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On a useful lemma that relates quasi-nonexpansive and
demicontractive mappings in Hilbert spaces

VASILE BERINDE

ABSTRACT. We give a brief account on a basic result (Lemma 3.2) which is a very useful tool in proving var-
ious convergence theorems in the framework of the iterative approximation of fixed points of demicontractive
mappings in Hilbert spaces. This Lemma relates the class of quasi-nonexpansive mappings, by one hand, and
the class of k-demicontractive mappings (quasi k-strict pseudocontractions), on the other hand and essentially
states that the class of demicontractive mappings, which strictly includes the class of quasi-nonexpansive map-
pings, can be embedded in the later by means of an averaged perturbation. From the point of view of the fixed
point problem, this means that any convergence result for Krasnoselskij-Mann iterative algorithms in the class
of k-demicontractive mappings can be derived from its corresponding counterpart from quasi-nonexpansive
mappings.

1. INTRODUCTION

Nonexpansive type operators are extremely important in the metric fixed point theory,
both from the theoretical point of view and especially for their large areas of applica-
tions, see [21] for a very recent survey. In this note we shall refer mainly to the following
classes of mappings: nonexpansive, quasi-nonexpansive, k-strictly pseudocontractive (in
the sense of Browder and Petryshyn) and quasi k-strictly pseudocontractive (commonly
called demicontractive), which, although largely well known, are defined in the following
for the sake of completeness.

Let H be a real Hilbert space with norm and inner product denoted as usually by ∥ · ∥
and ⟨·, ·⟩, respectively. Let C ⊂ H be a closed and convex set and T : C → C be a self
mapping. Denote by

Fix (T ) = {x ∈ C : Tx = x}
the set of fixed points of T .

Definition 1.1. The mapping T is said to be:
1) nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ C. (1.1)
2) quasi-nonexpansive if Fix (T ) ̸= ∅ and

∥Tx− y∥ ≤ ∥x− y∥, for all x ∈ C and y ∈ Fix (T ). (1.2)

3) k-strictly pseudocontractive of the Browder-Petryshyn type ([26]) if there exists k < 1
such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥x− y − Tx+ Ty∥2,∀x, y ∈ C. (1.3)
4) k-demicontractive ([63]) or quasi k-strictly pseudocontractive (see [24]) if Fix (T ) ̸= ∅

and there exists a positive number k < 1 such that

∥Tx− y∥2 ≤ ∥x− y∥2 + k∥x− Tx∥2, (1.4)
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for all x ∈ C and y ∈ Fix (T ).

It is known, see the remarks following Definition 3.2, that Definition 1.1 4) is equivalent,
in the setting of a Hilbert space, with Definition 3.2, that is, (1.4) is equivalent to (3.7).

Let us denote by NE , QNE , SPC and DC the classes of nonexpansive, quasi-nonexpansive,
k-strictly pseudocontractive (in the sense of Browder and Petryshyn) and quasi k-strictly
pseudocontractive (demicontractive), respectively.

In Metrical Fixed Point Theory there was a long standing and there still exists a steadily
increasing interest for studying the existence and approximation of fixed points of map-
pings in all of the above four classes of mappings and in many related ones like asymp-
totically nonexpansive, firmly nonexpansive etc.

Most of the literature is devoted to mappings in the classes NE , QNE , SPC but, starting
with the year 2008, there was also an increasing interest for studying the mappings in the
class DC, see the very recent survey [21] and especially the consistent list of references
therein, of which most are also included here, for the sake of completeness, see [2]-[13],
[20]-[25], [28]-[109], [111]-[178].

In order to establish convergence theorems for fixed point iteration schemes, some au-
thors ([88], [63], [98],...) have used implicitly or explicitly ([91], [20]) a lemma that relates
the classes QNE and DC.

The aim of this note is to review some of the most important moments in the process
of discovering and use of this Lemma in order to prove convergence theorems in the class
of demicontractive operators.

2. THE COMPLETE INCLUSION DIAGRAM OF THE CLASSES NE , QNE , SPC AND DC

To our best knowledge, there is no any paper that includes together a diagram of
the four classes of nonexpansive type mappings NE , QNE , SPC and DC, which should
clearly show by appropriate examples the complete map of the relationships existing be-
tween all of them.

So, we are doing this is the present section, mainly for its use in this note but also for
the importance itself of such a diagram.

The next two simple examples show that NE and QNE are independent sets, i.e., NE∩
QNE ≠ ∅, NE is not included in QNE and QNE is not included in NE .

