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The combinatorial nature of some trigonometric integrals

DORIN ANDRICA, OVIDIU BAGDASAR and DAN ŞTEFAN MARINESCU

ABSTRACT. The combinatorial nature of the trigonometric integrals (2.8) is discussed in connection to the
partition of multisets with equal sums. Computational aspects are highlighted for special parameter values.

1. INTRODUCTION

At the District Round of the Romanian Mathematics Olympiad held on 26 March 2022,
the third problem for the 12th grade was proposed by Vasile Pop, and stated the following:
For every positive integer n ∈ N∗ define

In =

∫ π

0

cos(x) · cos(2x) · · · cos(nx) dx. (1.1)

Determine the values of n for which In = 0.
We mention that this problem is closely related to Problem A5 in the William Putnam

Competition held in 1985, which asks to determine all positive integers n ≤ 10 for which
In ̸= 0 (see [13]). In fact, this statement coincides with Problem 4.e), page 17 in [16].

The solution of the problem uses the trigonometric identity

cosx1 · cosx2 · · · cosxn =
1

2n

∑
cos(±x1 ± x2 ± · · · ± xn), (1.2)

where x1, . . . , xn ∈ R∗ and the sum is considered for all 2n choices of signs + and −. In
fact, the first use of this identity (which can be proved by mathematical induction) which
we could trace in the literature goes back to Problem 4 proposed at the Final Round of the
Romanian Mathematics Olympiad in 1971 (see [10], p. 82, 311–312). This identity is also
used in [1], [2] and [5], for solving problems related to the product of more derivatives.

Considering xk = kx, x ∈ R∗, k = 1, 2, . . . , n in the formula (1.2), we obtain

cosx · cos 2x · · · cosnx =
1

2n

∑
cos(±1± 2± · · · ± n)x,

where the sum is again considered over all 2n choices of signs + and −.
Integrating over the interval [0, π], and since for m ∈ Z we have∫ π

0

sin(mx) dx =

{
π if m = 0

0 if m ̸= 0,

we obtain the following formula

In =
S(n)π

2n
, (1.3)
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where the natural number S(n) represents the number of choices of the signs + and − for
which we have

±1± 2± · · · ± n = 0. (1.4)
The relation (1.4) has been called the signum equation of level n for the sequence 1, 2, 3, . . .
by S. R. Finch [12]. A choice of the signs + and − for which (1.4) holds is called a solu-
tion of this equation. Hence, a first interpretation is that S(n) represents the number of
solutions of the signum equation (1.4).

On the other hand, it is clear that S(n) is the number of ordered bipartitions (C1, C2)
with equal sums if the set {1, 2, . . . , n}, that is which satisfy the relation∑

a∈C1

a =
∑
b∈C2

b =
n(n+ 1)

4
. (1.5)

This interpretation of S(n) is purely combinatorial.
In order to finalise the discussion related to the initial problem, we have In = 0 if and

only if there are no bipartitions (C1, C2) satisfying (1.5), that is if and only if 4 does not
divide n(n+ 1), hence n ≡ 1, 2 (mod 4).

There still remains to study the problem of the numbers S(n) when n ≡ 0, 3 (mod 4),
that is the study of the sequence (S(n))n≥1, indexed as A063865 in the On-Line Encyclo-
pedia of Integer Sequences (OEIS) [15]. This is a nontrivial problem, since there are no
known explicit or recurrence formulae for this sequence. A natural problem is to find an
efficient method to compute its terms. Such a result can be obtained by noticing that the
number of solutions for the signum equation (1.4), is the free term in the expression(

x+
1

x

)(
x2 +

1

x2

)
· · ·
(
xn +

1

xn

)
. (1.6)

Using this method, the first 50 terms of the sequence are computed as

0, 0, 2, 2, 0, 0, 8, 14, 0, 0, 70, 124, 0, 0, 722, 1314, 0, 0, 8220, 15272, 0, 0, 99820, 187692, 0, 0,

1265204, 2399784, 0, 0, 16547220, 31592878, 0, 0, 221653776, 425363952, 0, 0, 3025553180,

5830034720, 0, 0, 41931984034, 81072032060, 0, 0.

By the same calculation, it was found that

S(100) = 1731024005948725016633786324,

far greater than S(48) = 81072032060, which suggests a sharp increase of the non-zero
terms of the sequence. In the absence of an explicit calculation formula, one may attempt
to establish an asymptotic formula for S(n) when n ≡ 0, 3 (mod 4). Following numerous
simulations, in the paper [7], the following formula was proposed in 2002:

lim
n→∞

S(n)
2n

n
√
n

=

√
6

π
. (1.7)

The relation (1.7), initially known as the Andrica-Tomescu conjecture, was proved in 2013
by B. D. Sullivan [17]. The proof uses analytical tools and the integral formula (1.3).

