Projective Dimension of Some Graphs

Reji Thankachan, Ruby Rosemary and Sneha Balakrishnan

Abstract

In this paper exact values for the projective dimension of edge ideals associated to some star related graphs and product graphs $G \square P_{2}$, when $G=C_{n}, K_{n}$ and upper bounds for the projective dimension when $G=P_{n}, W_{n}$, are obtained. We have proved that $p d\left(C_{n+1} \square P_{2}\right)=2\left(n-\left\lfloor\frac{n}{4}\right\rfloor\right), p d\left(K_{n} \square P_{2}\right)=2 n-2$ and $p d\left(P_{n+1} \square P_{2}\right) \leq n+3+\left\lfloor\frac{n-3}{2}\right\rfloor, p d\left(W_{n} \square P_{2}\right) \leq n+1+\left\lceil\frac{2 n-1}{3}\right\rceil$. These values are functions of the number of vertices in the corresponding graphs.

1. Introduction

In this paper all graphs are finite and simple. Let $V(G)$ denote the vertex set of a graph G and let (u, v) denote an edge of G with end points u and v. For $v \in V(G)$, let $N(v)$ denote the set of all vertices adjacent to v, called the neighbor set of G and $N[v]=N(v) \cup\{v\}$. Let S_{n} denote the star on $n+1$ vertices $\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ where u_{0} is adjacent to all other vertices. The wheel graph W_{n} on $n+1$ vertices is a graph obtained by connecting all n vertices of the cycle C_{n} to an $n+1$-th vertex (called the hub). The edges connecting the hub and the vertices of C_{n} are called spokes.

The Cartesian product of two graphs G and H is denoted as $G \square H$. It is a graph with vertex set $V(G) \times V(H)=\{(g, h) \mid g \in G, h \in H\}$ and two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent if and only if $g=g^{\prime}$ and $h h^{\prime} \in E(H)$ or $g g^{\prime} \in E(G)$ and $h=h^{\prime}$.

Let G is a graph with vertex set $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and let $S=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the polynomial ring over the field K. The edge ideal of G is the monomial ideal $I(G) \subseteq S$ generated by $\left\{x_{i} x_{j}:\left(x_{i}, x_{j}\right)\right.$ is an edge of $\left.G\right\}$. The edge ring of G is the quotient ring $S / I(G)$ [4]. Villarreal introduced the concept of edge ideal of a graph in [6].

Let $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite set. A simplicial complex Δ over U is a subset of the powerset U with the property that $\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{n}\right\}$ belongs to Δ and if $F \in \Delta$ and $J \subseteq F$, then $J \in \Delta$. The elements of Δ are called faces and dimension of a face, $\operatorname{dim} F=|F|-1$. The dimension of the simplicial complex $\Delta, \operatorname{dim} \Delta$ is the maximum of the dimensions of its faces [4]. Associated to the edge ideal $I(G)$ of G is its independence complex, $\operatorname{ind}(G)$, the simplicial complex on the vertex set V of G which has faces $\left\{\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right\} \mid\right.$ no $\left\{x_{i_{j}}, x_{i_{k}}\right\}$ is an edge of $\left.G\right\}$ [3].

The Betti number of an ideal can be defined in terms of its Stanley - Reisner complex using the Hochster's Formula.
Theorem 1.1. [3] Let Δ be the Stanley-Reisner complex of a squarefree monomial ideal $I \subseteq S$ and let $\beta_{i, m}(I)$, where m is a squarefree monomial of degree greater than or equal to i, be the multigraded betti number of I. Then $\beta_{i-1, m}(I)=\operatorname{dim}_{K} \tilde{H}_{\text {deg } m-i-1}\left(\Delta_{m} ; K\right)$, where Δ_{m} is the subcomplex of Δ consisting of those faces whose vertices correspond to variables occuring in m and $\tilde{H}_{k}(\Delta)$ is the associated homology group of Δ.

[^0]For a graph G with vertex set $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the projective dimension of G denoted by $\operatorname{pd}(S / I(G)$ is defined as the least integer i such that

$$
\tilde{H}_{|W|-i-j-1}(\operatorname{ind}(G[W]))=0
$$

for all $j>0$ and $W \subseteq V$, where $G[W]$ is the subgraph of G induced by W [3].
The study of edge ideals and the invariants associated to it connects three branches of mathematics - commutative algebra, graph theory and combinatorial topology. Projective dimension of the ring $S / I(G)$ is one of the central invariants associated to $I(G)$. Finding connections between algebraic properties of an edge ideal and this invariant is interesting.

