
CREAT. MATH. INFORM.
Volume 32 (2023), No. 1,
Pages 87 - 96

Online version at https://semnul.com/creative-mathematics/

Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X

DOI: https://doi.org/10.37193/CMI.2023.01.09

Projective Dimension of Some Graphs

REJI THANKACHAN, RUBY ROSEMARY and SNEHA BALAKRISHNAN

ABSTRACT. In this paper exact values for the projective dimension of edge ideals associated to some star
related graphs and product graphs G□ P2, when G = Cn, Kn and upper bounds for the projective dimension
when G = Pn, Wn, are obtained. We have proved that pd(Cn+1 □ P2) = 2

(
n−

⌊
n
4

⌋ )
, pd(Kn □ P2) = 2n− 2

and pd(Pn+1 □ P2) ≤ n + 3 +
⌊
n−3
2

⌋
, pd(Wn □ P2) ≤ n + 1 + ⌈ 2n−1

3
⌉. These values are functions of the

number of vertices in the corresponding graphs.

1. INTRODUCTION

In this paper all graphs are finite and simple. Let V (G) denote the vertex set of a graph
G and let (u, v) denote an edge of G with end points u and v. For v ∈ V (G), let N(v) denote
the set of all vertices adjacent to v, called the neighbor set of G and N [v] = N(v) ∪ {v}.
Let Sn denote the star on n + 1 vertices {u0, u1, . . . , un} where u0 is adjacent to all other
vertices. The wheel graph Wn on n + 1 vertices is a graph obtained by connecting all n
vertices of the cycle Cn to an n + 1-th vertex (called the hub). The edges connecting the
hub and the vertices of Cn are called spokes.

The Cartesian product of two graphs G and H is denoted as G □ H . It is a graph with
vertex set V (G) × V (H) = {(g, h)|g ∈ G, h ∈ H} and two vertices (g, h) and (g′, h′) are
adjacent if and only if g = g′ and hh′ ∈ E(H) or gg′ ∈ E(G) and h = h′.

Let G is a graph with vertex set V = {x1, x2, . . . , xn} and let S = K[x1, x2, . . . , xn] be
the polynomial ring over the field K. The edge ideal of G is the monomial ideal I(G) ⊆ S
generated by {xixj : (xi, xj) is an edge of G}. The edge ring of G is the quotient ring
S/I(G) [4]. Villarreal introduced the concept of edge ideal of a graph in [6].

Let U = {x1, x2, . . . , xn} be a finite set. A simplicial complex ∆ over U is a subset of
the powerset U with the property that {v1}, {v2}, . . . , {vn} belongs to ∆ and if F ∈ ∆
and J ⊆ F , then J ∈ ∆. The elements of ∆ are called faces and dimension of a face,
dim F = |F | − 1. The dimension of the simplicial complex ∆, dim ∆ is the maximum
of the dimensions of its faces [4]. Associated to the edge ideal I(G) of G is its indepen-
dence complex, ind(G), the simplicial complex on the vertex set V of G which has faces
{{xi1 , xi2 , . . . , xim}| no {xij , xik} is an edge of G} [3].

The Betti number of an ideal can be defined in terms of its Stanley −Reisner complex
using the Hochster’s Formula.
Theorem 1.1. [3] Let ∆ be the Stanley-Reisner complex of a squarefree monomial ideal I ⊆ S
and let βi,m(I) , where m is a squarefree monomial of degree greater than or equal to i, be the
multigraded betti number of I . Then βi−1,m(I) = dimKH̃deg m−i−1(∆m;K), where ∆m is the
subcomplex of ∆ consisting of those faces whose vertices correspond to variables occuring in m

and H̃k(∆) is the associated homology group of ∆.
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For a graph G with vertex set V = {x1, x2, . . . , xn}, the projective dimension of G
denoted by pd(S/I(G) is defined as the least integer i such that

H̃|W |−i−j−1(ind(G[W ])) = 0

for all j > 0 and W ⊆ V , where G[W ] is the subgraph of G induced by W [3].
The study of edge ideals and the invariants associated to it connects three branches of

mathematics - commutative algebra, graph theory and combinatorial topology. Projective
dimension of the ring S/I(G) is one of the central invariants associated to I(G). Finding
connections between algebraic properties of an edge ideal and this invariant is interesting.

The properties and bounds of projective dimension for various classes of graphs are
studied in [1, 2, 3, 4, 5, 7]. For a graph G, pd(G) denotes pd(S/I(G)). The following
theorems give some combinatorially constructed bounds for projective dimension and
we use these theorems to prove the main results of this paper.

