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Some Hermite-Hadamard type Inequalities for E-preinvex
Functions

SEEMA MEENA and D. B. OJHA

ABSTRACT. In this paper, first we establish Hermite-Hadamard type inequalities for a class of preinvex func-
tions, called E-preinvex function. Later, we develop Hermite-Hadamard type inequalities for the functions,
whose first and second order derivatives absolute values are E-preinvex.

1. INTRODUCTION

A well known class of non-convexity, namely invexity has acquired an endless range of

advantages in both applied and pure mathematics. Mond and Ben-Israel (1986) proposed
the notion of invexity. Weir and Mond (1988) introduced preinvex function. Later, Bector
and Singh (1991) defined B-vex function. Mohan and Neogy (1995) applied the class of
invexity in producing some certain conditions of invex and quasiinvex functions on invex
set, that was defined by Hanson. Youness (1999) deduced E-convexity and gained some
related results of E-convexity in mathematical programming, later Yang (2001) refined
these results. Yang also produced some properties of preinvex functions together with Li.
Fulga and Preda (2009) extended the class of invexity and defined E-preinvex and local
E-preinvex functions from the ideology of E-convexity and also obtained some proper-
ties of E-invex functions and E-prequasiinvex functions.
Today, significance of invexity and preinvexity is not limited to optimization theory, re-
cently researchers have utilized this concept for obtaining new integral inequalities, like
Hermite-Hadamard inequality. Noor (2007) derived log-preinvexity from preinvexity and
procured Hermite-Hadamard type inequalities for log preinvex functions and two log
preinvex functions. Dragomir et al. (2012) revised preinvexity for obtaining Hermite-
Hadamard inequality of the functions whose derivatives absolute values are preinvex.
Here, we obtain Hermite-Hadamard type inequalities for the generalised class of prein-
vexity, called E-preinvexity.

2. PRELIMINARIES

First we consider that £ : R* — R™ and 7 : R” x R” — R" be two mappings, where
R" be an n-dimensional Euclidean space, then we recall some following definitions

Definition 2.1. [4] A set P C R"™ be an invex set with respect to the map v : R" xR" — R",
ifforall s,t € Pand k € [0,1], s + kvy(t, s) € P.

Definition 2.2. [4,9] Let P C R" be an invex set with respect to the map v : R”"xR"™ — R",
then function ¢ : P — R is said to be a preinvex function, if for all s,t € P and k € [0, 1],

P(s +ky(t,5)) < (1= k)p(s) + kip(t)
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Definition 2.3. [8] Let P C R" is said to be an E-invex set with respect to the map ~ :
R™ x R™ — R™,ifforall s,t € Pand k € [0, 1], E(s) + kv(E(t), E(s)) € P.

Definition 2.4. [8] Let P C R" be an E-invex set with respect to the map v : R" x R" —
R™, then function ¢ : P — R is said to be an E-preinvex function, if for all s, € P and
k€ [0,1],
V(E(s) + ky(E(t), E(s))) < (1 = k)p(E(s)) + kv (E(t)) 2.1

If we consider that (t,s) = ¢t — s, for all s,t € R", then definitions 2.3 and 2.4 reduce
to the definitions of F-convex set [20] and E-convex function [20], respectively. Similarly,
if the map £ : R® — R" is an identity map, then definitions 2.3 and 2.4 reduce to the
definitions of invex set and preinvex function, respectively.
If P C R" is an E-invex set, then E(P) C P [8].
If P; € R" and Vj € I, {P;};cs be an arbitrary collection of E-invex (invex) sets, then
NjerP; also be an E-invex (invex) set. Similarly, if P C R" be an E-invex set and Vj € I,
{®;};er be a collection of real valued E-preinvex functions, then sup;cr{1;}(s), Vs € Pis
E-preinvex function on E-invex set [8].