The properties and bounds of projective dimension for various classes of graphs are studied in $[1,2,3,4,5,7]$. For a graph $G, p d(G)$ denotes $p d(S / I(G))$. The following theorems give some combinatorially constructed bounds for projective dimension and we use these theorems to prove the main results of this paper.
Theorem 1.2. [4] If G is a graph such that its complement, G^{c}, is disconnected, then $p d(G)=$ $|V(G)|-1$.
Theorem 1.3. [4] If G is the disjoint union of two graphs G_{1} and G_{2}, then $p d(G)=p d\left(G_{1}\right)+$ $p d\left(G_{2}\right)$.
Theorem 1.4. [4] Let T be a forest and v be a vertex of T which has all but at most one of its neighbors of degree 1 . If $v_{1}, v_{2}, \ldots, v_{n}$ denote the neighbors of v such that $v_{1}, v_{2}, \ldots, v_{n-1}$ all have degree 1 , then $p d(T)=\max \left\{p d\left(T-v_{1}\right), p d\left(T-\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}\right)+n\right\}$.
Theorem 1.5. [3] Let $x \in V(G)$. Then, $p d(G) \leq \max \{p d(G-\{x\})+1, p d(G-N[x])+$ $\operatorname{deg}(x)\}$.

Theorem 1.6. [1] Let x be a vertex of a graph G. Then
(1) $p d(G)=p d(G-\{x\})+1$ or $p d(G-N[x])+\operatorname{deg}(x)$
(2) If $p d(G-N[x])+\operatorname{deg}(x) \geq p d(G-\{x\})+1$, then $p d(G)=p d(G-N[x])+\operatorname{deg}(x)$.

Theorem 1.7. [3] If P_{n} denotes a path on n vertices and C_{n} denotes a cycle on n vertices, then $p d\left(P_{n}\right)=\left\lfloor\frac{2 n}{3}\right\rfloor$ and $p d\left(C_{n}\right)=\left\lceil\frac{2 n-1}{3}\right\rceil$.

In this paper we have found the projective dimension of some star related graphs and the product graphs $G \square P_{2}$, when $G=P_{n}, C_{n}, K_{n}, W_{n}$. Throughout the paper if G is a graph containing isolated vertices we discard those isolated vertices.

2. Main results

Theorem 2.8. Let G denote a graph obtained from S_{n} by adding i_{j} pendant edges to the vertex u_{j} for $0 \leq j \leq n$ such that $1 \leq i_{0} \leq i_{1} \leq \ldots \leq i_{n}$. Then, $p d(G)=\sum_{j=1}^{n} i_{j}+1$.

Proof. Let $\left\{u_{0}, u_{1}, \ldots, u_{n}\right\}$ be the vertex set of S_{n} and let $\left\{u_{j 1}, u_{j 2}, \ldots, u_{j i_{j}}\right\}$ be the leaves adjacent with vertex u_{j} for $0 \leq j \leq n$. In Theorem 1.4, taking $v=u_{n}$ we get,

$$
p d(G)=\max \left\{p d\left(G-\left\{u_{n 1}\right\}\right), p d\left(G-\left\{u_{n 1}, u_{n 2}, \ldots, u_{n i_{n}}, u_{n}, u_{0}\right\}\right)+i_{n}+1\right\} .
$$

Since $p d\left(S_{i}\right)=i, p d\left(G-\left\{u_{n 1}, u_{n 2}, \ldots, u_{n i_{n}}, u_{n}, u_{0}\right\}\right)=\sum_{j=1}^{n-1} i_{j}$. So

$$
p d(G)=\max \left\{p d\left(G-\left\{u_{n 1}\right\}\right), \sum_{j=1}^{n} i_{j}+1\right\} .
$$

Applying Theorem 1.4 to the graph $G-\left\{u_{n 1}\right\}$ with $v_{1}=u_{n 2}$,

$$
p d\left(G-\left\{u_{n 1}\right\}\right)=\max \left\{p d\left(G-\left\{u_{n 1}, u_{n 2}\right\}\right), p d\left(G-\left\{u_{n 1}, u_{n 2}, u_{n}, u_{0}\right\}\right)+1\right\} .
$$

Now, $p d\left(G-\left\{u_{n 1}, u_{n 2}, u_{n}, u_{0}\right\}\right)=\sum_{j=1}^{n-1} i_{j}$. Thus $p d(G)=\max \left\{p d\left(G-\left\{u_{n 1}, u_{n 2}\right\}\right), \sum_{j=1}^{n} i_{j}+1\right\}$.
Repeatedly applying Theorem 1.4 to $G-\left\{u_{n 1}, u_{n 2}\right\}, G-\left\{u_{n 1}, u_{n 2}, u_{n 3}\right\}, \ldots$, we get

$$
p d(G)=\max \left\{p d\left(G-\left\{u_{n 1}, u_{n 2}, \ldots, u_{n i_{n}}\right\}\right), \sum_{j=1}^{n} i_{j}+1\right\}
$$

