

b∫
a

(x− a)
m−1

(b− x)
n−1

f(x)e
−ν(b−a)2

(b−x)(x−a) dx.

And similarly, we obtain

𭟋2 =

1∫
0

βt (m,n; ν) f ′ (ta+ (1− t)b) dt

= − f(a)

b− a
β (m,n; ν) +

1

b− a

1∫
0

tm−1 (1− t)
n−1

f(ta+ (1− t)b)e
−ν

t(1−t) dt

= − f(a)

b− a
(m,n; ν) +

1

(b− a)
m+n

b∫
a

(x− a)
n−1

(b− x)
m−1

f(x)e
−ν(b−a)2

(b−x)(x−a) dx.

If we subtract 𭟋1 from 𭟋2 and multiply by (b−a)
2 , we obtain proof of the (3.17). □

Remark 3.4. If in Lemma 3.5, we get m = n = 1 and ν → 0, then the identity (3.17) becomes
the identity (1.2).

Remark 3.5. If in Lemma 3.5, we get m = 1, n = α, ν → 0 (or m = α, n = 1, ν → 0),
then the identity (3.17) becomes the identity (1.7).
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Remark 3.6. If in Lemma 3.5, we get m = 1, n = α
k , ν → 0 (or m = α

k , n = 1 ν → 0), then
the identity (3.17) reduces to

f(a) + f(b)

2
− Γk (α+ k)

2 (b− a)
α
k

[
Jα

a+,k
f(b) + Jα

b−,k f(a)
]

=
b− a

2

∫ 1

0

[
(1− t)

α
k − t

α
k

]
f ′ (ta+ (1− t)b) dt

which are proved by Hussain et. al. in [31].

Instead of the identity (3.17) in Lemma 3.5, the following identity will be used to prove
the theorems.

Remark 3.7. By the change of variable in Lemma 3.5, the identity (3.17) reduces to

β (m,n; ν)
f (a) + f (b)

2
− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx (3.18)

=
(b− a)

2

1∫
0

[βt (m,n; ν)− β1−t (m,n; ν)] f ′ (tb+ (1− t)a) dt.

Now, we extend some estimates of the right hand side of a Hermite-Hadamard type
inequality for functions whose first derivatives absolute values are convex as follows:

Theorem 3.6. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b and f ′ ∈
L [a, b] . If |f ′| is convex on [a, b], then the following inequality holds:

∣∣∣∣∣∣β (m,n; ν)
f (a) + f (b)

2
− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx

∣∣∣∣∣∣
(3.19)

≤ (b− a)

(
|f ′ (a)|+ |f ′ (b)|

2

) 1
2∫

0

[β1−t (m,n; ν)− βt (m,n; ν)] dt

for m,n, ν > 0.
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Proof. Using identity (3.18) and the convexity of |f ′|, we find that∣∣∣∣∣∣β (m,n; ν)
f (a) + f (b)

2
− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx

∣∣∣∣∣∣
≤ (b− a)

2

1∫
0

|βt (m,n; ν)− β1−t (m,n; ν)| |f ′ ((1− t)a+ tb)| dt

≤ (b− a)

2

1
2∫

0

[β1−t (m,n; ν)− βt (m,n; ν)] [(1− t) |f ′ (a)|+ t |f ′ (b)|] dt

+
(b− a)

2

1∫
1
2

[βt (m,n; ν)− β1−t (m,n; ν)] [(1− t) |f ′ (a)|+ t |f ′ (b)|] dt

=
(b− a)

2
(|f ′ (a)|+ |f ′ (b)|)

1
2∫

0

[β1−t (m,n; ν)− βt (m,n; ν)] dt

which this completes the proof of the (3.19). □

Remark 3.8. If in Theorem 3.6, we get n = m = 1 and ν → 0, then, the inequality (3.19)
becomes the inequality (1.3).

Remark 3.9. If in Theorem 3.6, we get m = 1, n = α, ν → 0 (or m = α, n = 1, ν → 0),
then the inequality (3.19) becomes the inequality (1.8).

Remark 3.10. If in Theorem 3.6, we get m = 1, n = α
k , ν → 0 (or m = α

k , n = 1, ν → 0),
then the inequality (3.19) becomes∣∣∣∣∣f(a) + f(b)

2
− Γk (α+ k)

2 (b− a)
α
k

[
Jα

a+,k
f(b) + Jα

b−,k f(a)
]∣∣∣∣∣

≤ (b− a)(
α
k + 1

) (1− 1

2
α
k

)(
|f ′ (a)|+ |f ′ (b)|

2

)
which are proved by Hussain et. al. in [31].

