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Statements and open problems on decidable sets X ⊆ N that
contain informal notions and refer to the current
knowledge on X

APOLONIUSZ TYSZKA

ABSTRACT. For a set X ⊆ N whose infiniteness is false or unproven, we define which elements of X are
classified as known. No known set X ⊆ N satisfies Conditions (1)-(4) and is widely known in number theory
or naturally defined, where this term has only informal meaning. (1) A known algorithm with no input returns an
integer n satisfying card(X) < ω⇒ X ⊆ (−∞, n]. (2) A known algorithm for every k ∈ N decides whether or not k ∈ X.
(3) No known algorithm with no input returns the logical value of the statement card(X) = ω. (4) There are many
elements of X and it is conjectured, though so far unproven, that X is infinite. (5) X is naturally defined. The infiniteness
of X is false or unproven. X has the simplest definition among known sets Y ⊆ N with the same set of known elements.
The set X = {n ∈ N : the interval [−1, n] contains more than 29.5 + 11!

3n + 1 · sin(n) primes o f the f orm k! + 1} satisfies
Conditions (1)-(5) except the requirement that X is naturally defined. 501893 ∈ X. Condition (1) holds with
n = 501893. card(X ∩ [0, 501893]) = 159827. X ∩ [501894,∞) = {n ∈ N : the interval [−1, n] contains at least 30 primes
o f the f orm k!+1}. We present a table that shows satisfiable conjunctions of the form #(Condition 1)∧(Condition 2)∧
#(Condition 3) ∧ (Condition 4) ∧ #(Condition 5), where # denotes the negation ¬ or the absence of any symbol. No
set X ⊆ N will satisfy Conditions (1)-(4) forever, if for every algorithm with no input, at some future day, a
computer will be able to execute this algorithm in 1 second or less.

This article is a continuation of the article [15]. The results of this article and the arti-
cle [15] were presented at the 25th Conference Applications of Logic in Philosophy and
the Foundations of Mathematics, see http://www.applications-of-logic.uni.
wroc.pl/Program-1. Nicolas D. Goodman observed that epistemic notions increase
the scope of mathematics, see [4]. The article [4] does not discuss the notion of the current
mathematical knowledge.

1. BASIC DEFINITIONS

Algorithms always terminate. Semi-algorithms may not terminate. There is the distinc-
tion between existing algorithms (i.e. algorithms whose existence is provable in ZFC) and
known algorithms (i.e. algorithms whose definition is constructive and currently known),
see [2], [10], [12, p. 9], [15]. A definition of an integer n is called constructive, if it provides a
known algorithm with no input that returns n. Definition 1.1 applies to sets X ⊆ N whose
infiniteness is false or unproven.

Definition 1.1. We say that a non-negative integer k is a known element of X, if k ∈ X and
we know an algebraic expression that defines k and consists of the following signs: 1 (one),
+ (addition), − (subtraction), · (multiplication), ˆ (exponentiation with exponent in N),
! (factorial of a non-negative integer), ( (left parenthesis), ) (right parenthesis).

The set of known elements of X is finite and time-dependent, so cannot be defined in
the formal language of classical mathematics. Let t denote the largest twin prime that is
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smaller than ((((((((9!)!)!)!)!)!)!)!)!. The number t is an unknown element of the set of twin
primes.

Definition 1.2. Conditions (1)-(5) concern sets X ⊆ N.
(1) A known algorithm with no input returns an integer n satisfying card(X) < ω⇒
X ⊆ (−∞, n].
(2) A known algorithm for every k ∈ N decides whether or not k ∈ X.
(3) No known algorithm with no input returns the logical value of the statement
card(X) = ω.
(4) There are many elements of X and it is conjectured, though so far unproven, that X
is infinite.
(5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest
definition among known sets Y ⊆ Nwith the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of X. No
known set X ⊆ N satisfies Conditions (1)-(4) and is widely known in number theory or
naturally defined, where this term has only informal meaning.

2. MAIN RESULTS

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is
infinite, see [13], [14], [16].

Statement 1. The statement

∃n ∈ N (card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, n + 3])

remains unproven in ZFC and classical logic without the law of excluded middle.