Let $G_{1}=G-\left\{u_{n 1}, u_{n 2}, \ldots, u_{n i_{n}}\right\}$. Then, from Theorem 1.5, we get

$$
p d\left(G_{1}\right) \leq \max \left\{p d\left(G_{1}-N\left[u_{0}\right]\right)+\operatorname{deg}\left(u_{0}\right), p d\left(G_{1}-\left\{u_{0}\right\}\right)+1\right\} .
$$

Now, $p d\left(G_{1}-N\left[u_{0}\right]\right)=0, \operatorname{deg}\left(u_{0}\right)=n+i_{0}, p d\left(G_{1}-\left\{u_{0}\right\}\right)=\sum_{j=1}^{n-1} i_{j}$. Thus

$$
p d\left(G_{1}\right) \leq \max \left\{n+i_{0}, \sum_{j=1}^{n-1} i_{j}+1\right\} \leq \sum_{j=1}^{n} i_{j}+1
$$

Hence, $p d(G)=\sum_{j=1}^{n} i_{j}+1$.
Theorem 2.9. For $n \geq 2$, let G denote the graph obtained by identifying the vertices $u_{1}, u_{2}, \ldots, u_{n}$ of S_{n} with a vertex of each of the cycles $C_{i_{1}}, C_{i_{2}}, \ldots, C_{i_{n}}$ respectively. Then, $p d(G)=\sum_{j=1}^{n}\left\lfloor\frac{2\left(i_{j}-1\right)}{3}\right\rfloor+$ n.

Proof. Let $x=u_{0}$. Then, $G-\{x\}$ is the graph $\bigcup_{j=1}^{n} C_{i_{j}}$. So by Theorem 1.3,

$$
p d(G-\{x\})+1=\sum_{j=1}^{n} p d\left(C_{i_{j}}\right)+1=\sum_{j=1}^{n}\left\lceil\frac{2 i_{j}-1}{3}\right\rceil+1 .
$$

Also, $G-N[x]$ is the graph $\bigcup_{j=1}^{n} P_{i_{j}-1}$. So,

$$
p d(G-N[x])+\operatorname{deg}(x)=\sum_{j=1}^{n} P_{i_{j}-1}+n=\sum_{j=1}^{n}\left\lfloor\frac{2\left(i_{j}-1\right)}{3}\right\rfloor+n
$$

Now, $\sum_{j=1}^{n}\left\lceil\frac{2 i_{j}-1}{3}\right\rceil+1 \leq \sum_{j=1}^{n}\left\lfloor\frac{2\left(i_{j}-1\right)}{3}\right\rfloor+n$. So by Theorem 1.6, $p d(G)=\sum_{j=1}^{n}\left\lfloor\frac{2\left(i_{j}-1\right)}{3}\right\rfloor+n$.
Consider the graph $P_{n+1} \square P_{2}$ and for any n, label its vertices as in Figure 1.

Figure 1. $P_{n+1} \square P_{2}$

Lemma 2.1. For $n \in \mathbb{N}$, let A_{n} denote the graph obtained by adding a pendant edge to the vertex $v_{1,2}$ of $P_{n+1}$$P_{2}$. Then $p d\left(A_{n}\right)=n+2+\left\lfloor\frac{n}{2}\right\rfloor$.

Proof. Consider the graph A_{n} and let $x=v_{1,2}$. Then $\operatorname{deg}(x)=3$. Proof is by induction on n. When $n=1, A_{1}-\{x\}=P_{3}$ and $A_{1}-N[x]=K_{1}$. So $p d\left(A_{1}-\{x\}\right)+1=3$ and $p d\left(A_{1}-N[x]\right)+\operatorname{deg}(x)=3$. By Theorem 1.6, $p d\left(A_{1}\right)=3=1+2+\left\lfloor\frac{1}{2}\right\rfloor$. Hence the result holds for $n=1$.

When $n=2, p d\left(A_{2}-\{x\}\right)+1=p d\left(A_{1}\right)+1=4$ and $p d\left(A_{2}-N[x]\right)+\operatorname{deg}(x)=$ $p d\left(P_{3}\right)+3=5$. By Theorem [1.6], $p d\left(A_{2}\right)=5=2+2+\left\lfloor\frac{2}{2}\right\rfloor$. Hence the result holds for $n=2$.

Suppose that the result holds for all $k \leq n, n \geq 2$. Consider the graph A_{n+1}.