Example 2.1. Let H be the real line with the usual norm, C = [0, 1] and T1x = 1 + x, x ∈
[0, 1]. Then: 1) T1 ∈ NE ; 2) Fix (T1) = ∅; 3) T1 /∈ QNE .

Example 2.2. Let H be the real line with the usual norm, C = [0, 2] and T2x = 2 − x, x ∈
[0, 2]. Then: 1) T2 ∈ NE ; 2) T2 ∈ QNE ; 3) Fix (T2) = {1}.

The following lemma follows immediately from Definition 1.1.

Lemma 2.1.
NE ⊆ SPC; (2.5)

QNE ⊆ DC. (2.6)

By means of the next example we show that inclusion (2.5) is strict, i.e., NE ⊊ SPC.

Example 2.3. Let H be the real line with the usual norm, C =

[
1

2
, 2

]
and T3 : C → C

defined by T3(x) =
1

x
,∀x ∈ C. Then: 1) Fix (T3) ̸= ∅; 2) T3 ∈ SPC; 3) T3 /∈ NE .
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Proof. 1) Fix (T3) = {1};

2) By (1.3), T3 ∈ SPC if there exists k ∈ (0, 1) such that, for all x, y ∈ C,

∥T3x− T3y∥2 ≤ ∥x− y∥2 + k∥x− y − T3x+ T3y∥2,
which in our case reduces to∣∣∣∣ 1x − 1

y

∣∣∣∣2 ≤ |x− y|2 + k

∣∣∣∣x− 1

x
− y +

1

y

∣∣∣∣2 ⇔ 1 ≤ x2y2 + k(1 + xy)2, x, y ∈
[
1

2
, 2

]
.

By denoting t := xy, it follows that t ∈
[
1

4
, 4

]
and hence we have to prove that there

exists k > 0 such that
1− t2

(1 + t)2
≤ k < 1, for all t ∈

[
1

4
, 4

]
. Consider the function f(t) :=

1− t2

(1 + t)2
, t ∈

[
1

4
, 4

]
.

Since f ′(t) = − 2

(1 + t)2
< 0, it follows that f is strictly decreasing on

[
1

4
, 4

]
, which

implies

f(t) ≤ f

(
1

4

)
=

3

5
, for all t ∈

[
1

4
, 4

]
.

This shows that one can choose k =
3

5
and so, T3 is

3

5
-strictly pseudocontractive.

3) Assume T3 ∈ NE , i.e., |T3x− T3y| ≤ |x− y|, ∀x, y ∈ C =

[
1

2
, 2

]
and take x =

1

2
and

y = 1 to get |2− 1| ≤
∣∣∣∣12 − 1

∣∣∣∣ ⇔ 1 ≤ 1

2
, a contradiction.

□

Example 2.4. Let H be the real line with the usual norm and C = [0, 2]. Define T4 : [0, 2] →

[0, 2] by T4x =
x2 + 2

x+ 1
, for all x ∈ [0, 2]. Then: 1) Fix (T4) ̸= ∅; 2) T4 ∈ QNE ; 3) T4 /∈ NE ;

4) T4 /∈ SPC.

Proof. 1) Fix (T4) = {2};
2) For y = 2 and x ∈ [0, 2], by (1.2) we have

|T4x− 2| =
∣∣∣∣x2 + 2

x+ 1
− 2

∣∣∣∣ = x

x+ 1
· |x− 2| ≤ |x− 2|, x ∈ [0, 2],

and so T4 ∈ QNE .

3) Just consider x = 0 and y =
1

3
in (1.1) to get

5

12
=

∣∣∣∣T40− T4
1

3

∣∣∣∣ ≤ ∣∣∣∣0− 1

3

∣∣∣∣ = 1

3
,

a contradiction since
5

12
>

1

3
. So, T4 /∈ NE .

4) Assume now that T4 ∈ SPC and take x = 0 and y =
1

3
in (1.3) to get(

5

12

)2

=

∣∣∣∣T40− T4
1

3

∣∣∣∣2 ≤
∣∣∣∣0− 1

3

∣∣∣∣2 + k

∣∣∣∣0− T40−
(
1

3
− T4

1

3

)∣∣∣∣2 =

(
1

3

)2

+ k

(
3

4

)2

,

which is a contradiction, since
5

12
>

1

3
and k > 0. Hence T4 /∈ SPC. □

The next example shows that the inclusion (2.6) is also strict, i.e., QNE ⊊ DC.
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Example 2.5. Let H be the real line with the usual norm and C = [0, 1]. Define T5 on C by

T5x =
7

8
, if 0 ≤ x < 1 and T51 =

1

4
. Then:

1) Fix (T5) ̸= ∅; 2) T5 ∈ DC; 3) T5 /∈ NE ; 4) T5 /∈ QNE ; 5) T5 /∈ SPC.