Example 2.1. Let P = [—3,—1] U[1, 3] and the map F : R — R is defined as
2 : <
B =] Hhl<Vs
—1, if|s| >3

and v : P X P — Ris defined as

() t—s, ift<s
78 = .
7 —3—s, ift>s

we see that, set P is E-invex and invex with respecttoy : P x P — R.

Example 2.2. Let the map F : R — R is defined as

1, s<0
E(s)=<s, 1<s5<2
0, 0<s<lors>2

and function v : R x R — R is defined as

t— s, s=1
v(t,s) =< 1—t, t>s
t—s—1, t<s

we see that, set R is E-invex and invex with respect to v : R x R — R. Now we define
function ¢ : R — R as

0, <0
—-s+1, 0<s<l1

vl =9 1<s<2
1, §>2

we see that function ¢ is E-preinvex and preinvex function on set R with respect to ~ :
Rx R — R.
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Example 2.3. Let the map F : R — R is defined as F(s) = —s* Vs € R and function
~v: R x R — Risdefined as

t—s, fort,s>0o0rt,s<0
V(tvs):
s—t, fort>0,s<0ort<0,s>0

we see that, set R is E-invex and invex with respect to v : R x R — R. Now we define
function ¢y : R — R as
1, s>0

we see that function 1 is E-preinvex, Vs € R but it is not a preinvex function, if s, < 0
and s < 0,¢ > 0 on set R with respecttoy: R x R — R.

Definition 2.3 follows that any path is started form E(s) to the end point E(t) contains
in P, where end point may be any point other than E(t). Now we recall a well known
integral inequality, called Hermite-Hadamard inequality.

If ¢ : P — R be a convex function (where J be a sub interval of (0,00)) and s, ¢ € P (with
t > s). Then the following inequality

w(s—i—t)g 1 /stf(u)dugw(us(t) 2.2)

2 t—s 2

is hold. In literature, this inequality is known as Hermite-Hadamard integral inequality.

3. MAIN RESULTS

In this section, we always consider that the map F : R — R be a continuous map and
P C Rbe an E-invex set with respect to the continuous map v : P x P — R, then for any
s € P,E(s) € E(P) C P[8]. If Y : P — R be a function defined on E-invex set P then,
we obtain Hermite-Hadamard inequality for E-preinvex functions.

Theorem 3.1. Let P be an open E-invex set and ¢ : P — (0,00) be an E-preinvex function
on P with respect to v : P x P — R. Then for any s,t € P (E(s) # E(t)) with E(s) <
E(s) +~(E(t), E(s)), the following inequality holds

) . E(s)+7(E(t),E(s))
. <2E( )+fy(2E(t),E( ))) < V(E(t)l’E(S)) /E(S) b(u) du

Proof. Let P be an E-invex set, then for any s,¢ € P (E(s) # E(t)) and k € [0, 1], we have
E(s)+ kvy(E(t), E(s)) € P. Now we assume that

E(s)+v(E(t),E(s))
1= u) du,
L, ¥()
where u = E(s) + kvy(E(t), E(s)) € P. Then
I= V(E(t)vE(S))/O U (E(s) + ky(E(t), E(s))) dk. (3.4)

Since ¢ : P — R be an E-preinvex function on E-invex set P, then for any s,t € P
(E(s) # E(t)) and k € [0, 1]

I <~(E(t), E(s) / (1= k)Yp(E(s)) + kp(E(1)) dk < 4(E(t), B(s))
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This gives the right hand side of inequality (3.3). Similarly, we can obtain the left hand
side of inequality (3.3) |

Remark 3.1. If E(s) = s, Vs € R, then inequality (3.3) reduces to Hermite-Hadamard
inequality (3.1) of [13] for preinvex function.

Remark 3.2. If E(s) = s, Vs € Rand (t,s) =t — s, ¥s,t € R, then inequality (3.3) gives
the same Hermite-Hadamard inequality (2.2).