Figure 2
$A_{n+1}-\{x\}$

$$
A_{n+1}-N[x]
$$

Figure 3

Now, $A_{n+1}-\{x\}=A_{n}$ and $A_{n+1}-N[x]=A_{n-1}$. So by the induction hypothesis,

$$
\begin{aligned}
p d\left(A_{n+1}-\{x\}\right) & =p d\left(A_{n}\right) \\
& =n+2+\left\lfloor\frac{n}{2}\right\rfloor \\
p d\left(A_{n+1}-N[x]\right) & =p d\left(A_{n-1}\right) \\
& =(n-1)+2+\left\lfloor\frac{n-1}{2}\right\rfloor . \\
p d\left(A_{n+1}-N[x]\right)+\operatorname{deg}(x) & =(n-1)+2+\left\lfloor\frac{n-1}{2}\right\rfloor+3 \\
& =n+3+\left(\left\lfloor\frac{n-1}{2}\right\rfloor+1\right) \\
& \geq n+3+\left\lfloor\frac{n}{2}\right\rfloor \\
& =n+2+\left\lfloor\frac{n}{2}\right\rfloor+1 \\
& =p d\left(A_{n+1}-\{x\}\right)+1 .
\end{aligned}
$$

Hence, by Theorem 1.6,

$$
\begin{aligned}
p d\left(A_{n+1}\right) & =(n-1)+2+\left\lfloor\frac{n-1}{2}\right\rfloor+3 \\
& =(n-1)+2+\left(\left\lfloor\frac{n+1}{2}\right\rfloor-1\right)+3 \\
& =(n+1)+2+\left\lfloor\frac{n+1}{2}\right\rfloor .
\end{aligned}
$$

Therefore, by principle of mathematical induction, $\operatorname{pd}\left(A_{n}\right)=n+2+\left\lfloor\frac{n}{2}\right\rfloor$.
Theorem 2.10. For $n \in \mathbb{N}$, let $B_{n}=P_{n+1} \square P_{2}$. Then $p d\left(B_{n}\right) \leq n+3+\left\lfloor\frac{n-3}{2}\right\rfloor$.
Proof. Let $x=v_{2,2}$ and $y=v_{3,1}$. Then $\operatorname{deg}(x)=\operatorname{deg}(y)=3 . B_{1}$ is the cycle on four vertices. So by Theorem 1.7, $p d\left(B_{1}\right)=3=1+3+\left\lfloor\frac{1-3}{2}\right\rfloor . B_{2}-\{x\}=P_{5}$ and hence by Theorem $1.7 \operatorname{pd}\left(B_{2}-\{x\}\right)+1=3+1=4$ and $\operatorname{pd}\left(B_{2}-N[x]\right)+\operatorname{deg}(x)=0+3=3$. Thus by Theorem 1.5, $\operatorname{pd}\left(B_{2}\right) \leq 4=2+3+\left\lfloor\frac{2-3}{2}\right\rfloor$.

Now consider B_{3}. Then $p d\left(B_{3}-N[x]\right)=p d\left(P_{3}\right)=2$. To find $p d\left(B_{3}-\{x\}\right)$, consider the graphs $B_{3}-\{x, y\}=2 P_{3}$ and $\left.B_{3}-\{x\}\right)-N[y]=P_{2}$. By Theorem 1.3, $p d\left(B_{3}-\{x, y\}=4\right.$ and by Theorem 1.7, $\left.p d\left(B_{3}-\{x\}\right)-N[y]\right)=1$. So $p d\left(B_{3}-\{x\}\right) \leq$ $\max \left\{p d\left(B_{3}-\{x, y\}\right)+1, p d\left(\left(B_{3}-\{x\}\right)-N[y]\right)+\operatorname{deg}(y)\right\}=5$.
Hence $p d\left(B_{3}\right) \leq \max \left\{p d\left(B_{3}-\{x\}\right)+1, p d\left(B_{3}-N[x]\right)+\operatorname{deg}(x)\right\}=6=3+3+\left\lfloor\frac{3-3}{2}\right\rfloor$.
Now, suppose $n \geq 4$. Consider the graphs $B_{n}, B_{n}-\{x\}, B_{n}-N[x]$ shown in Figure 4 .

Figure 4

By Lemma 2.1, $p d\left(B_{n}-N[x]\right)=p d\left(A_{n-3}\right) \leq(n-3)+2+\left\lfloor\frac{n-3}{2}\right\rfloor$. Now to find $p d\left(B_{n}-\right.$ $\{x\})$, consider $B_{n}-\{x, y\}$ and $\left(B_{n}-\{x\}\right)-N[y]$ as in Figure 5.