Proof. 1) Fix (T5) =

{
7

8

}
;

2) By taking y =
7

8
and x ∈ [0, 1), inequality (1.4) becomes:

|T5x− y|2 = 0 ≤ |x− y|2 + k|x− T5x|2,
which obviously holds, for any k > 0.

It remains to check (1.4) for the case x = 1, which yields∣∣∣∣14 − 7

8

∣∣∣∣2 ≤
∣∣∣∣1− 7

8

∣∣∣∣2 + k

∣∣∣∣1− 1

4

∣∣∣∣2
and which holds true for any k ≥ 2

3
. Hence T5 is

2

3
-demicontractive.

3) To show that T5 is not quasi-nonexpansive, take x = 1 and y =
7

8
in (1.2), to get

5

8
≤ 1

8
, a contradiction. Hence T5 is not quasi-nonexpansive.

4) To prove that T5 is not nonexpansive take x = 1 and y =
7

8
in (1.1) to get the same

contradiction as above.
5) Assume T5 is k-strictly pseudocontractive, that is, there exists k < 1 such that (1.3)

holds for any x, y ∈ [0, 1]. By taking x ∈ [0, 1) and y = 1 in (1.3) we have(
5

8

)2

≤ (x− 1)2 + k

(
x− 1− 5

8

)2

, x ∈ [0, 1),

from which, by letting x → 1 we obtain 1 ≤ k < 1, a contradiction.
Hence T5 is not strictly pseudocontractive. □

Based on Lemma 2.1 and Examples 2.1-2.5, we have the following complete map of the
relationships between the four sets of nonexpansive type mappings in Definition 1.1.

NE ·T2·T1

·T3

SPC

·T4

QNE

·T5

DC

Figure 1. Diagram of the relationships between the classes NE , QNE , SPC and DC
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3. A LEMMA THAT RELATES QUASI-NONEXPANSIVE AND DEMICONTRACTIVE MAPPINGS

The main aim of this section is to present some historical facts about the use and for-
mulation of an important lemma that relates quasi-nonexpansive and demicontractive
mappings.

This result is of particular importance in proving convergence theorems for some fixed
point iterative schemes like Krasnoselskii, Krasnoselskij-Mann etc. in the class of demi-
contractive mappings, by reducing the arguments to the same algorithms but in the class
of quasi-nonexpansive mappings.

We state it in the form it has been presented and used in the paper [20] and, for the sake
of completeness, we also give its proof.

Lemma 3.2 ([20], Lemma 3.2). Let H be a real Hilbert space, C ⊂ H be a closed and convex set.
If T : C → C is k-demicontractive, then for any λ ∈ (0, 1− k), Tλ is quasi-nonexpansive.

Proof. By hypothesis, we have Fix (T ) ̸= ∅ and there exists k < 1 such that

∥Tx− y∥2 ≤ ∥x− y∥2 + k∥x− Tx∥2, x ∈ C and y ∈ Fix (T )

which is equivalent to

⟨Tx− x, x− y⟩ ≤ k − 1

2
· ∥x− Tx∥2, x ∈ C, y ∈ Fix (T ).

Then, for all x ∈ C and y ∈ Fix (T ), we have

∥Tλx− y∥2 = ∥λ(Tx− x) + x− y∥2 = ∥x− y∥2 + 2λ⟨Tx− x, x− y⟩

+λ2∥Tx− x∥2 ≤ ∥x− y∥2 + (λ2 + λk − λ)∥Tx− x∥2

= ∥x− y∥2 + λ2 + λk − λ

λ2
· ∥Tλx− x∥2, x ∈ C, y ∈ Fix (T ).

So, if λ2 + λk − λ < 0, that is, λ < 1− k, then the above inequality implies that

∥Tλx− y∥2 ≤ ∥x− y∥2, x ∈ C, y ∈ Fix (T ),

i.e., that Tλ is quasi-nonexpansive. □

We are now interested to trace back on the use of this simple but important Lemma.
As it has been shown in the very recent survey paper [21], the demicontractive mappings
were introduced independently in 1977 by Măruşter [88] and Hicks and Kubicek [63],
respectively, in the setting of a Hilbert space.

The same notion has been introduced in 1973 by Măruşter [87], in the particular case
of Rn, but for the case of the nonlinear equation U(x) = 0. By simply taking U = I − T ,
one finds the same concept as the one introduced in [88]. This was the reason why in the
survey paper [21] we have considered 1973 as the birth date of demicontractive mappings.