Theorem 1.2. [4] If G is a graph such that its complement, Gc, is disconnected, then pd(G) =
|V (G)| − 1.
Theorem 1.3. [4] If G is the disjoint union of two graphs G1 and G2, then pd(G) = pd(G1) +
pd(G2).
Theorem 1.4. [4] Let T be a forest and v be a vertex of T which has all but at most one of its
neighbors of degree 1. If v1, v2, . . . , vn denote the neighbors of v such that v1, v2, . . . , vn−1 all have
degree 1, then pd(T ) = max{pd(T − v1), pd(T − {v, v1, v2, . . . , vn}) + n}.
Theorem 1.5. [3] Let x ∈ V (G). Then, pd(G) ≤ max{pd(G − {x}) + 1, pd(G − N [x]) +
deg(x)}.

Theorem 1.6. [1] Let x be a vertex of a graph G. Then
(1) pd(G) = pd(G− {x}) + 1 or pd(G−N [x]) + deg(x)
(2) If pd(G−N [x]) + deg(x) ≥ pd(G− {x}) + 1, then pd(G) = pd(G−N [x]) + deg(x).

Theorem 1.7. [3] If Pn denotes a path on n vertices and Cn denotes a cycle on n vertices, then
pd(Pn) =

⌊
2n
3

⌋
and pd(Cn) =

⌈
2n−1

3

⌉
.

In this paper we have found the projective dimension of some star related graphs and
the product graphs G □ P2, when G = Pn, Cn, Kn, Wn. Throughout the paper if G is a
graph containing isolated vertices we discard those isolated vertices.

2. MAIN RESULTS

Theorem 2.8. Let G denote a graph obtained from Sn by adding ij pendant edges to the vertex

uj for 0 ≤ j ≤ n such that 1 ≤ i0 ≤ i1 ≤ . . . ≤ in. Then, pd(G) =
n∑

j=1

ij + 1.

Proof. Let {u0, u1, . . . , un} be the vertex set of Sn and let {uj1, uj2, . . . , ujij} be the leaves
adjacent with vertex uj for 0 ≤ j ≤ n. In Theorem 1.4, taking v = un we get,

pd(G) = max{pd(G− {un1}), pd(G− {un1, un2, . . . , unin , un, u0}) + in + 1}.

Since pd(Si) = i, pd(G− {un1, un2, . . . , unin , un, u0}) =
n−1∑
j=1

ij . So

pd(G) = max{pd(G− {un1}),
n∑

j=1

ij + 1}.

Applying Theorem 1.4 to the graph G− {un1} with v1 = un2,

pd(G− {un1}) = max{pd(G− {un1, un2}), pd(G− {un1, un2, un, u0}) + 1}.
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Now, pd(G−{un1, un2, un, u0}) =
n−1∑
j=1

ij . Thus pd(G) = max{pd(G−{un1, un2}),
n∑

j=1

ij+1}.

Repeatedly applying Theorem 1.4 to G− {un1, un2}, G− {un1, un2, un3}, . . ., we get

pd(G) = max{pd(G− {un1, un2, . . . , unin}),
n∑

j=1

ij + 1}.

Let G1 = G− {un1, un2, . . . , unin}. Then, from Theorem 1.5, we get

pd(G1) ≤ max{pd(G1 −N [u0]) + deg(u0), pd(G1 − {u0}) + 1}.

Now, pd(G1 −N [u0]) = 0, deg(u0) = n+ i0, pd(G1 − {u0}) =
n−1∑
j=1

ij . Thus

pd(G1) ≤ max
{
n+ i0,

n−1∑
j=1

ij + 1
}
≤

n∑
j=1

ij + 1.

Hence, pd(G) =
n∑

j=1

ij + 1. □

Theorem 2.9. For n ≥ 2, let G denote the graph obtained by identifying the vertices u1, u2, . . . , un

of Sn with a vertex of each of the cycles Ci1 , Ci2 , . . . , Cin respectively. Then, pd(G)=
n∑

j=1

⌊
2(ij−1)

3

⌋
+

n.

Proof. Let x = u0. Then, G− {x} is the graph
n⋃

j=1

Cij . So by Theorem 1.3,

pd(G− {x}) + 1 =

n∑
j=1

pd(Cij ) + 1 =

n∑
j=1

⌈
2ij − 1

3

⌉
+ 1.

