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Double Roman Domination in Cartesian Product

V. ANU and LAKSHMANAN S. APARNA

ABSTRACT. Given a graph G = (V,E), a function f : V → {0, 1, 2, 3} having the property that if f(v) = 0,
then there exist v1, v2 ∈ N(v) such that f(v1) = 2 = f(v2) or there exists w ∈ N(v) such that f(w) = 3, and if
f(v) = 1, then there exists w ∈ N(v) such that f(w) ≥ 2 is called a double Roman dominating function (DRDF).
The weight of a DRDF f is the sum f(V ) =

∑
v∈V f(v), and the minimum among the weights of DRDFs on G

is the double Roman domination number, γdR(G), of G. In this paper, we study the impact of cartesian product
on the double Roman domination number.

1. INTRODUCTION

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). If there is no
ambiguity in the choice of G, then we write V (G) and E(G) as V and E respectively. Let
f : V → {0, 1, 2, 3} be a function defined on V. Let V f

i = {v ∈ V : f(v) = i}. (If there is no
ambiguity, V f

i is written as Vi.) Then f is a double Roman dominating function (DRDF)
on a graph G if it satisfies the following conditions.

(i) If v ∈ V0, then vertex v must have at least two neighbors in V2 or at least one
neighbor in V3.

(ii) If v ∈ V1, then vertex v must have at least one neighbor in V2 ∪ V3.
The weight of a DRDF f is the sum f(V ) =

∑
v∈V f(v). The double Roman domination

number, γdR(G), is the minimum among the weights of DRDFs on G, and a DRDF on G
with weight γdR(G) is called a γdR-function of G [8].

Let (V0, V1, V2, V3) be the ordered partition of V induced by f . Note that there exists a
1 − 1 correspondence between the functions f and the ordered partitions (V0, V1, V2, V3)
of V . Thus we will write f = (V0, V1, V2, V3).

R. A. Beeler, T. W. Haynes and S. T. Hedetniemi pioneered the study of double Ro-
man domination in [8]. The relationship between double Roman domination and Ro-
man domination and the bounds on the double Roman domination number of a graph
G in terms of its domination number were discussed by them. They also determined a
sharp upper bound on γdR(G) in terms of the order of G and characterized the graphs
attaining this bound. In [1], it was verified that the decision problem associated with
γdR(G) is NP-complete for bipartite and chordal graphs. A characterization of graphs
with small double Roman domination number was also provided by them. In [9], G.
Hao et al. introduced the study of the double Roman domination of digraphs and L.
Volkmann proposed a sharp lower bound on γdR(G) in [10]. In [4], it was proved that
γdR(G) + 2 ⩽ γdR(M(G)) ⩽ γdR(G) + 3, where M(G) is the Mycielskian graph of G. A
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construction which confirms that there is no relation between the double Roman domina-
tion number of a graph and its induced subgraphs was also given in [4]. The impact of
some graph operations on double Roman domination number was studied in [5] and [6].
In [3], J. Amjadi et al. improved an upper bound on γdR(G) given in [8] by showing that
for any connected graph G of order n with minimum degree at least two, γdR(G) ⩽ 8n

7 .

In [5], it is proved that for any graphs G and H the double Roman domination numm-
ber of G□H is at least γ(G)γdR(H)

2 . In this paper we improve this lowerbound as γ(G)γdR(H)
for all graphs G having an efficient dominating set. The exact value of double Roman
domination number of P2□Pn was found in [5]. In this paper, we extend this study to
cartesian product of two graphs where factor graphs are complete graphs and cycles.

1.1. Basic Definitions and Preliminaries. The open neighborhood of a vertex v ∈ V is
the set N(v) = {u : uv ∈ E}, and its closed neighborhood is N [v] = N(v) ∪ {v}. The
vertices in N(v) are called the neighbors of v. For a set D ⊆ V , the open neighborhood is
N(D) = ∪v∈DN(v) and the closed neighborhood is N [D] = N(D) ∪D. A set D is a dom-
inating set if N [D] = V . The domination number γ(G) is the minimum cardinality of a
dominating set in G. A dominating set S = {u1, u2, . . . , uγ(G)} such that N [ui]∩N [uj ] = ∅,
for every i, j ∈ {1, 2, . . . , γ(G)}, i ̸= j, is called an efficient dominating set [11]. We say
that a graph G is a double Roman graph if γdR(G) = 3γ(G).