Remark 1.1. By (1.7) and (1.3) one can deduce the asymptotic limit limn→∞ n
√
n · In =√

6π, which implies that limn→∞ In = 0. A direct proof of this weaker result is given
below.

Indeed, since the function cos :
[
0, π

2

]
→ [0, 1] is strictly decreasing, we have

lim
n→∞

∫ π
2

0

cosn(x) dx = 0. (1.8)
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An alternative proof of (1.8) follows from (3.11) (see also Problem 8.e, page 19 in [16]).
On the other hand, as the function x 7→ | cosx| has period π, the following holds∫ π

0

|cos(kx)|n dx =
1

k

∫ kπ

0

|cos t|n dt

=
1

k

(∫ π

0

|cos t|n dt+ · · ·+
∫ kπ

(k−1)π

|cos t|n dt

)
=

∫ π

0

|cos t|n dt.

From the definition of In in (1.1), by the modulus and AM-GM inequalities, we have∣∣∣∣∫ π

0

cos(x) · cos(2x) · · · cos(nx) dx
∣∣∣∣ ≤ ∫ π

0

|cos(x)| · |cos(2x)| · · · |cos(nx)| dx

≤
∫ π

0

|cos(x)|n + |cos(2x)|n + · · ·+ |cos(nx)|n

n
dx

=
1

n
· n
∫ π

0

|cos(x)|n dx

=

∫ π
2

0

|cos(x)|n dx+

∫ π

π
2

|cos(x)|n dx

=

∫ π
2

0

|cos(x)|n dx+

∫ π
2

0

|sin(x)|n dx

= 2

∫ π
2

0

cosn(x) dx.

Taking the limit in the above inequality, by (1.8) one deduces that limn→∞ In = 0.

2. THE MAIN RESULT

Let k ≥ 2 and n1, . . . , nk be natural numbers and let M be the multiset

M = {α1, . . . , α1︸ ︷︷ ︸
n1 times

, . . . , αk, . . . , αk︸ ︷︷ ︸
nk times

},

where α1, . . . , αk are real numbers. Denote by S(n1, . . . , nk;α1, . . . , αk) the number of
ordered partitions of M having equal sums, i.e., the number of pairs (C1, C2) such that

(i) C1 ∪ C2 = M ;

(ii) σ(C1) = σ(C2) =
1
2

∑k
j=1 njαj .

If we assume that M is a multiset of integers, inspiring from formula (1.6) it follows
that S(n1, . . . , nk;α1, . . . , αk) represents the free term (independent of z) in the expansion

F (z) =

(
zα1 +

1

zα1

)n1
(
zα2 +

1

zα2

)n2

· · ·
(
zαk +

1

zαk

)nk

.

Let us observe that we can write F (z) = S(n1, . . . , nk;α1, . . . , αk) +
∑

l∈Z∗ clz
l, for some

constants cl ∈ Z. Setting z = cos t+ i sin t, t ∈ [0, 2π], we get the equivalent form

2n1+···+nk

k∏
j=1

(cosαjt)
nj = S(n1, . . . , nk;α1, . . . , αk) +

∑
l∈Z∗

cl (cos lt+ i sin lt) .
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Integrating this last identity on the interval [0, 2π] we obtain the main result of this paper,
involving the trigonometric integral

I(n1, . . . , nk;α1, . . . , αk) =

∫ 2π

0

(cosα1x)
n1 · · · (cosαkx)

nk dx. (2.9)

Theorem 2.1. The following formula holds:

I(n1, . . . , nk;α1, . . . , αk) =
2π

2n1+···+nk
S(n1, . . . , nk;α1, . . . , αk). (2.10)

Remark 2.2. An alternate proof based on Euler’s formula cos t + i sin t = eit, t ∈ R for
complex numbers, is the following:∫ 2π

0

(cosα1x)
n1 · · · (cosαkx)

nk dx

=

∫ 2π

0

(
eiα1x + e−iα1x

2

)n1

· · ·
(
eiαkx + e−iαkx

2

)nk

dx

=
1

2n1+···+nk

∫ 2π

0

S(n1, . . . , nk;α1, . . . , αk) +
∑
j∈Z∗

dj
(
eijx + e−ijx

) dx

=
1

2n1+···+nk

∫ 2π

0

S(n1, . . . , nk;α1, . . . , αk) + 2
∑
j∈Z∗

dj cos jx

 dx,

where the coefficients dj are zero except for a finite number, hence (2.10) holds.

We have the following natural consequences.

Corollary 2.1. 1) I(n1, . . . , nk;α1, . . . , αk) = 0 if and only if n1α1 + · · ·+ nkαk is odd.
2) If n1α1 + · · ·+ nkαk is even, then∫ π

0

(cosα1x)
n1 · · · (cosαkx)

nk dx =
π

2n1+···+nk
S(n1, . . . , nk;α1, . . . , αk).