Theorem 3.2. Let P be an open E-invex set and 1, ¢ : P — (0, 00) be two E-preinvex functions
on E-invex set P with respect to~y : P x P — R. Then for any s,t € P (E(s) # E(t)) with
E(s) < E(s) +v(E(t), E(s)), the following inequality holds

6 /E<s>+w<E<t>,E<s))

FEW), B () Vu)o(w) du

< [} + 15 = U(E()W(E() — o(E(s)9(E(t)], (3.6)
where vy = Y(E(s)) + ¢(E(t)) and vo = ¢(E(s)) + ¢(E(t)).

E(s)

Proof. Let P be an E-invex set, then for any s,t € P (E(s) # E(t)) and k € [0, 1], we have
E(s)+ ky(E(t),E(s)) € P. Now u = E(s )+ ky(E(t), E(s)) and 1, ¢ be two E-preinvex
functions, then for any s,t € P (E(s) # E(t)) and k € [0,1], we get

/E(S)JrV(E(t) E(s))

1
/0 (1= B (B(s)) + ke (B(1)* + (1 = k)o(E(s)) + ke(E(1)*] dk.

After solving the right hand side of above inequality, finally we get

6 E(s)+v(E(t),E(s))
FEW, B(9) /E<s) Vw)plu) du
< [V + 02 — B(E() BEW) — H(E(s))-9(EW)]
where 11 = $(E(s)) + $(E(t)) and vs = 6(E(s)) + d(E(?)). 0

Now we deduce Hermite-Hadamard type inequalities for the functions whose first
derivatives about values are E-preinvex functions. First, we prove the following lemma:

Lemma 3.1. Let P be an open E-invex set and ¢ : P — R be a differentiable function on E-
invex set P and 1’ is integrable on P. Then for any s,t € P (E(s) # E(t)) with E(s) <
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E(s) +~(E(t), E(s)), the following inequality holds

HEQLEED [ 2k (B + k2 (B0, )
D(B(s)) + B (E(s) +1(E (), Bs)
? 1 E(s)+1(E(),E(s))
V(E(), E(s)) /E<s)

Proof. Let P be an E-invex set, then for any s,¢ € P (E(s) # E(t)) and k € [0, 1], we have
E(s) + kvy(E(t), E(s)) € P. Then

P(u)du. (3.7)

(1 = 2k)(E(s) + ky(E(t), B(s)))]*

[ =200 (B + kB0, B i~ [

1(E(t), E(s)) 0
S ) / VLB I (B0, B b
() + $(E(s) +1(E(), B(s)) 2 PONEOED)
B V(E(t), E(s)) +7(13(75),13(5))2 /E<s> Vlu)d
This completes the proof. O

Theorem 3.3. Let P be an open E-invex set and ¢ : P — R be a differentiable function P and
|¢'| is E-preinvex on E-invex set P with respect toy : P x P — R. Then for any s,t € P
(E(s) # E(t)) with E(s) < E(s) +v(E(t), E(s)), the following inequality holds

B(B(s) + U(E(s) +1(BW), B(s) 1 HOTEOED o du
‘ 2 V(E(t), E(s)) /E<s) v
< DEQEGD g5y + 10/ (BO))]. (38)

- 8

Proof. Let P be an E-invex set, then for any s,¢ € P (E(s) # E(t)) and k € [0, 1], we have
E(s)+kvy(E(t), E(s)) € P. Since ¢’ is E-preinvex on P, then for any s,¢ € P (E(s) # E(t))
and k € [0,1], lemma 3.1 follows that

Y(B(s)) +U(E(s) +v(E(t), E(s))) 1 /E“)”(E“)’E“”
2 Y(E(), E(s)) Jgs)

. ’ HEOLECD, 1oty (5(5) + (500, EC0)

P(u) du

YE(t ,E s |/ (1= 2)| [(1 — &)o' (B(s)| + k[ (B(t))[] dk
_ w [/ (B(s)] + [/ (B
wherefol\1—2k|.(1*k)dk:fol|1*2k"kdk:1/4' .