Figure 5

$$
\begin{aligned}
p d\left(B_{n}-\{x, y\}\right) & =p d\left(P_{3}\right)+p d\left(A_{n-3}\right) \\
& =2+(n-3)+2+\left\lfloor\frac{n-3}{2}\right\rfloor \\
& =n+1+\left\lfloor\frac{n-3}{2}\right\rfloor \\
p d\left(\left(B_{n}-\{x\}\right)-N[y]\right) & =p d\left(P_{2}\right)+p d\left(A_{n-4}\right) \\
& =1+(n-4)+2+\left\lfloor\frac{n-4}{2}\right\rfloor \\
& =n-1+\left\lfloor\frac{n-4}{2}\right\rfloor .
\end{aligned}
$$

So $\max \left\{p d\left(B_{n}-\{x, y\}\right)+1, p d\left(\left(B_{n}-\{x\}\right)-N[y]\right)+\operatorname{deg}(y)\right\}=n+2+\left\lfloor\frac{n-3}{2}\right\rfloor$.
Thus, from Theorem 1.5, $p d\left(B_{n}-\{x\}\right) \leq n+2+\left\lfloor\frac{n-3}{2}\right\rfloor$ and

$$
\begin{aligned}
p d\left(B_{n}\right) & \leq \max \left\{p d\left(B_{n}-\{x\}\right)+1, p d\left(B_{n}-N[x]\right)+\operatorname{deg}(x)\right\} \\
& \leq \max \left\{n+3+\left\lfloor\frac{n-3}{2}\right\rfloor, n+2+\left\lfloor\frac{n-3}{2}\right\rfloor\right\} \\
& =n+3+\left\lfloor\frac{n-3}{2}\right\rfloor
\end{aligned}
$$

Thus, $p d\left(P_{n+1} \square P_{2}\right) \leq n+3+\left\lfloor\frac{n-3}{2}\right\rfloor$.
Lemma 2.2. For $n \in \mathbb{N}$, let F_{n} denote the graph obtained by adding a pendant edge to the vertices $v_{1,2}$ and $v_{n+1,2}$ of $P_{n+1}$$P_{2}$. Then, $p d\left(F_{n}\right)=2 n+1-2\left\lfloor\frac{n-1}{4}\right\rfloor$.

Proof. The proof is by the principle of mathematical induction on n and for that Theorem 1.6 is used. Let $x=v_{1,2}, y=v_{2,1}$ and $\alpha(n)=2 n+1-2\left\lfloor\frac{n-1}{4}\right\rfloor$. Then $\operatorname{deg}(x)=\operatorname{deg}(y)=3$. Consider F_{1}. Then $p d\left(F_{1}-\{x\}\right)=p d\left(P_{4}\right)=2$ and $p d\left(F_{1}-N[x]\right)=0$, since it consists of two isolated vertices. So, by Theorem 1.6, $p d\left(F_{1}\right)=3=\alpha(1)$. Thus the result holds for $n=1$.
For $n=2, F_{2}-N[x]=P_{4}$. To find $F_{2}-\{x\}$, consider $F_{2}-\{x, y\}=S_{3}$ and $F_{2}-\{x\}-N[y]=$ P_{2}. Then by Theorem 1.6, $p d\left(F_{2}-\{x\}\right)=4$ and hence $p d\left(F_{2}\right)=5=\alpha(2)$. So the result holds for $n=2$.
Assume that the result holds for all $k \leq n, n \geq 3$. Consider the graphs $F_{n+1}, F_{n+1}-\{x\}$, $F_{n+1}-N[x], F_{n+1}-\{x, y\}$, and $F_{n+1}-N[x]-N[y]$ as in the figures below.

Figure 6. F_{n+1}

Figure 7

Figure 8

Figure 9
To find $p d\left(F_{n+1}\right), p d\left(F_{n+1}-\{x\}\right)$ and $p d\left(F_{n+1}-N[x]\right)$ must be known. Now,

$$
\begin{aligned}
& p d\left(F_{n+1}-\{x, y\}\right)=p d\left(F_{n-1}\right)=2 n-1-2\left\lfloor\frac{n-2}{4}\right\rfloor \\
& p d\left(F_{n+1}-\{x\}-N[y]\right)=p d\left(F_{n-2}\right)=2 n-3-2\left\lfloor\frac{n-3}{4}\right\rfloor
\end{aligned}
$$

Thus, by Theorem 1.6, $\operatorname{pd}\left(F_{n+1}-\{x\}\right)=2 n-2\left\lfloor\frac{n-3}{4}\right\rfloor$.
Also,

$$
\begin{gathered}
p d\left(F_{n+1}-N[x]-\{y\}\right)=p d\left(F_{n-2}\right)=2 n-3-2\left\lfloor\frac{n-3}{4}\right\rfloor \\
p d\left(F_{n+1}-N[x]-N[y]\right)=p d\left(F_{n-3}\right)=2 n-5-2\left\lfloor\frac{n-4}{4}\right\rfloor .
\end{gathered}
$$