Theorem 3.7. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b and f ′ ∈
L [a, b] . If |f ′|q is convex on [a, b] for some q > 1, then the following inequality holds: for
m,n, ν > 0 ∣∣∣∣∣∣β (m,n; ν)

f (a) + f (b)

2
− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx

∣∣∣∣∣∣
(3.20)

≤ (b− a)

2

 1∫
0

|βt (m,n; ν)− β1−t (m,n; ν)|p dt


1
p (

|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

where 1
p + 1

q = 1.
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Proof. Using identity (3.18), Hölder’s inequality and the convexity of |f ′|q , we find that∣∣∣∣∣∣β (m,n; ν)
f (a) + f (b)

2
− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx

∣∣∣∣∣∣
≤ (b− a)

2

 1∫
0

|βt (m,n; ν)− β1−t (m,n; ν)|p dt


1
p
 1∫

0

|f ′ ((1− t)a+ tb)|q dt


1
q

≤ (b− a)

2

 1∫
0

|βt (m,n; ν)− β1−t (m,n; ν)|p dt


1
p
 1∫

0

[
(1− t) |f ′ (a)|q + t |f ′ (b)|q

]
dt


1
q

which this completes the proof of the (3.20). □

Remark 3.11. If in Theorem 3.7, we get m = n = 1 and ν → 0, then, the inequality (3.20)
becomes the inequality (2.4) of Theorem 2.3 in [5].

Remark 3.12. If in Theorem 3.7, we get m = 1, n = α, ν → 0 (or m = α, n = 1, ν → 0),
then the inequality (3.20) becomes the inequality (2.7) of Theorem 8 in [26].

Remark 3.13. If in Theorem 3.7 we get m = 1, n = α
k , ν → 0 (or m = α

k , n = 1, ν → 0),
then the inequality (3.20) becomes∣∣∣∣∣f(a) + f(b)

2
− Γk (α+ k)

2 (b− a)
α
k

[
Jα

a+,k
f(b) + Jα

b−,k f(a)
]∣∣∣∣∣

≤ (b− a)

2
(
α
k p+ 1

) 1
p

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

where 1
p + 1

q = 1, α
k ∈ [0, 1] , which are proved Hussain et. al. in [31].

4. MIDPOINT INEQUALITIES INVOLVING EULER’S BETA FUNCTION

Before starting and proving our next result, we need the following lemma.

Lemma 4.6. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If f ′ ∈ L [a, b] ,
then the following equality holds:

f

(
a+ b

2

)
β (m,n; ν)− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx =
b− a

2

4∑
k=1

Tk (4.21)

where

T1 =

1
2∫
0

βt (m,n; ν) f ′ (tb+ (1− t)a) dt, T2 =

1
2∫
0

(−βt (m,n; ν)) f ′ (ta+ (1− t)b) dt,

T3 =
1∫
1
2

(−β1−t (m,n; ν)) f ′ (tb+ (1− t)a) dt, T4 =
1∫
1
2

β1−t (m,n; ν) f ′ (ta+ (1− t)b) dt

for m,n, v > 0.
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Proof. In the proof of (4.21), we apply integration by parts, then we have

T1 =

1
2∫

0

βt (m,n; ν) f ′ (tb+ (1− t)a) dt

=
1

b− a
β 1

2
(m,n; ν) f

(
a+ b

2

)
− 1

b− a

1
2∫

0

tm−1 (1− t)
n−1

f (tb+ (1− t)a) e
−ν

t(1−t) dt,

T2 =

1
2∫

0

(−βt (m,n; ν)) f ′ (ta+ (1− t)b) dt

=
1

b− a
β 1

2
(m,n; ν) f

(
a+ b

2

)
− 1

b− a

1
2∫

0

tm−1 (1− t)
n−1

f (ta+ (1− t)b) e
−ν

t(1−t) dt,

T3 =

1∫
1
2

(−β1−t (m,n; ν)) f ′ (tb+ (1− t)a) dt

=
1

b− a
β 1

2
(n,m) f

(
a+ b

2

)
− 1

b− a

1∫
1
2

(1− t)
m−1

tn−1f (tb+ (1− t)a) e
−ν

t(1−t) dt,

T4 =

1∫
1
2

β1−t (m,n; ν) f ′ (ta+ (1− t)b) dt

=
1

b− a
β 1

2
(m,n; ν) f

(
a+ b

2

)
− 1

b− a

1∫
1
2

(1− t)
m−1

tn−1f (ta+ (1− t)b) e
−ν

t(1−t) dt.