In order to present some facts about the early use of Lemma 3.2, we also give here
Măruşter’s definition [88] of demicontractive mappings. It is important to note that the
term ”demicontractive” was coined by Hicks and Kubicek [63], who introduced it by
means of inequality (1.4).

Definition 3.2 (Măruşter [88]). Let H be a real Hilbert space and C a closed convex subset
of H . A mapping T : C → C such that Fix (T ) ̸= ∅ is said to satisfy condition (A) if there
exists λ > 0 such that

⟨x− Tx, x− x∗⟩ ≥ λ∥Tx− x∥2,∀x ∈ C, x∗ ∈ Fix (T ). (3.7)
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Despite the fact that the two definitions were introduced in the same year and in very
visible magazines, it was not apparent for a rather long time that the two inequalities
(1.4) and (3.7), which involve different formulas, are actually equivalent in the setting of
a Hilbert space.

This fact was observed more than two decades later, by Moore [97] and is based on the
following identity, valid in a real Hilbert space:

∥x− x∗∥2 + k∥x− Tx∥2 − ∥Tx− x∗∥2 = 2⟨x− x∗, x− Tx⟩ − (1− k)∥x− Tx∥2,

see [97]) for more details.
In our recent paper [20], based on Lemma 3.2, we have explicitly proven that, in Hilbert

spaces, any convergence result for a Krasnoselkij type fixed point iterative algorithm in
the class of demicontractive mappings can be deduced from its counterpart in the class of
quasi-nonexpansive mappings.

But this fact was known and used implicitly long before by a few researchers that were
working in this area. Our aim is to survey all those attempts that precede the more recent
papers [136], [148] and [20], where Lemma 3.2 was explicitly stated.

1) In the proof of Theorem 1 in Măruşter [88], the author used the same arguments like
the ones in the proof of Lemma 3.2.

Indeed, if we adapt the notations in [88] to our current ones, i.e., we denote the fixed
point of T by x∗ instead of ξ and the parameter tk involved in the Mann iteration by t,
what Măruşter [88] did, see the first 4 rows on page 70, is the following

∥Ttx− x∗∥2 = ∥x− x∗ − t(x− Tx)∥2 = ∥x− x∗∥2 − 2t⟨x− Tx, x− x∗⟩

+t2∥x− Tx∥2 ≤ ∥x− x∗∥2 + t(2λ− t)∥x− Tx∥2

and since 2λ− t > 0, it follows that

∥Ttx− x∗∥ ≤ ∥x− x∗∥, x ∈ C, x∗ ∈ Fix (T ),

which means that Tt is quasi-nonexpansive for 0 < t < 2λ.
On the other hand, if we keep in mind the relationship between λ in (3.7) and k in (1.4),

that is, λ =
1− k

2
, then we get exactly the condition on the parameter in Lemma 3.2 that

ensures that the averaged operator Tt is quasi-nonexpansive.
As a matter of fact, in [88] all the above calculations were performed directly for the

sequence xk+1 = Ttxk and not for the mapping Tt.

2) In the proof of Théoréme in [87], the same arguments were used, but for the case of
the nonlinear equation U(x) = 0. By simply taking U = I − T , the proof actually shows
that the mapping Tµ is quasi-nonexpansive for µ < 2η, where η corresponds to λ in (3.7).

Similarly to [88], the author did all the calculations in [87] for the sequence xp+1 = Tµxp

and not for the mapping Tµ.

3) In the proof of Theorem 1 in [63], the authors performed similar calculations to those
in [88] but for the sequence vn+1 = Tdnvn and not for the averaged mapping Tdn .

4) In a series of papers from the period 2003-2009, see [89], [86], [90]-[92], Măruşter used
Lemma 3.2 and even presented a complete proof of it, but in the framework of the proof of
the main result established there. For example, in [89], this is done in the proof of Theorem
2. Lemma 3.2 is also explicitly stated and proved and then used to apply Theorem 1 in [89]
(about quasi-nonexpansive mappings) to get the desired conclusion. Similar formulations
of Lemma 3.2 do appear under various forms in the subsequent papers by Măruşter [86],
[90]-[92].
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5) In Remark 2.1 from Moudafi [98], Lemma 3.2 is explicitly stated and proven, as
follows.

”Let T be a k-demicontractive self-mapping on H with Fix (T ) ̸= ∅ and set Tw :=
(1−w)I+wT for w ∈ (0, 1]. It is obviously checked that Fix (T ) = Fix (Tw). Moreover, Tw

is quasi-nonexpansive for w small enough. Indeed, given an arbitrary (x, q) ∈ H×Fix (T ),
we have

|Twx− q|2 = |(x− q) + w(Tx− x)|2

= |x− q|2 − 2w⟨x− q, x− Tx⟩+ w2|Tx− x|2

which by (1.5) (i.e., the demicontractive condition in Măruşter’s form) yields

|Twx− q|2 ≤ |x− q|2 − w(1− k − w)|Tx− x|2.
Consequently, if w ∈ (0, 1− k], then Tw is quasi-nonexpansive...”