Thus, $p d\left(F_{n+1}-N[x]\right)=2 n-2-2\left\lfloor\frac{n-4}{4}\right\rfloor$. Hence, $p d\left(F_{n+1}\right)=2 n+1-2\left\lfloor\frac{n-4}{4}\right\rfloor=\alpha(n+1)$. So, by induction, the result follows.
Theorem 2.11. For $n \geq 2$, let $J_{n}=C_{n+1} \square P_{2}$. Then, $p d\left(J_{n}\right)=2\left(n-\left\lfloor\frac{n}{4}\right\rfloor\right)$.
Proof. The vertices of J_{n} are labelled as in B_{n}. Consider J_{2} and let $x=v_{2,1}, y=v_{1,2}$. Then $J_{2}-\{x, y\}=P_{4}$ and $J_{2}-\{x\}-N[y]$ is an isolated vertex. So $p d\left(J_{2}-\{x, y\}\right)=2$ and $p d\left(J_{2}-\{x\}-N[y]\right)=0$. Then from Theorem 1.6, $p d\left(J_{2}-\{x\}\right)=3$. Now, $p d\left(J_{2}-N[x]\right)=$ $p d\left(P_{2}\right)=1$. Hence $p d\left(J_{2}\right)=4=2\left(2-\left\lfloor\frac{2}{4}\right\rfloor\right)$.

For $n \geq 3$, let $x=v_{1,1}$ and $y=v_{1,2} . J_{n}, J_{n}-\{x\}, J_{n}-N[x], J_{n}-\{x, y\}$ and $J_{n}-\{x\}-N[y]$ are the graphs shown in the Figures $10,11,12$.

Figure 10. J_{n}

Figure 11

Figure 12

Then,

$$
\begin{aligned}
p d\left(J_{n}-\{x, y\}\right) & =p d\left(P_{2} \times P_{n}\right) \leq n+\left\lfloor\frac{n}{2}\right\rfloor \\
p d\left(J_{n}-\{x\}-N[y]\right) & =p d\left(F_{n-3}\right)=2 n-3-2\left\lfloor\frac{n}{4}\right\rfloor
\end{aligned}
$$

So, $p d\left(J_{n}-\{x\}\right)=2 n-1-2\left\lfloor\frac{n}{4}\right\rfloor$. Also, $p d\left(J_{n}-N[x]\right)=p d\left(F_{n-3}\right)=2 n-3-2\left\lfloor\frac{n}{4}\right\rfloor$. Hence, $p d\left(J_{n}\right)=2\left(n-\left\lfloor\frac{n}{4}\right\rfloor\right)$.

Theorem 2.12. For $n \geq 3, p d\left(K_{n} \square P_{2}\right)=2 n-2$ where K_{n} is the complete graph on n vertices.
Proof. Let $G_{0}=K_{n} \square P_{2}$, which consists of two complete graphs on n vertices that are connected to each other by n edges. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of the first and second complete graphs respectively and let $e_{i}=u_{i} v_{i}, 1 \leq i \leq n$ be the n edges connecting the two complete graphs with each other. Let G_{0} be represented as [K_{n}, K_{n}, n] where K_{n} 's are the two complete graphs and n is the number of e_{i} 's in G_{0}. By Theorem 1.2, $p d\left(K_{n}\right)=n-1$. The theorem will be proved using Theorem 1.5 repeatedly.

Consider G_{0} and the edge $e_{1}=u_{1} v_{1}$. To apply Theorem 1.5 we have to select a vertex $x \in V\left(G_{0}\right)$. If the number of e_{i} 's in G_{0} is even, $x=u_{1}$ or else $x=v_{1}$. Form the graphs $G_{1}=G_{0}-\{x\}$ and $H_{1}=G_{0}-N[x]$. Then $G_{1}=\left[K_{n-1}, K_{n}, n-1\right]$ or $\left[K_{n}, K_{n-1}, n-1\right]$ according as number of e_{i} 's in G_{0} is even or odd and $H_{1}=K_{n-1}$. Now choose the edge $e_{2}=u_{2} v_{2}$ in G_{1} and let $x=u_{2}$ or v_{2} depending on the number of $e_{i}{ }^{\prime} \sin G_{1}$ is even or odd. Then $G_{2}=\left[K_{n-1}, K_{n-1}, n-2\right]$ and $H_{2}=K_{n-2}$. Continuing the above procedure two sequences of graphs G_{1}, G_{2}, \ldots, and H_{1}, H_{2}, \ldots, are obtained. The vertex ' x ' is selected according to the number of e_{i} 's in the graph G_{j}. If the number of $e_{i}{ }^{\prime} \mathrm{s}$ in G_{j} is even, then $x=u_{j+1}$, otherwise $x=v_{j+1}$. Also in $G_{j}=\left[K_{r}, K_{s}, n\right], 0 \leq j \leq n$, either $r-s=0$ or $r-s=1$ and to obtain G_{j+1} from G_{j} the vertex x is chosen from $K_{\max (r, s)}$. Now $H_{j+1}=G_{j}-N[x]$ where $x \in G_{j}$ and from the above observation $x \in K_{\max (r, s)}$. So in G_{j}, $\operatorname{deg}(x)=\max (r, s)$. After each deletion of the vertex ' x^{\prime}, number of e_{i} 's reduce by one. Thus after n deletions all the e_{i} 's will vanish. Then G_{n} will be the union of two complete graphs and H_{n} will be a complete graph.
If n is even,