Also, G−N [x] is the graph
n⋃

j=1

Pij−1. So,

pd(G−N [x]) + deg(x) =

n∑
j=1

Pij−1 + n =

n∑
j=1

⌊
2(ij − 1)

3

⌋
+ n

Now,
n∑

j=1

⌈
2ij−1

3

⌉
+1 ≤

n∑
j=1

⌊
2(ij−1)

3

⌋
+n. So by Theorem 1.6, pd(G) =

n∑
j=1

⌊
2(ij−1)

3

⌋
+n. □

Consider the graph Pn+1 □ P2 and for any n, label its vertices as in Figure 1.

v1,2

v1,1

v2,2 v3,2

v3,1v2,1

v4,2

v4,1

vn,2

vn,1

vn+1,2

vn+1,1

FIGURE 1. Pn+1 □ P2

Lemma 2.1. For n ∈ N, let An denote the graph obtained by adding a pendant edge to the vertex
v1,2 of Pn+1 □ P2. Then pd(An) = n+ 2 +

⌊
n
2

⌋
.
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Proof. Consider the graph An and let x = v1,2. Then deg(x) = 3. Proof is by induction
on n. When n = 1, A1 − {x} = P3 and A1 − N [x] = K1. So pd(A1 − {x}) + 1 = 3 and
pd(A1 −N [x]) + deg(x) = 3. By Theorem 1.6, pd(A1) = 3 = 1 + 2 +

⌊
1
2

⌋
. Hence the result

holds for n = 1.

When n = 2, pd(A2 − {x}) + 1 = pd(A1) + 1 = 4 and pd(A2 − N [x]) + deg(x) =
pd(P3) + 3 = 5. By Theorem [1.6], pd(A2) = 5 = 2 + 2 +

⌊
2
2

⌋
. Hence the result holds for

n = 2.

Suppose that the result holds for all k ≤ n, n ≥ 2. Consider the graph An+1.

An+1
x

FIGURE 2

An+1 − {x} An+1 −N [x]

FIGURE 3

Now, An+1 − {x} = An and An+1 −N [x] = An−1. So by the induction hypothesis,

pd(An+1 − {x}) = pd(An)

= n+ 2 +
⌊n
2

⌋
pd(An+1 −N [x]) = pd(An−1)

= (n− 1) + 2 +

⌊
n− 1

2

⌋
.

pd(An+1 −N [x]) + deg(x) = (n− 1) + 2 +

⌊
n− 1

2

⌋
+ 3

= n+ 3 + (

⌊
n− 1

2

⌋
+ 1)

≥ n+ 3 +
⌊n
2

⌋
= n+ 2 +

⌊n
2

⌋
+ 1

= pd(An+1 − {x}) + 1.

Hence, by Theorem 1.6,

pd(An+1) = (n− 1) + 2 +

⌊
n− 1

2

⌋
+ 3

= (n− 1) + 2 + (

⌊
n+ 1

2

⌋
− 1) + 3

= (n+ 1) + 2 +

⌊
n+ 1

2

⌋
.
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Therefore, by principle of mathematical induction, pd(An) = n+ 2 +
⌊
n
2

⌋
. □

Theorem 2.10. For n ∈ N, let Bn = Pn+1 □ P2. Then pd(Bn) ≤ n+ 3 +
⌊
n−3
2

⌋
.

Proof. Let x = v2,2 and y = v3,1. Then deg(x) = deg(y) = 3. B1 is the cycle on four
vertices. So by Theorem 1.7, pd(B1) = 3 = 1 + 3 +

⌊
1−3
2

⌋
. B2 − {x} = P5 and hence by

Theorem 1.7 pd(B2 − {x}) + 1 = 3 + 1 = 4 and pd(B2 −N [x]) + deg(x) = 0 + 3 = 3. Thus
by Theorem 1.5, pd(B2) ≤ 4 = 2 + 3 +

⌊
2−3
2

⌋
.

Now consider B3. Then pd(B3 − N [x]) = pd(P3) = 2. To find pd(B3 − {x}), con-
sider the graphs B3 − {x, y} = 2P3 and B3 − {x}) − N [y] = P2. By Theorem 1.3,
pd(B3 − {x, y} = 4 and by Theorem 1.7, pd(B3 − {x}) − N [y]) = 1. So pd(B3 − {x}) ≤
max{pd(B3 − {x, y}) + 1, pd((B3 − {x})−N [y]) + deg(y)} = 5.
Hence pd(B3) ≤ max{pd(B3 − {x}) + 1, pd(B3 −N [x]) + deg(x)} = 6 = 3 + 3 +

⌊
3−3
2

⌋
.