A simple graph G is said to be complete if every pair of distinct vertices of G are adja-
cent in G and a complete graph on n vertices is denoted by Kn. A path on n vertices Pn is
the graph with vertex set {v1, v2, . . . , vn} and vi is adjacent to vi+1 for i = 1, 2, . . . , n− 1. If
in addition, vn is adjacent to v1 and n ≥ 3, it is called a cycle of length n, denoted by Cn.

The cartesian product of two graphs G and H , denoted by G□H , is the graph with
vertex set V (G)× V (H) and any two vertices (u1, v1) and (u2, v2) are adjacent in G□H if
(i) u1 = u2 and v1v2 ∈ E(H), or (ii) u1u2 ∈ E(G) and v1 = v2. If G = Pm and H = Pn,
then the cartesian product G□H is called the m× n grid graph and is denoted by Gm,n.

For any graph theoretic terminology and notations not mentioned here, the readers
may refer to [7]. The following result is useful in this paper.

Proposition 1.1. [8] In a double Roman dominating function of weight γdR(G), no vertex needs
to be assigned the value 1.

Hence, without loss of generality, in determining the value γdR(G) we can assume that
V1 = ∅ for all double Roman dominating functions under consideration.

2. CARTESIAN PRODUCT

Theorem 2.1. Let G ∈ ℑ, where ℑ is the class of all graphs having an efficient dominating set
and H be any graph. Then γdR(G□H) ⩾ γ(G)γdR(H).

Proof. Let V (G) and V (H) be the vertex sets of G and H respectively. Let
S={u1, u2, . . . , uγ(G)} be an efficient dominating set for G. i.e., {N [u1], N [u2], . . . , N [uγ(G)]}
is a vertex partition of V (G). Let {Π1,Π2, . . . ,Πγ(G)} is a vertex partition of V (G□H),
where Πi = N [ui] × V (H) for every i ∈ {1, 2, . . . , γ(G)}. Consider a γdR-function f =
(V0, V2, V3) of G□H . For every i ∈ {1, 2, . . . , γ(G)} we define the function fi : V (H) →
{0, 2, 3} as fi(v) = max{f(u, v) : u ∈ N [ui]}. In addition, for every j ∈ {0, 2, 3}, we define
X

(i)
j = {v ∈ V (H) : fi(v) = j}.
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Now, if v ∈ Xi
0, then for every u ∈ N [ui], we have (u, v) ∈ V0. Then there exists

either (ui, vj) ∈ V3 with vj ∈ N(v) or (ui, vk), (ui, vl) ∈ V2 with vk, vl ∈ N(v). Thus,
every v ∈ X

(i)
0 has either a neighbor vj ∈ X

(i)
3 or two neighbors vk, vl ∈ X

(i)
2 and

hence, fi = (X
(i)
0 , X

(i)
2 , X

(i)
3 ) is a double Roman dominating function on H for every

i ∈ {1, 2, . . . , γ(G)}. Therefore,

γdR(G□H) = 3|V3|+ 2|V2|

=

γ(G)∑
i=1

[3|V3 ∩Πi|+ 2|V2 ∩Πi|]

⩾
γ(G)∑
i=1

[3|X(i)
3 |+ 2|X(i)

2 |]

⩾
γ(G)∑
i=1

γdR(H)

= γ(G)γdR(H).

□

The following result is an interesting consequence of the above theorem.

Corollary 2.1. Let G and H be two graphs. If G ∈ ℑ and H is a double Roman graph, then
γdR(G□H) ⩾ 3γ(G)γ(H).