Theorem 3.4. Let P be an open E-invex set and 1) : P — R be a differentiable function on P and
|o)!| 7T is B-preinvex on E-invex set P with respect to y : P x P — R. Then for any s,t € P
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(E(s) # E(t)) with E(s) < E(s) +v(E(t), E(s)), the following inequality holds

Y(E(s) + ¥(E(s) +1(E(t), E(s) 1 E(s)+7(E(t),E(s))
2 V(E(0), E(s)) /E(S> Ylu)du
< B®. Ble)) [l (B(s))|7/7 + |;¢/<E(t>>|q/“]q‘”q. 69)

Proof. Let P be an E-invex set, then for any s,t € P (E(s) # E(t)) and k € [0, 1], we have
E(s) + kv(E(t), E(s)) € P. Since [¢/|7T, q # 1 s E-preinvex on P, then for any s,t € P
(E(s) # E(t)) and k € [0, 1], we get the following inequality from Holder inequality and
the proof of theorem 3.3

W(E() + B(EE) +1(E@), Bs)) 1 e
| 2 V(E(t), E(s)) /E(s) p
< w /1(1 — 2k)Y (E(s) + ky(E(t), E(s))) dk‘
0

1/q
(1 —2k)| dk} (W' (E(s) + ky(E(t), B(s))|" dk)""

_ (E®), E(s))]

N ;(q+1)1/q (14 (B(s) + k(B (), E(s)))[" k)"
|

(B E6)| ([ .
S gt e (/0 (1= E) W' (B(s)" + kW' (E(®)]"] dk>
_ h(E®,EG) [ (EG) + [ (BT
2(q+1)1e 2 ’
where r = ¢/q — 1. 0

Now we obtain Hermite-Hadamard type inequalities for the functions whose second
order derivatives absolute values are E-preinvex. For this, first we prove the following
lemma

Lemma 3.2. Let P be an open E-invex set and ¢ : P — R be a differentiable function on E-
invex set P and )" is integrable on P. Then for any s,t € P (E(s) # E(t)) with E(s) <
E(s) +~(E(t), E(s)), the following inequality holds

s s S E(s)+v(E(#),E(s))
Y(E(s)) + ¢(E(s) +v(ER), E(s))) 1 / () du

2 V(E(t), E(s))

1
= L)) /O k(1 — k)" (E(s) + ky(E(t), E(s))) dk. (3.10)

E(s)
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Proof. Let P be an E-invex set, then for any s,¢ € P (E(s) # E(t)) and k € [0, 1], we have
E(s)+ kvy(E(t), E(s)) € P. Then

k(L= k)Y (E(s) + by (E(), B(s)]"

/m— )0 (BLs) + k(B0 Bk = |

1(E(), E(s)) 0
- m | =2 () + (B0, B a
1
= —M/ (1 —2k)Y'(E(s) + kv(E(t), E(s))) dk
_ U(E(S) + 9B (B0, B(s) 2 BOTEOED)
B Y(E(), E(s))? ((E(t), E(s)))* /E<s) vl du.
This completes the proof. O

Theorem 3.5. Let P be an open E-invex set and 1) : P — R be a differentiable function on P
and " is integrable on P. If |¢” | is E-preinvex on E-invex set P with respecttoy: P x P — R,
then for any s,t € P (E(s) # E(t)) with E(s) < E(s) +~v(E(t), E(s)), the following inequality
holds

Y(E(s) +y(E(s) +v(E@1), E(s)) 1 /E<s>+w<E<t>,E<s>>
2 Y(E®), E(s)) Jus)

< WEOEED. 1 (s + [ (B (G

Proof. Let P be an E-invex set, then for any s,¢ € P (E(s) # E(t)) and k € [0, 1], we have
E(s) + kvy(E(t), E(s)) € P. Now by lemma 3.2 and E-preinvexity for |¢)”|, we get for any
s,t € P(E(s) # E(t)) and k € [0,1]

Y(E(s)) + ¥(E(s) +y(E(t), E(s))) 1 /E(S)Jrv(E(t),E(s))
2 Y(E(L), E(s) Jes)

- [QE0.Ee)” /m— (B + o (B(0), Bls))

P(u) du

¥(u) du

Sf/ ((k = k%) (1 = B)[" (B(s)| + k7 (E(t))])) dk

0
_ w [[7 (E(s))] + [ (B(1))]].