Let f (1) = 106, and let f (n + 1) = f (n) f (n) for every positive integer n.

Statement 2. The set

X = {k ∈ N : (106 < k)⇒ ( f (106), f (k)) ∩ Pn2+1 , ∅}
satisfies Conditions (1)-(4). Condition (5) fails for X.

Proof. Condition (4) holds as X ⊇ {0, . . . , 106} and the set Pn2+1 is conjecturally infinite.
Due to known physics we are not able to confirm by a direct computation that some
element of Pn2+1 is greater than f (106), see [8]. Thus Condition (3) holds. Condition (2)
holds trivially. Since the set

{k ∈ N : (106 < k) ∧ ( f (106), f (k)) ∩ Pn2+1 , ∅}
is empty or infinite, Condition (1) holds with n = 106. Condition (5) fails as the set of
known elements of X equals {0, . . . , 106}. □

Statements 3 and 4 provide stronger examples.

Conjecture 2.1. ([1, p. 443], [5]). The are infinitely many primes of the form k! + 1.

For a non-negative integer n, let ρ(n) denote 29.5 + 11!
3n + 1 · sin(n).

Statement 3. The set

X = {n ∈ N : the interval [−1, n] contains more than ρ(n) primes o f the f orm k! + 1}
satisfies Conditions (1)-(5) except the requirement that X is naturally defined. 501893 ∈ X.
Condition (1) holds with n = 501893. card(X ∩ [0, 501893]) = 159827. X ∩ [501894,∞) =
{n ∈ N : the interval [−1, n] contains at least 30 primes o f the f orm k! + 1}.
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Proof. For every integer n ⩾ 11!, 30 is the smallest integer greater than ρ(n). By this,
if n ∈ X ∩ [11!,∞), then n + 1, n + 2, n + 3, . . . ∈ X. Hence, Condition (1) holds with
n = 11! − 1. We explicitly know 24 positive integers k such that k! + 1 is prime, see [3]. The
inequality card({k ∈ N \ {0} : k! + 1 is prime}) > 24 remains unproven. Since 24 < 30, Condi-
tion (3) holds. The interval [−1, 11! − 1] contains exactly three primes of the form k! + 1:
1! + 1, 2! + 1, 3! + 1. For every integer n > 503000, the inequality ρ(n) > 3 holds. Therefore,
the execution of the following MuPAD code

m:=0:
for n from 0.0 to 503000.0 do
if n<1!+1 then r:=0 end_if:
if n>=1!+1 and n<2!+1 then r:=1 end_if:
if n>=2!+1 and n<3!+1 then r:=2 end_if:
if n>=3!+1 then r:=3 end_if:
if r>29.5+(11!/(3*n+1))*sin(n) then
m:=m+1:
print([n,m]):
end_if:
end_for:

displays the all known elements of X. The output ends with the line [501893.0, 159827],
which proves Condition (4). □

To formulate Statement 4 and its proof, we need some lemmas. For a non-negative

integer n, let θ(n) denote the largest integer divisor of 101010
smaller than n. For a

non-negative integer n, let θ1(n) denote the largest integer divisor of 1010 smaller than n.

Lemma 2.1. For every integer j > 101010
, θ( j) = 101010

. For every integer j > 1010, θ1( j) =
1010.

Lemma 2.2. For every integer j ∈ (6553600, 7812500], θ( j) = 6553600.

Proof. 6553600 equals 218 · 52 and divides 101010
. 7812500 < 224. 7812500 < 510. We

need to prove that every integer j ∈ (6553600, 7812500) does not divide 101010
. It holds as

the set {
2u · 5v : (u ∈ {0, . . . , 23}) ∧ (v ∈ {0, . . . , 9})

}

contains 6553600 and 7812500 as consecutive elements. □

Lemma 2.3. The number 65536002 + 1 is prime.