Theorem 2.2. For any graphs G and H of orders n1 and n2 respectively, γdR(G□H)⩽3γ(G)γ(H)+
2(n1 − γ(G))(n2 − γ(H)).

Proof. Let D1 and D2 be minimum dominating sets on G and H respectively. Let V3 =
D1×D2, V2 = (V (G)−D1)×(V (H)−D2) and V0 = D1×(V (H)−D2)∪(V (G)−D1)×D2.
Since V3 dominates V0, f = (V0, V2, V3) is a DRDF on G□H. Therefore,

γdR(G□H) ⩽ 3|V3|+ 2|V2|
= 3|D1||D2|+ 2|V (G)−D1||V (H)−D2|
= 3γ(G)γ(H) + 2(n1 − γ(G))(n2 − γ(H)).

□

3. PARTICULAR CASES

The double Roman domination number of K1□Pm
∼= Pm and K2□Pm

∼= G2,m was stud-
ied in [2] and [5] respectively. It is clear that γdR(Kn□P1) = γdR(Kn) = 3, for n ⩾ 2. Also,
it is easy to verify that the value of γdR(K3□Pm), for m = 2, 3, is 6, 8, respectively. Hence
we are excluding the values m = 1, 2, 3 in the following theorems.

Theorem 3.3. For integers m ⩾ 4, γdR(K3□Pm) ⩽ 2m+ 3.

Proof. Let V (K3) = {u1, u2, u3} and V (Pm) = {v1, v2, . . . , vm}. Let A = {(u1, v1)} ∪
{(u1, v3l) : 1 ⩽ l ⩽ ⌊m

3 ⌋ − 1} ∪ {(u2, v3l+2), (u3, v3l+1) : 0 ⩽ l ⩽ ⌊m
3 ⌋ − 1}.

Case 1: m ≡ 0 (mod 3).
Let f1 = (V ′

0 , V
′
2 , V

′
3), where V ′

3 = {(u1, vm)}, V ′
2 = A and V ′

0 = V − (V ′
2 ∪ V ′

3). Each
vertex (u1, v3l+1) ∈ V ′

0 has two neighbors (u1, v3l), (u3, v3l+1) ∈ V ′
2 . Also, each vertex

(u1, v3l+2) ∈ V ′
0 has two neighbors (u1, v3(l+1)), (u2, v3l+2) ∈ V ′

2 except for (u1, vm−1).
But (u1, vm−1) has a neighbor (u1, vm) ∈ V ′

3 . Similarly, we can prove that each vertex
(ui, vj) ∈ V ′

0 , i = 2, 3 and j = 1, 2, . . . , n, is double Roman dominated and hence f1 is a
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DRDF. (See Figure 1.)
Case 2: m ≡ 1 (mod 3).
Let f2 = (V ′′

0 , V ′′
2 , V ′′

3 ), V ′′
3 = {(u3, vm)}, V ′′

2 = A ∪ {(u1, vm−1)} and V ′′
0 = V − (V ′′

2 ∪ V ′′
3 ).

Case 3: m ≡ 2 (mod 3).
Let f3 = (V ′′′

0 , V ′′′
2 , V ′′′

3 ), where V ′′′
3 = {(u2, vm)}, V ′′′

2 = A ∪ {(u1, vm−2), (u3, vm−1)} and
V ′′′
0 = V − (V ′′′

2 ∪ V ′′′
3 ).

As in Case 1, we can prove that f2 and f3 are DRDFs. Hence the result. □

FIGURE 1. DRDF f1 for K3□P9. Black circle denote vertex in V ′
3 , grey circles denote vertices in

V ′
2 and empty circles denote vertices in V ′

0 .

Theorem 3.4. For integers m ⩾ 4, n ⩾ 4, γdR(Kn□Pm) = 3m.