This explicit statement and its proof are reproduced in Maingé and Moudafi [84] (Re-
mark 2.1), in Maingé [79] (Remark 4.2) and in some other papers by the same authors.

6) It appears that Tang et al. [136] were the first ones to state explicitly Lemma 3.2, by
referring to Remark 2.1 from Moudafi [98].

7) The present author, who was not aware of the implicit or explicit statements of
Lemma 3.2 reviewed previously, formulated it as an auxiliary result (Lemma 3.2) in [20],
and, based on it, presented simpler and unifying proofs for the pioneering papers by
Măruşter [88] and Hicks and Kubicek [63].

The title of [20], Approximating fixed points results for demicontractive mappings could be
derived from their quasi-nonexpansive counterparts, as well as its first conclusions reproduced
below should be taken into consideration by all researchers dealing with the study of
demicontractive mappings.

”1. In this paper we have shown that the convergence theorems for Mann iteration
used for approximating the fixed points of demicontractive mappings in Hilbert spaces
could be derived from the corresponding convergence theorems in the class of quasi-
nonexpansive mappings.

2. Our derivation is based on an imbedding technique described by Lemma 3.2, which
essentially shows that if T is k-demicontractive, then for any λ ∈ (0, 1 − k), Tλ is quasi-
nonexpansive.

3. In this way we obtained a unifying technique of proof for various well known results
in the fixed point theory of demicontractive mappings that has been illustrated for the case
of the first two classical convergence results in the class of demicontractive mappings in
literature: Măruşter [88] and Hicks and Kubicek [63].”

We note that a similar technique also works for k-strict pseudocontractions, which can
be embedded in the class of nonexpansive mappings in Hilbert spaces. This fact was first
exploited by Browder and Petryshyn [26], [110], and also used much later by Zhou [174]
in the case of nonself mappings.

4. CONCLUSIONS

1. I this paper we gave a brief account on a basic result (Lemma 3.2) which is a
very useful tool in proving various convergence theorems in the framework of the iter-
ative approximation of fixed points of demicontractive mappings in Hilbert spaces. This
lemma relates the class of quasi-nonexpansive mappings, by one hand, and the class of k-
demicontractive mappings (or quasi k-strict pseudocontractions), on the other hand and
essentially states that the class of demicontractive mappings, which strictly includes the
class of quasi-nonexpansive mappings, can be embedded in the later by means of an av-
eraged perturbation.
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2. From the point of view of the fixed point problem, this means that any convergence
result for Krasnoselskij-Mann iterative algorithms in the class of demicontractive map-
pings can be derived from its corresponding counterpart established for quasi-nonexpansive
mappings.

3. The nonexpansive mappings are important in solving various problems in data sci-
ence, like image recovery, machine learning, signal processing, neural networks etc. This
was the reason why, in Section 2, we presented, by means of appropriate examples, the
complete map of the relationships existing amongst four important such classes: nonex-
pansive mappings, quasi-nonexpansive mappings, strictly pseudocontractive mappings
and demicontractive mappings. To our best knowledge, this is the first time such a dia-
gram is pictured.

4. In this context, we also collected an almost complete list of references related to the
study of fixed point problem in the class of demicontractive mappings, mainly taken from
[21].

5. The main message of this note for researchers working in that area is to use Lemma
3.2 when dealing with convergence theorems of Krasoselskij-Man type in the class of
demicontractive mappings, in order to unify and simplify the proofs.

6. One of the main aims of this note was to trace back on the awareness and use of
Lemma 3.2. We thus discovered that its inception started with the pioneering works on
demicontractive mappings, due to Măruşter [87], [88] and Hicks and Kubicek [63], and
that the first explicit statement and proof of this lemma in due to Măruşter [89], who did
it within the proof of Theorem 2 [89].

7. A similar technique works for k-strict pseudocontractions, which can be embedded
in the class of nonexpansive mappings in Hilbert spaces, first exploited by Browder and
Petryshyn [26], see also [110], and also used much later by Zhou [174] in the case of nonself
mappings, but this should be the subject of another paper.
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[82] Maingé, P.-E. New approach to solving a system of variational inequalities and hierarchical problems. J.
Optim. Theory Appl. 138 (2008), no. 3, 459–477.
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