Thus, by the above expressions, the desired identity (4.21) is obtained. □

Remark 4.14. If in Lemma 4.6, we take m = n = 1 and ν → 0 then, the identity (4.21)
becomes the identity (1.4) of Lemma 1.2 by Kirmaci in [11].

Remark 4.15. If in Lemma 4.6, we take m = 1, n = α, ν → 0 (or m = α, n = 1, ν → 0),
then the identity (4.21) reduces to (1.9) of Lemma 1.4 by Iqbal et al. in [28] .

Remark 4.16. If in Lemma 4.6, we take m = 1, n = α
k , ν → 0 (or m = α

k , n = 1, ν → 0),
then the identity (4.21) reduces to the identity of Corollary 6 by Sarikaya and Ertugral in
[20] .
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Remark 4.17. By the change of variable in Lemma 4.6, the identity (4.21) reduces to

f

(
a+ b

2

)
β (m,n; ν)− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx (4.22)

=
(b− a)

2

1
2∫

0

[βt (m,n; ν) + βt (m,n; ν)] [f ′ (tb+ (1− t)a)− f ′ (ta+ (1− t)b)] dt.

Finally, we extend some estimates of the left hand side of a Hermite-Hadamard type
inequality for functions whose first derivatives absolute values are convex as follows:

Theorem 4.8. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b and f ′ ∈
L [a, b] . If |f ′| is convex on [a, b], then the following inequality holds:∣∣∣∣∣∣f

(
a+ b

2

)
β (m,n; ν)− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx

∣∣∣∣∣∣
(4.23)

≤ (b− a)

2
[|f ′ (a)|+ |f ′ (b)|]

(
1

2
β (m,n; ν)− β 1

2
(m+ 1, n; ν)− β 1

2
(n+ 1,m; ν)

)
for m,n, v > 0.

Proof. From (4.22) and using the convexity of |f ′| , then we have∣∣∣∣∣∣f
(
a+ b

2

)
β (m,n; ν)− 1

2 (b− a)
m+n−1

b∫
a

Ω (x) f (x) e
−ν(b−a)2

(b−x)(x−a) dx

∣∣∣∣∣∣ (4.24)

≤ (b− a)

2


1
2∫

0

[βt (m,n; ν) + βt (m,n; ν)] dt

 [|f ′ (a)|+ |f ′ (b)|] .

By changing the order of the integrals, we get
1
2∫

0

[βt (m,n; ν) + βt (n,m; ν)] dt (4.25)

=

1
2∫

0

t∫
0

sm−1 (1− s)
n−1

e
−ν

s(1−s) dsdt+

1
2∫

0

t∫
0

(1− s)
m−1

sn−1e
−ν

s(1−s) dsdt

=
1

2
β (m,n; ν)− β 1

2
(m+ 1, n; ν)− β 1

2
(n+ 1,m; ν) .

By writing (4.25) in the (4.24), we obtain the required inequality. Thus, the proof of (4.23)
is completed . □

Remark 4.18. If in Theorem 4.8, we take m = n = 1 and ν → 0 then, the inequality (4.23)
reduces to the inequality (2.3) of Theorem 2.3 by Kirmaci in [11].

Remark 4.19. If in Theorem 4.8, we take m = 1, n = α, ν → 0 (or m = α, n = 1, ν → 0),
then the inequality (4.23) reduces to the inequality (3) of Theorem 2 by Iqbal et al. in [28] .
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Remark 4.20. If in Theorem 4.8, we take m = 1, n = α
k , ν → 0 (or m = α

k , n = 1, ν → 0),
then the inequality (4.23) reduces to the inequality of Corollary 9 by Sarikaya and Ertugral
in [20].

5. CONCLUSIONS

In this paper, we establish some new Hermite-Hadamard type inequalities involving
Euler’s beta functions. We get new inequalities of midpoint and trapezoidal type. In the
future work of the authors, generalization or improvement of our results can be exam-
ined by using different kind of convex function classes or other type fractional integral
operators.
Acknowledgments. The authors would like to offer their heartiest thanks to the anony-
mous referees for appreciable comments and remarks incorporated in the final version of
the paper
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