Proof. Let V (Kn) = {u1, u2, . . . , un} and V (Pm) = {v1, v2, . . . , vm}. In any DRDF of
Kn□Pm, we have to use at least value 3 on each copy of Kn. Thus γdR(Kn□Pm) ⩾ 3m.
Now, f = (V0, ∅, V3), where V3 = {(u1, vl) : 1 ⩽ l ⩽ m} and V0 = V − V3 is a DRDF with
weight 3m. Hence the result follows. □

By the definition, the number of vertices should be at least 3 in a cycle. The double
Roman domination number of K1□Cm

∼= Cm was studied in [2]. Also, it can be verified
that γdR(K2□C3) = 6 = γdR(K3□C3). Hence we are considering m ⩾ 4 in the following
theorems.

Theorem 3.5. For integers m ⩾ 4,

γdR(Kn□Cm) ⩽

{
2m, if n = 2,

2m+ 2, if n = 3.

Proof. Case 1: n = 2.
Let V (K2) = {u1, u2} and V (Cm) = {v1, v2, . . . , vm}. Let A = {(u1, vj) : j is an odd number
⩽ m} ∪ {(u2, vj) : j is an even number ⩽ m}. Let f = (V0, V2, ∅), where V2 = A and
V0 = V − V2. It is easy to prove that f is a DRDF.
Case 2: n = 3.
Let V (K3) = {u1, u2, u3} and V (Cm) = {v1, v2, . . . , vm}. Let A = {(u1, v3l+1), (u2, v3l+2) :
0 ⩽ l ⩽ ⌊m

3 ⌋} ∪ {(u3, v3l) : 1 ⩽ l ⩽ ⌊m
3 ⌋}.

Subcase (i): m ≡ 0 (mod 3).
Let f1 = (V ′

0 , V
′
2 , ∅), where V ′

2 = A ∪ {(u1, vm)} − {(u1, v3⌊m
3 ⌋+1), (u2, v3⌊m

3 ⌋+2)} and
V ′
0 = V − V ′

2 . Each vertex (u1, v3l) ∈ V ′
0 has two neighbors (u1, v3l+1), (u3, v3l) ∈ V ′

2 .
Also, each vertex (u1, v3l+2) ∈ V ′

0 has two neighbors (u1, v3l+1), (u2, v3l+2) ∈ V ′
2 . Simi-

larly, we can prove that each vertex (ui, vj) ∈ V ′
0 , i = 2, 3 and j = 1, 2, . . . , n, is double

Roman dominated and hence f1 is a DRDF.
Subcase (ii): m ≡ 1 (mod 3).
Let f2 = (V ′′

0 , V ′′
2 , ∅), where V ′′

2 = A ∪ {(u3, vm)} − {(u2, v3⌊m
3 ⌋+2)} and V ′′

0 = V − V ′′
2 .

Subcase (iii): m ≡ 2 (mod 3).
Let f3 = (V ′′′

0 , V ′′′
2 , ∅), where V ′′′

2 = A ∪ {(u3, vm)} and V ′′′
0 = V − V ′′′

2 .
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As in Subcase (i), we can prove that f2 and f3 are DRDFs.
Hence the result is true. □

Theorem 3.6. For integers m ⩾ 4, n ⩾ 4, γdR(Kn□Cm) = 3m.

Proof. Let V (Kn) = {u1, u2, . . . , un} and V (Cm) = {v1, v2, . . . , vm}. In any DRDF of
Kn□Cm, we have to use at least value 3 on each copy of Kn. Thus γdR(Kn□Cm) ⩾ 3m.
Now, f = (V0, ∅, V3), where V3 = {(u1, vl) : 1 ⩽ l ⩽ m} and V0 = V − V3 is a DRDF with
weight 3m. Hence the result follows. (See Figure 2.) □

FIGURE 2. DRDF for K4□P4. Black circles denote vertices in V3 and empty circles denote vertices
in V0.

Conclusion
In this paper we have improved an existing lowerbound of γdR(G□H) for graphs G ∈ ℑ,
where ℑ is the class of all graphs having an efficient dominating set. Proving this lower
boung for all graphs is an open problem. We have also found the double Roman domi-
nation number of Kn□Pm and Kn□Cm. Finding similar results for some other classes of
graphs is also open.
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