Now, suppose n ≥ 4. Consider the graphs Bn, Bn − {x}, Bn −N [x] shown in Figure 4.

Bn
x Bn − {x}

y

Bn −N [x]

FIGURE 4

By Lemma 2.1, pd(Bn −N [x]) = pd(An−3) ≤ (n− 3)+ 2+
⌊
n−3
2

⌋
. Now to find pd(Bn −

{x}), consider Bn − {x, y} and (Bn − {x})−N [y] as in Figure 5.

Bn − {x, y} (Bn − {x})−N [y]

FIGURE 5

pd(Bn − {x, y}) = pd(P3) + pd(An−3)

= 2 + (n− 3) + 2 +

⌊
n− 3

2

⌋
= n+ 1 +

⌊
n− 3

2

⌋
pd((Bn − {x})−N [y]) = pd(P2) + pd(An−4)

= 1 + (n− 4) + 2 +

⌊
n− 4

2

⌋
= n− 1 +

⌊
n− 4

2

⌋
.
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So max{pd(Bn − {x, y}) + 1, pd((Bn − {x})−N [y]) + deg(y)} = n+ 2 +
⌊
n−3
2

⌋
.

Thus, from Theorem 1.5, pd(Bn − {x}) ≤ n+ 2 +
⌊
n−3
2

⌋
and

pd(Bn) ≤ max
{
pd(Bn − {x}) + 1, pd(Bn −N [x]) + deg(x)

}
≤ max

{
n+ 3 +

⌊
n− 3

2

⌋
, n+ 2 +

⌊
n− 3

2

⌋}
= n+ 3 +

⌊
n− 3

2

⌋
.

Thus, pd(Pn+1 □ P2) ≤ n+ 3 +
⌊
n−3
2

⌋
. □

Lemma 2.2. For n ∈ N, let Fn denote the graph obtained by adding a pendant edge to the vertices
v1,2 and vn+1,2 of Pn+1 □ P2. Then, pd(Fn) = 2n+ 1− 2

⌊
n−1
4

⌋
.

Proof. The proof is by the principle of mathematical induction on n and for that Theorem
1.6 is used. Let x = v1,2, y = v2,1 and α(n) = 2n+ 1− 2

⌊
n−1
4

⌋
. Then deg(x) = deg(y) = 3.

Consider F1. Then pd(F1 − {x}) = pd(P4) = 2 and pd(F1 −N [x]) = 0, since it consists of
two isolated vertices. So, by Theorem 1.6, pd(F1) = 3 = α(1). Thus the result holds for
n = 1.
For n = 2, F2−N [x] = P4. To find F2−{x}, consider F2−{x, y} = S3 and F2−{x}−N [y] =
P2. Then by Theorem 1.6, pd(F2 − {x}) = 4 and hence pd(F2) = 5 = α(2). So the result
holds for n = 2.
Assume that the result holds for all k ≤ n, n ≥ 3. Consider the graphs Fn+1, Fn+1 − {x},
Fn+1 −N [x], Fn+1 − {x, y}, and Fn+1 −N [x]−N [y] as in the figures below.

x

FIGURE 6. Fn+1

Fn+1 − {x}

y

Fn+1 −N [x]

y

FIGURE 7

Fn+1 − {x, y}

Fn+1 − {x} −N [y]

FIGURE 8
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Fn+1 −N [x]−{y} Fn+1 −N [x]−N [y]

FIGURE 9

To find pd(Fn+1), pd(Fn+1 − {x}) and pd(Fn+1 −N [x]) must be known.
Now,

pd(Fn+1 − {x, y}) = pd(Fn−1) = 2n− 1− 2

⌊
n− 2

4

⌋
pd(Fn+1 − {x} −N [y]) = pd(Fn−2) = 2n− 3− 2

⌊
n− 3

4

⌋
Thus, by Theorem 1.6, pd(Fn+1 − {x}) = 2n− 2

⌊
n−3
4

⌋
.

Also,

pd(Fn+1 −N [x]− {y}) = pd(Fn−2) = 2n− 3− 2

⌊
n− 3

4

⌋
pd(Fn+1 −N [x]−N [y]) = pd(Fn−3) = 2n− 5− 2

⌊
n− 4

4

⌋
.

