
CREAT. MATH. INFORM.
Volume 33 (2024), No. 1,
Pages 105 - 117

Online version at https://semnul.com/creative-mathematics/

Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X

DOI: https://doi.org/10.37193/CMI.2024.01.10

Simpson Type Tensorial Norm Inequalities for Continuous
Functions of Selfadjoint Operators in Hilbert Spaces

VUK STOJILJKOVIĆ

ABSTRACT. In this paper several tensorial norm inequalities for continuous functions of selfadjoint operators
in Hilbert spaces have been obtained. Multiple inequalities of the form∣∣∣∣∣∣∣∣13

(
2 exp (A)⊗ 1− exp

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ exp (B)

)
−(1⊗B −A⊗ 1)−1 ×

(
exp(1⊗B)− exp(A⊗ 1)

)∣∣∣∣∣∣∣∣
⩽ ∥1⊗B −A⊗ 1∥

5

12
exp(M)

are obtained with variations due to the convexity properties of the mapping f .

1. INTRODUCTION

The notion of a tensor has its origin in the 19th century, when it was formulated by
Gibbs, though he didn’t formally use the word tensor but that of dyadic. In modern
terminology, it can be seen as the origin of the tensor definition and its introduction to
mathematics. Interplay of inequalities in mathematics is ubiquous, and as such it has ap-
plications in tensors as well. Mathematics and other scientific fields are highly influenced
by inequalities. Many types of inequalities exist, but those involving Jensen, Ostrowski,
Hermite-Hadamard, and Minkowski hold particular significance among them. More
about inequalities and its history can be found in the books [22, 24]. Many papers have
been published concerning the generalizations of these inequalities, see [1–5, 8–10, 26–31]
and the references therein.

Since our paper is about tensorial Simpson type inequalities, we give a brief intro-
duction to the topic of inequalities of that type. In 1938, A. Ostrowski [23], proved the
following inequality concerning the distance between the integral mean 1

b−a

∫ b

a
f(t)dt and

the value f(x), x ∈ [a, b].

Theorem 1.1. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b) such that
f ′ : (a, b) → R is bounded on (a, b) and ∥f ′∥∞ := supt∈(a,b) |f ′(t)| < +∞. Then∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣ ⩽ [14 +

(
x− a+b

2

b− a

)2 ]
∥f ′∥∞ (b− a),

for all x ∈ [a, b] and the constant 1
4 is the best possible.

If we take x = a+b
2 we get the midpoint inequality∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣ ⩽ 1

4
∥f ′∥∞ (b− a),
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106 Vuk Stojiljković

with 1
4 as best possible constant.

Recent advances concerning the theory of inequalities in Hilbert spaces will be shown
to supplement the presentation of this work. Dragomir [18] gave the following Mond-
Pecarić type inequality.

Theorem 1.2. Let A be a selfadjoint operator on the Hilbert space H and assume that Sp(A) ⊂
[m,M ] for some scalars m,M with m < M . If f is a convex function on [m,M ], then

f(m) + f(M)

2
≥ ⟨f(A) + f((m+M)1H −A)

2
x, x⟩

≥ f(⟨Ax, x⟩) + f(m+M − ⟨Ax, x⟩)
2

≥ f

(
m+M

2

)
,

for each x ∈ H with ||x|| = 1.
In addition, if x ∈ H with ||x|| = 1 and ⟨Ax, x⟩ ≠ m+M

2 , then also

f(⟨Ax, x⟩) + f(m+M − ⟨Ax, x⟩)
2

≥ 2
m+M

2 − ⟨Ax, x⟩

∫ m+M−⟨Ax,x⟩

⟨Ax,x⟩
f(u)du ≥ f

(
m+M

2

)
.

Another interesting result is the Hermite-Hadamard inequality in the selfadjoint oper-
ator sense given by Dragomir [19]

Theorem 1.3. Let f : I → R be an operator convex function on the interval I . Then for any
selfadjoint operators A and B with spectra in I we have the inequality

f

(
A+B

2

)
≤
[
f

(
3A+B

4

)
+ f

(
A+ 3B

4

)]
≤
∫ 1

0

f((1− t)A+ tB)dt

≤ 1

2

[
f

(
A+B

2

)
+
f(A) + f(B)

2

]
≤ f(A) + f(B)

2
.