Proof. The following PARI/GP ([9]) command
isprime(6553600ˆ2+1,{flag=2})

returns 1. This command performs the APRCL primality test, the best deterministic pri-
mality test algorithm ([17, p. 226]). It rigorously shows that the number 65536002 + 1 is
prime. □

In the next lemmas, the execution of the command isprime(n,{flag=2}) proves the
primality of n. Let κ denote the function

N ∋ n
κ−→ the exponent o f 2 in the prime f actorization o f n + 1︸︷︷︸ ∈ N

Lemma 2.4. The set X1 = {n ∈ N : (θ1(n) + κ(n))2 + 1 is prime} is infinite.
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Proof. Let i = 142101504. By the inequality 2i ⩾ 2 + 1010 and Lemma 2.1, for every
non-negative integer m, the number

(
θ1

(
2i · (2m + 1) − 1

)
+ κ

(
2i · (2m + 1) − 1

))2
+ 1 =

(
1010 + i

)2
+ 1

is prime. □
Before Open Problem 1, X denotes the set {n ∈ N : (θ(n) + κ(n))2 + 1 is prime}.

Lemma 2.5. For every n ∈ X ∩
(
101010

,∞
)

and for every non-negative integer j,

3 j · (n + 1) − 1 ∈ X ∩
(
101010

,∞
)
.

Proof. By the inequality 3 j · (n + 1) − 1 ⩾ n and Lemma 2.1,

θ
(
3 j · (n + 1) − 1

)
+ κ

(
3 j · (n + 1) − 1

)
= 101010

+ κ(n) = θ(n) + κ(n)

□

Lemma 2.6. card(X) ⩾ 629450.

Proof. By Lemmas 2.2 and 2.3, for every even integer j ∈ (6553600, 7812500], the number
(θ( j) + κ( j))2 + 1 = (6553600 + 0)2 + 1 is prime. Hence,

{2k : k ∈ N} ∩ (6553600, 7812500] ⊆ X
Consequently,

card(X) ⩾ card({2k : k ∈ N} ∩ (6553600, 7812500]) =
7812500 − 6553600

2
= 629450

□

Lemma 2.7. 10242 ∈ X and 10242 < X1.

Proof. The number 10240 = 211 · 5 divides 101010
. Hence, θ(10242) = 10240. The number

(θ(10242) + κ(10242))2 + 1 = (10240 + 0)2 + 1 is prime. The set
{
2u · 5v : (u ∈ {0, . . . , 10}) ∧ (v ∈ {0, . . . , 10})

}

contains 10000 and 12500 as consecutive elements. Hence, θ1(10242) = 10000. The number
(θ1(10242) + κ(10242))2 + 1 = (10000 + 0)2 + 1 = 17 · 5882353 is composite. □

Statement 4. The set X satisfies Conditions (1)-(5) except the requirement that X is naturally
defined.

Proof. Condition (2) holds trivially. Let δ denote 101010
. By Lemma 2.5, Condition (1)

holds for n = δ. Lemma 2.5 and the unproven statement Pn2+1 ∩
[
δ2 + 1,∞

)
, ∅ show Con-

dition (3). The same argument and Lemma 2.6 yield Condition (4). By Lemma 2.4, the
set X1 is infinite. Since Definition 1.1 applies to sets X ⊆ N whose infiniteness is false or
unproven, Condition (5) holds except the requirement that X is naturally defined. □

The set X satisfies Condition (5) except the requirement that X is naturally defined. It
is true because X1 is infinite by Lemma 2.4 and Definition 1.1 applies only to sets X ⊆ N
whose infiniteness is false or unproven. Ignoring this restriction, X still satisfies the same
identical condition due to Lemma 2.7.
Proposition 2.1. No set X ⊆ N will satisfy Conditions (1)-(4) forever, if for every algorithm
with no input, at some future day, a computer will be able to execute this algorithm in 1 second or
less.
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Proof. The proof goes by contradiction. We fix an integer n that satisfies Condition (1).
Since Conditions (1)-(3) will hold forever, the semi-algorithm in Figure 1 never termi-
nates and sequentially prints the following sentences:

n + 1 < X, n + 2 < X, n + 3 < X, . . . (T)

Figure 1 Semi-algorithm that terminates if and only if X is infinite

The sentences from the sequence (T) and our assumption imply that for every integer
m > n computed by a known algorithm, at some future day, a computer will be able to
confirm in 1 second or less that (n,m] ∩ X = ∅. Thus, at some future day, numerical ev-
idence will support the conjecture that the set X is finite, contrary to the conjecture in
Condition (4). □

The physical limits of computation ([8]) disprove the assumption of Proposition 2.1.