Proof. 1) The property follows directly by formula (2.10).
2) We have∫ 2π

0

(cosα1x)
n1 · · · (cosαkx)

nk dx =

∫ π

0

(cosα1x)
n1 · · · (cosαkx)

nk dx

+

∫ 2π

π

(cosα1x)
n1 · · · (cosαkx)

nk dx,

and by considering x = π + t in the last integral one obtains∫ 2π

0

(cosα1x)
n1 · · · (cosαkx)

nk dx =

∫ π

0

(cosα1x)
n1 · · · (cosαkx)

nk dx

+ (−1)n1α1+···+nkαk

∫ π

0

(cosα1x)
n1 · · · (cosαkx)

nk dx

= 2

∫ π

0

(cosα1x)
n1 · · · (cosαkx)

nk dx,

and the conclusion follows by formula (2.10). □
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Remark 2.3. Formula (2.10) can be proved by writing

(cosα1x)
n1 · · · (cosαkx)

nk = cosα1x · · · cosα1x︸ ︷︷ ︸
n1 times

· · · cosαkx · · · cosαkx︸ ︷︷ ︸
nk times

,

and then using (1.2). Considering similar arguments in [3], [4] and [9], the first two au-
thors study 3-partitions, and extensions to k-partitions of multisets with equal sums.

3. TWO EXAMPLES

Example 3.1. An immediate application of Theorem 2.1 is an alternative calculation of the
trigonometric integral I(n; 1) =

∫ 2π

0
cosn xdx. Clearly, from formula (2.10) we have∫ 2π

0

cosn xdx =
2π

2n
S(n; 1),

where S(n; 1) is the number of choices of signs + and − such that ±1± · · · ± 1︸ ︷︷ ︸
n times

= 0. If n is

even then we have S(n; 1) =
(
n
n
2

)
, hence one obtains the formula∫ 2π

0

cosn xdx =

{
0 if n is odd
2π
2n

(
n
n
2

)
if n is even.

(3.11)

Usually, the standard calculation of this integral in textbooks uses the recursive relation

I(n+ 2; 1) =
n+ 1

n
I(n; 1), n ≥ 1,

which can be easily obtained by integration by parts.

Example 3.2. Consider the trigonometric integral

Jn =

∫ π

0

cos2(x) · cos2(2x) · · · cos2(nx) dx.

First notice that for all integers n ≥ 1, we have Jn ̸= 0 and

Jn =
1

2

∫ 2π

0

cos2 x · cos2(2x) · · · cos2(nx) dx

=
1

2
I(2, . . . , 2; 1, . . . , n) =

π

22n
S(2, . . . , 2; 1, . . . , n).

We shortly denote S(2)(n) = S(2, . . . , 2; 1, . . . , n) and obtain a formula analogous to (1.3):

Jn =
S(2)(n)π

22n
. (3.12)

Using the fact that in this case S(2)(n) is the free term of the expansion(
z +

1

z

)2(
z2 +

1

z2

)2

· · ·
(
zn +

1

zn

)2

,

by numerical calculations (here in Matlab) one check that S(2)(n) recovers the sequence

2, 4, 10, 26, 76, 236, 760, 2522, 8556, 29504, . . . .

This sequence is indexed as A047653 in OEIS [15], for which Kotesovec in 2014 conjectured
the following asymptotic expansion

lim
n→∞

S(2)(n)
4n

n
√
n

=

√
3

π
. (3.13)
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The first ten values of the integral Jn are
π

2
,
π

4
,
5π

32
,
13π

128
,
19π

256
,
59π

1024
,
95π

2048
,
1261π

32768
,
2139π

65536
,
461π

16384
, . . . .

Conjecture 3.1. By (3.12) and (3.13), the following asymptotic limit holds

lim
n→∞

n
√
n · Jn =

√
3π.

Remark 3.4. 1) With a very similar argument as the one used in Remark 1, one can prove
the weaker result limn→∞ Jn = 0.

2) The connection between some trigonometric integrals and the signum equation for
Erdős-Surányi sequences was investigated in paper [6]. The integral representation in
connection to almost unimodal sequences is given in [8].

3) In the recent paper [14], the authors using the ideas in [4] and [7], investigate trigono-
metric integrals of the form∫ 2π

0

(sinα1x)
n1 · · · (sinαkx)

nk dx,

where n1, . . . , nk and α1, . . . , αk are as in Theorem 2.1. In the same paper the improper
integral ∫ ∞

0

(cosαx− cosβx)
p

xq
dx,

is considered for α, β real numbers and p, q positive integers. Some special cases of this
integral have been studied in [11], using Fourier transform techniques.
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