Thus, pd(Fn+1−N [x]) = 2n−2−2
⌊
n−4
4

⌋
. Hence, pd(Fn+1) = 2n+1−2

⌊
n−4
4

⌋
= α(n+1).

So, by induction, the result follows. □

Theorem 2.11. For n ≥ 2, let Jn = Cn+1 □ P2. Then, pd(Jn) = 2
(
n−

⌊
n
4

⌋ )
.

Proof. The vertices of Jn are labelled as in Bn. Consider J2 and let x = v2,1, y = v1,2. Then
J2 − {x, y} = P4 and J2 − {x} − N [y] is an isolated vertex. So pd(J2 − {x, y}) = 2 and
pd(J2 −{x}−N [y]) = 0. Then from Theorem 1.6, pd(J2 −{x}) = 3. Now, pd(J2 −N [x]) =
pd(P2) = 1. Hence pd(J2) = 4 = 2

(
2−

⌊
2
4

⌋ )
.

For n ≥ 3, let x = v1,1 and y = v1,2. Jn, Jn−{x}, Jn−N [x], Jn−{x, y} and Jn−{x}−N [y]
are the graphs shown in the Figures 10,11,12.

x

FIGURE 10. Jn

Jn − {x}

y

Jn −N [x]

FIGURE 11
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Jn − {x, y} Jn − {x} −N [y]

FIGURE 12

Then,

pd(Jn − {x, y}) = pd(P2 × Pn) ≤ n+
⌊n
2

⌋
pd(Jn − {x} −N [y]) = pd(Fn−3) = 2n− 3− 2

⌊n
4

⌋
So, pd(Jn − {x}) = 2n − 1 − 2

⌊
n
4

⌋
. Also, pd(Jn − N [x]) = pd(Fn−3) = 2n − 3 − 2

⌊
n
4

⌋
.

Hence, pd(Jn) = 2
(
n−

⌊
n
4

⌋ )
. □

Theorem 2.12. For n ≥ 3, pd(Kn □ P2) = 2n−2 where Kn is the complete graph on n vertices.

Proof. Let G0 = Kn □ P2, which consists of two complete graphs on n vertices that are
connected to each other by n edges. Let {u1, u2, . . . , un} and {v1, v2, . . . , vn} be the vertex
set of the first and second complete graphs respectively and let ei = uivi, 1 ≤ i ≤ n be the
n edges connecting the two complete graphs with each other. Let G0 be represented as
[Kn,Kn, n] where Kn’s are the two complete graphs and n is the number of ei’s in G0. By
Theorem 1.2, pd(Kn) = n− 1. The theorem will be proved using Theorem 1.5 repeatedly.

Consider G0 and the edge e1 = u1v1. To apply Theorem 1.5 we have to select a vertex
x ∈ V (G0). If the number of ei’s in G0 is even, x = u1 or else x = v1. Form the graphs
G1 = G0 − {x} and H1 = G0 − N [x]. Then G1 = [Kn−1,Kn, n − 1] or [Kn,Kn−1, n − 1]
according as number of ei’s in G0 is even or odd and H1 = Kn−1. Now choose the edge
e2 = u2v2 in G1 and let x = u2 or v2 depending on the number of ei’s in G1 is even or odd.
Then G2 = [Kn−1,Kn−1, n − 2] and H2 = Kn−2. Continuing the above procedure two
sequences of graphs G1, G2, . . . , and H1, H2, . . . , are obtained. The vertex ’x’ is selected
according to the number of ei’s in the graph Gj . If the number of ei’s in Gj is even, then
x = uj+1, otherwise x = vj+1. Also in Gj = [Kr,Ks, n], 0 ≤ j ≤ n, either r − s = 0
or r − s = 1 and to obtain Gj+1 from Gj the vertex x is chosen from Kmax(r,s). Now
Hj+1 = Gj −N [x] where x ∈ Gj and from the above observation x ∈ Kmax(r,s). So in Gj ,
deg(x) = max(r, s). After each deletion of the vertex ’x’, number of ei’s reduce by one.
Thus after n deletions all the ei’s will vanish. Then Gn will be the union of two complete
graphs and Hn will be a complete graph.
If n is even,