$$
\begin{aligned}
G_{n} & =\left[K_{\frac{n}{2}}, K_{\frac{n}{2}}, 0\right], H_{n}=K_{\frac{n}{2}-1} \\
G_{n-t} & =\left[K_{\frac{n}{2}+\left\lfloor\frac{t}{2}\right\rfloor}, K_{\frac{n}{2}+\left\lceil\frac{t}{2}\right\rceil}, t\right], H_{n-t}=K_{\frac{n}{2}-1+\left\lceil\frac{t}{2}\right\rceil}, 1 \leq t \leq n-1
\end{aligned}
$$

and if n is odd,

$$
\begin{aligned}
G_{n} & =\left[K_{\frac{n+1}{2}}, K_{\frac{n-1}{2}}, 0\right], H_{n}=K_{\frac{n-1}{2}} \\
G_{n-t} & =\left[K_{\frac{n+1}{2}+\left\lfloor\frac{t}{2}\right\rfloor}, K_{\frac{n-1}{2}+\left\lceil\frac{t}{2}\right\rceil}, t\right], H_{n-t}=K_{\frac{n-1}{2}+\left\lfloor\frac{t}{2}\right\rfloor}, 1 \leq t \leq n-1
\end{aligned}
$$

By Theorem 1.3, depending on whether n is even or odd,

$$
\begin{aligned}
& p d\left(G_{n}\right)=p d\left(K_{\frac{n}{2}}\right)+p d\left(K_{\frac{n}{2}}\right) \text { or } p d\left(K_{\frac{n-1}{2}}\right)+p d\left(K_{\frac{n+1}{2}}\right) \\
&=n-2 \\
& p d\left(H_{n}\right)=\frac{n-2}{2}-1 \text { or } \frac{n-1}{2}-1 \\
& G_{n-1}=\left[K_{\frac{n}{2}}, K_{\frac{n}{2}+1}, 1\right] \text { or }\left[K_{\frac{n+1}{2}}, K_{\frac{n-1}{2}+1}, 1\right] \text { and } H_{n-1}=K_{\frac{n}{2}} \text { or } K_{\frac{n-1}{2}} \\
& p d\left(G_{n-1}\right) \leq \max \left\{p d\left(G_{n}\right)+1, p d\left(H_{n}\right)+\operatorname{deg}(x)\right\}, x \in V\left(G_{n-1}\right) \\
&= \max \left\{n-1, \frac{n-2}{2}+\frac{n}{2}+1\right\} \text { or } \max \left\{n-1, \frac{n-1}{2}+\frac{n-1}{2}+1\right\} \\
&= n-1 \\
& \begin{aligned}
& G_{n-2}=\left[K_{\frac{n}{2}+1}, K_{\frac{n}{2}+1}, 2\right] \operatorname{or}\left[K_{\frac{n+1}{2}+1}, K_{\frac{n-1}{2}+1}, 2\right] \text { and } H_{n-2}=K_{\frac{n}{2}} \text { or } K_{\frac{n+1}{2}} \\
& p d\left(G_{n-2}\right) \leq \max \left\{p d\left(G_{n-1}\right)+1, p d\left(H_{n-1}\right)+\operatorname{deg}(x)\right\}, x \in V\left(G_{n-2}\right) \\
&=\max \left\{n, \frac{n}{2}-1+\frac{n}{2}+1\right\} \text { or } \max \left\{n, \frac{n-1}{2}-1+\frac{n+1}{2}+1\right\} \\
&=n
\end{aligned}
\end{aligned}
$$

Now from Theorem 1.5, $p d\left(G_{n-t}\right) \leq \max \left\{p d\left(G_{n-(t-1)}\right)+1, p d\left(H_{n-(t-1)}\right)+\operatorname{deg}(x)\right\}, x \in$ $V\left(G_{n-t}\right)$. First note that $p d\left(G_{n-(t-1)}\right)+1=p d\left(H_{n-(t-1)}\right)+\operatorname{deg}(x)$ for all $t, 1 \leq t \leq n$. So by Theorem 1.6, $p d\left(G_{n-t}\right)=p d\left(G_{n-(t-1)}\right)+1$. Thus

$$
\begin{aligned}
p d\left(G_{1}\right)= & p d\left(G_{n-(n-1)}\right) \\
= & p d\left(G_{n-(n-2)}\right)+1 \\
= & p d\left(G_{n-(n-3)}\right)+2 \\
= & p d\left(G_{n-(n-4)}\right)+3 \\
& \vdots \\
= & p d\left(G_{n-(n-n)}\right)+n-1
\end{aligned}
$$

So $p d\left(G_{0}\right)=p d\left(G_{1}\right)+1=p d\left(G_{n}\right)+n=n-2+n=2 n-2$

Theorem 2.13. For $n \geq 3, p d\left(W_{n} \square P_{2}\right) \leq n+1+\left\lceil\frac{2 n-1}{3}\right\rceil$ where W_{n} is the wheel graph on $n+1$ vertices.