Open Problem 1. Is there a set X ⊆ N which satisfies Conditions (1)-(5)?

Open Problem 1 asks about the existence of a year t ⩾ 2022 in which the conjunction

(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

will hold for some X ⊆ N. For every year t ⩾ 2022 and for every i ∈ {1, 2, 3}, a positive
solution to Open Problem i in the year t may change in the future. Currently, the answers
to Open Problems 1–5 are negative.

3. SATISFIABLE CONJUNCTIONS WHICH CONSIST OF CONDITIONS (1)-(5) AND THEIR
NEGATIONS

The set X = Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

The set X = {0, . . . , 106} ∪ Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

The numbers 22k
+ 1 are prime for k ∈ {0, 1, 2, 3, 4}. It is open whether or not there are

infinitely many primes of the form 22k
+ 1, see [7, p. 158] and [11, p. 74]. It is open whether

or not there are infinitely many composite numbers of the form 22k
+ 1, see [7, p. 159] and

[11, p. 74]. Most mathematicians believe that 22k
+ 1 is composite for every integer k ⩾ 5,

see [6, p. 23].
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The set

X =

N, i f 22 f (99)

+ 1 is composite
{0, . . . , 106}, otherwise

satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 2. Is there a set X ⊆ N that satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

The set

X =



N, i f 22 f (99)
+ 1 is composite

{0, . . . , 106}∪
{n ∈ N : n is the sixth prime number o f the f orm 22k

+ 1}, otherwise

satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 3. Is there a set X ⊆ N that satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

It is possible, although very doubtful, that at some future day, the set X = Pn2+1 will
solve Open Problem 2. The same is true for Open Problem 3. It is possible, although very

doubtful, that at some future day, the set X = {k ∈ N : 22k
+ 1 is composite}will solve Open

Problem 1. The same is true for Open Problems 2 and 3.

Table 1 shows satisfiable conjunctions of the form

#(Condition 1) ∧ (Condition 2) ∧ #(Condition 3) ∧ (Condition 4) ∧ #(Condition 5)

where # denotes the negation ¬ or the absence of any symbol. Table 1 differs from Table 1
in [15] for three sets X. These sets X have the index new.

(Cond. 2) ∧ (Cond. 3) ∧
(Cond. 4)

(Cond. 2) ∧ ¬(Cond. 3) ∧ (Cond. 4)

(Cond. 1) ∧
(Cond. 5)

Open Problem 1 Open Problem 2

(Cond. 1) ∧
¬(Cond. 5)

Xnew = {n ∈ N : the interval
[−1, n] contains more than
29.5 + 11!

3n+1 · sin(n) primes
o f the f orm k! + 1}

Xnew =


N, i f 22 f (99)

+ 1 is composite
{0, . . . , 106}, otherwise

¬(Cond. 1) ∧
(Cond. 5)

X = Pn2+1 Open Problem 3

¬(Cond. 1) ∧
¬(Cond. 5)

X = {0, . . . , 106} ∪ Pn2+1 Xnew =



N, i f 22 f (99)
+ 1 is composite

{0, . . . , 106} ∪ {n ∈ N : n is
the sixth prime number o f

the f orm 22k
+ 1}, otherwise

1

Table 1 Five satisfiable conjunctions
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Definition 3.3. We say that an integer n is a threshold number of a set X ⊆ N, if
card(X) < ω⇒ X ⊆ (−∞, n].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number of X. If
a set X ⊆ N is non-empty and finite, then the all threshold numbers of X form the set
[max(X),∞) ∩ N.

Open Problem 4. Is there a known threshold number of Pn2+1?

Open Problem 4 asks about the existence of a year t ⩾ 2022 in which the implication
card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, n] will hold for some known integer n.

Let T denote the set of twin primes.

Open Problem 5. Is there a known threshold number of T ?

Open Problem 5 asks about the existence of a year t ⩾ 2022 in which the implication
card(T ) < ω⇒ T ⊆ (−∞, n] will hold for some known integer n.
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