Gn =
[
Kn

2
,Kn

2
, 0
]
, Hn = Kn

2 −1

Gn−t =
[
Kn

2 +⌊ t
2 ⌋,K

n
2 +⌈ t

2 ⌉, t
]
, Hn−t = Kn

2 −1+⌈ t
2 ⌉, 1 ≤ t ≤ n− 1

and if n is odd,

Gn =
[
Kn+1

2
,Kn−1

2
, 0
]
, Hn = Kn−1

2

Gn−t =
[
Kn+1

2 +⌊ t
2 ⌋
,Kn−1

2 +⌈ t
2 ⌉
, t
]
, Hn−t = Kn−1

2 +⌊ t
2 ⌋
, 1 ≤ t ≤ n− 1
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By Theorem 1.3, depending on whether n is even or odd,

pd(Gn) = pd(Kn
2
) + pd(Kn

2
) or pd(Kn−1

2
) + pd(Kn+1

2
)

= n− 2

pd(Hn) =
n− 2

2
− 1 or

n− 1

2
− 1

Gn−1 =
[
Kn

2
,Kn

2 +1, 1
]
or

[
Kn+1

2
,Kn−1

2 +1, 1
]

and Hn−1 = Kn
2
or Kn−1

2

pd(Gn−1) ≤ max{pd(Gn) + 1, pd(Hn) + deg(x)}, x ∈ V (Gn−1)

= max{n− 1,
n− 2

2
+

n

2
+ 1} or max{n− 1,

n− 1

2
+

n− 1

2
+ 1}

= n− 1

Gn−2 =
[
Kn

2 +1,Kn
2 +1, 2

]
or

[
Kn+1

2 +1,Kn−1
2 +1, 2

]
and Hn−2 = Kn

2
or Kn+1

2

pd(Gn−2) ≤ max{pd(Gn−1) + 1, pd(Hn−1) + deg(x)}, x ∈ V (Gn−2)

= max{n, n
2
− 1 +

n

2
+ 1} or max{n, n− 1

2
− 1 +

n+ 1

2
+ 1}

= n

Now from Theorem 1.5, pd(Gn−t) ≤ max{pd(Gn−(t−1)) + 1, pd(Hn−(t−1)) + deg(x)}, x ∈
V (Gn−t). First note that pd(Gn−(t−1)) + 1 = pd(Hn−(t−1)) + deg(x) for all t, 1 ≤ t ≤ n. So
by Theorem 1.6, pd(Gn−t) = pd(Gn−(t−1)) + 1. Thus

pd(G1) = pd(Gn−(n−1))

= pd(Gn−(n−2)) + 1

= pd(Gn−(n−3)) + 2

= pd(Gn−(n−4)) + 3

...

= pd(Gn−(n−n)) + n− 1

So pd(G0) = pd(G1) + 1 = pd(Gn) + n = n− 2 + n = 2n− 2 □

Theorem 2.13. For n ≥ 3, pd(Wn □ P2) ≤ n + 1 + ⌈ 2n−1
3 ⌉ where Wn is the wheel graph on

n+ 1 vertices.

Proof. Let G = Wn □ P2 consists of two wheel graphs Wn, connected by n + 1 edges and
it will be represented as [Wn,Wn, n+1] . Let v1 and v2 be the hub vertices in G. Let x = v1
and deg(x) = n + 1 in G. Then G1 = G − {x} = [Cn,Wn, n] and H1 = G − N [x] = Cn.
By Theorem 1.7, pd(H1) = ⌈ 2n−1

3 ⌉. Now let x = v2 and deg(x) = n in G1. Then G2 =

G1 − {x} = [Cn, Cn, n] = Cn □ P2 and H2 = G1 − N [x] = Cn. pd(H2) = ⌈ 2n−1
3 ⌉. By
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Theorem 1.5,

pd(G1) ≤ max
{
pd(G2) + 1, pd(H2) + deg(v2)

}
= max

{
2n− 1− 2

⌊
n− 1

4

⌋
,

⌈
2n− 1

3

⌉
+ n

}
pd(G) ≤ max

{
pd(G1) + 1, pd(H1) + deg(v1)

}
≤ max

{
2n− 2

⌊
n− 1

4

⌋
,

⌈
2n− 1

3

⌉
+ n+ 1,

⌈
2n− 1

3

⌉
+ n+ 1

}
=

⌈
2n− 1

3

⌉
+ n+ 1

□

3. CONCLUSION

We have obtained exact values for the projective dimension of edge ideals associated
to some star related graphs and product graphs G □ P2, when G is a cycle or a complete
graph and upper bounds for the projective dimension when G is a path or wheel and
these values are functions of the number of vertices in the corresponding graphs. One can
try a similar study for Cartesian product of some other graphs and other graph products
such as corona product and rooted product of graphs.
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