Proof. Let $G=W_{n} \square P_{2}$ consists of two wheel graphs W_{n}, connected by $n+1$ edges and it will be represented as [$W_{n}, W_{n}, n+1$]. Let v_{1} and v_{2} be the hub vertices in G. Let $x=v_{1}$ and $\operatorname{deg}(x)=n+1$ in G. Then $G_{1}=G-\{x\}=\left[C_{n}, W_{n}, n\right]$ and $H_{1}=G-N[x]=C_{n}$. By Theorem 1.7, $p d\left(H_{1}\right)=\left\lceil\frac{2 n-1}{3}\right\rceil$. Now let $x=v_{2}$ and $\operatorname{deg}(x)=n$ in G_{1}. Then $G_{2}=$ $G_{1}-\{x\}=\left[C_{n}, C_{n}, n\right]=C_{n} \square P_{2}$ and $H_{2}=G_{1}-N[x]=C_{n} . p d\left(H_{2}\right)=\left\lceil\frac{2 n-1}{3}\right\rceil$. By

Theorem 1.5,

$$
\begin{aligned}
p d\left(G_{1}\right) & \leq \max \left\{p d\left(G_{2}\right)+1, p d\left(H_{2}\right)+\operatorname{deg}\left(v_{2}\right)\right\} \\
& =\max \left\{2 n-1-2\left\lfloor\frac{n-1}{4}\right\rfloor,\left\lceil\frac{2 n-1}{3}\right\rceil+n\right\} \\
p d(G) & \leq \max \left\{p d\left(G_{1}\right)+1, p d\left(H_{1}\right)+\operatorname{deg}\left(v_{1}\right)\right\} \\
& \leq \max \left\{2 n-2\left\lfloor\frac{n-1}{4}\right\rfloor,\left\lceil\frac{2 n-1}{3}\right\rceil+n+1,\left\lceil\frac{2 n-1}{3}\right\rceil+n+1\right\} \\
& =\left\lceil\frac{2 n-1}{3}\right\rceil+n+1
\end{aligned}
$$

3. CONCLUSION

We have obtained exact values for the projective dimension of edge ideals associated to some star related graphs and product graphs $G \square P_{2}$, when G is a cycle or a complete graph and upper bounds for the projective dimension when G is a path or wheel and these values are functions of the number of vertices in the corresponding graphs. One can try a similar study for Cartesian product of some other graphs and other graph products such as corona product and rooted product of graphs.

References

[1] Alilo, A.; Amjadi, J.; Moosavi, N Vaez; Mohammadikhah, S. Projective dimension and betti number of some graphs. International J. Math. Combin 4 (2016), 109-117.
[2] Dao, H.; Huneke, C.; Schweig, J. Bounds on the regularity and projective dimension of ideals associated to graphs. Journal of Algebraic Combinatorics 38 (2013), no. 1, 37-55.
[3] Dao, H.; Schweig, J. Projective dimension, graph domination parameters, and independence com- plex homology. Journal of Combinatorial Theory Series A, 120 (2013), no. 2, 453-469.
[4] Jacques, S. Betti numbers of graph ideals. arXiv preprint math/0410107, 2004.
[5] Kimura, K.; Terai, N.; Yassemi, S. The projective dimension of the edge ideal of a very well-covered graph. Nagoya Mathematical Journal 230 (2018), 160-179.
[6] Villarreal, R. H. Cohen-macaulay graphs. manuscripta mathematica, 66 (1990), no. 1, 277--293.
[7] Zhu, G.; Xu, L.; Wang, H.; Tang, Z. Projective dimension and regularity of edge ideals of some weighted oriented graphs. Rocky Mountain Journal of Mathematics, 49 (2019), no. 4, 1391-1406.

Department of Mathematics

Government College Chittur
Palakkad, Kerala, India-678104
Email address: rejiaran@gmail.com
Email address: rubymathpkd@gmail.com
Email address: sneharbkrishnan@gmail.com

[^0]: Received: 27.02.2022. In revised form: 26.09.2022. Accepted: 03.10.2022
 2020 Mathematics Subject Classification. 13C70, 05E40, 05C76.
 Key words and phrases. Projective dimension, Edge ideals, Product graphs, Star.
 Corresponding author: Ruby Rosemary; rubymathpkd@gmail.com