This completes the proof. O

Theorem 3.6. Let P be an open E-invex set and 1 : P — R be a differentiable function on P.

If |7 |77 is E-preinvex on E-invex set P with respect to y : P x P — R, q¢ # 1 and 4" is
integrable on P, then for any s,t € P (E(s) # E(t)) with E(s) < E(s) +v(E(t), E(s)), the
following inequality holds

V(E(s)) + ¥(E(s) +v(E(t), B(s))) 1 /E<s>+w(E<t>,E<s>>
E(s)

P(u) du

1/q
) 107 (B + W (BT (3.12)
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Proof. Let P be an E-invex set, then for any s,t € P (E(s) # E(t)) and k € [0, 1], we have
E(s)+ky(E(t), E(s)) € P. Now by E-preinvexity for |¢)”| and Holder integral inequality,
for any s,t € P (E(s) # E(t)) and k € [0,1], lemma 3.2 gives

s s S E(s)+v(E(t),E(s))
|¢(E( )+ Y(E(s) +7(E(), E(s))) 1 /E (o) du

2 (B0, E(5)) Jas)

:w/ — k) |7 (E(s) + ky(E(t), E(s)))| dk

SW( (k- kdk)/(/ 147 (B(s) + by (B (1), <s>>>Tdk)

_(E@).E >(212qwr<1+q>>/
N 2 F(2+Q)

1/r

1 1/r
( [ (@ =pw @ + e Eor) dk)

_(E®), E(s))? 1 (FA+q)
- 16 (V) (r(g +q)

1/q
) 107 (B + 7 (BT

This completes the proof. O

Theorem 3.7. Let P be an open E-invex set and ¢ : P — R be a differentiable function on P.
If |7 |77 is E-preinvex on E-invex set P with respect toy : P x P — R, (¢ # 1) and ¢” is
integrable on P, then for any s,t € P (E(s) # E(t)) with E(s) < E(s) + v(E(t), E(s)), the
following inequality holds

P(u) du

Y(E(s)) + ¥(E(s) +v(E(t), E(s))) 1 /E<s>+w<E<t>,E<s>>
E(s)

12@ [0 (E()" + [ (B[], (3.13)

Proof. Let P be an E-invex set, then for any s,t € P (E(s) # E(t)) and k € [0, 1], we have
E(s) + kv(E(t),E(s)) € P. Now by E-preinvexity for |¢”| and weighted power mean
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inequality, for any s,t € P (E(s) # E(t)) and k € [0, 1], lemma 3.2 gives

P(E(s) +¥(E(s) +1(E@), E(s))) 1 B(s)+7(E(t),B(s))
2 V(E(0), E(s)) /E@ Ylu) du
B w ; k(1 — k) [0 (B(s) + kv(E(t), E(s)))| dk
M ' _ 1.2 o ! TN . 1/r
= 2 (/0 (kb —k )dk> </O (k= k) |97 (E(s) + ky(E(1), E(s)))| dk)

$))2 (r—1)/r 1 1/r
WEOECD (3) ([ =10 miw e+ He Bl d)

S (1)(7‘_% [ L B + |«/}”<E(t>)r} e

IN

2 6 12

- WER L @) 197 (BE)I + 1 (B@)"

This completes the proof. O

4. CONCLUSIONS

In this paper, if we take E(s) = s,Vs € R, then we obtain some results of [2, 13, 14] of
Hermite-Hadamard inequality for preinvex functions in a special case. This shows that
the class of E-preinvex functions is more general than that of preinvex functions in the
establishment of Hermite-Hadamard type inequalities.
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