In order to derive similar inequalities of the tensorial type, we need the following in-
troduction and preliminaries.
Let I1, ..., Ik be intervals from R and let f : I1 × ... × Ik → R be an essentially bounded
real function defined on the product of the intervals. Let A = (A1, ..., An) be a k-tuple of
bounded selfadjoint operators on Hilbert spaces H1, ...,Hk such that the spectrum of Ai is
contained in Ii for i = 1, ..., k. We say that such a k-tuple is in the domain of f . If

Ai =

∫
Ii

λidEi(λi)

is the spectral resolution of Ai for i = 1, ..., k by following [6] , we define

f(A1, ..., Ak) :=

∫
I1

...

∫
Ik

f(λ1, ..., λk)dE1(λ1)⊗ ...⊗ dEk(λk)

as bounded selfadjoint operator on the tensorial product H1 ⊗ ...⊗Hk.
If the Hilbert spaces are of finite dimension, then the above integrals become finite sums,
and we may consider the functional calculus for arbitrary real functions. This construction
extends the definition of Kornyi [21] for functions of two variables and have the property
that

f(A1, ..., Ak) = f1(A1)⊗ ...⊗ fk(Ak),
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whenever f can be separated as a product f(t1, ..., tk) = f1(t1)...fk(tk) of k functions each
depending on only one variable.

Since we will be using tensorial products, we will define in the following what tensors
and tensorial products are in short, for more consult the following book [20].
Let U, V and W be vector spaces over the same fieldF . A mapping Φ : U×V →W is called
a bilinear mapping if it is linear in each variable separately. Namely, for all u, u1, u2 ∈ U ,
v, v1, v2 ∈ V and a, b ∈ F ,
Φ(au1 + bu2, v) = aΦ(u1, v) + bΦ(u2, v),
Φ(u, av1 + bv2) = aΦ(u, v1) + bΦ(u, v2). If W = F , a bilinear mapping Φ : U × V → F is
called a bilinear function.
Let ⊗ : U × V → W be a bilinear mapping. The pair (W,⊗) is called a tensor product
space of U and V if it satisfies the following conditions:
1. Generating property < Im⊗ >=W ;
2. Maximal span property dim < Im⊗ >= dimU · dimV .
The member w ∈W is called a tensor, but not all tensors in W are products of two vectors
of the form u⊗ v. The notation < Im⊗ > denotes the span.
Example
Let u = (x1, .., xm) ∈ Rm and V = (y1, ..., yn) ∈ Rn. We can view u and v as column
vectors. Namely,

u =

x1...
xm

 , v =

y1...
yn


are m× 1 and n× 1 matrices respectively.
We define ⊗ : Rm × Rn →Mm,n,

u⊗ v = uvt =

 x1y1 · · ·x1yn...
xmy1 · · ·xmyn

 ,
an m × n matrix with entries Aij = xiyj . (Mm,n,⊗) is a tensor product space of Rm and
Rn. Tensors do not need to be matrices. This is just one model given. For more consult
the following book [20].

Recall the following property of the tensorial product

(AC)⊗ (BD) = (A⊗B)(C ⊗D)

that holds for any A,B,C,D ∈ B(H).
From the property we can deduce easily the following consequences

An ⊗Bn = (A⊗B)n, n ⩾ 0,

(A⊗ 1)(1⊗B) = (1⊗B)(A⊗ 1) = A⊗B,

which can be extended, for two natural numbers m,n we have

(A⊗ 1)n(1⊗B)m = (1⊗B)m(A⊗ 1)n = An ⊗Bm.

The current research concerning tensorial inequalities can be seen in the following papers,
[11–15]. The following Lemma which we require can be found in a paper of Dragomir [16].
We provide the proof for the education purposes and for the easier understanding of the
paper.



108 Vuk Stojiljković

Lemma 1.1. Assume A and B are selfadjoint operators with Sp(A) ⊂ I and Sp(B) ⊂ J . Let f, h
be continuous on I , g, k continuous on J and ψ continuous on an interval K that contains the sum
of the intervals h(I) + k(J), then

(f(A)⊗ 1 + 1⊗ g(B))ψ(h(A)⊗ 1 + 1⊗ k(B)) (1.1)

=

∫
I

∫
J

(f(t) + g(s))ψ(h(t) + k(s))dEt ⊗ dF (s),

where A and B have the spectral resolutions,

A =

∫
I

tdEt and B =

∫
J

sdFs.

Proof. By Stone-Weierstrass, any continuous function can be approximated by a sequence
of polynomials, therefore it is enough to prove the equality for the power function ψ(t) =
tn with n any natural number.
For any natural number n ⩾ 1 we have

S =

∫
I

∫
J

(f(t) + g(s))(h(t) + k(s))ndEt ⊗ dF (s)

=

∫
I

∫
J

(f(t) + g(s))

n∑
k=0

Ck
n[h(t)]

k[k(s)]n−kdEt ⊗ dF (s)

=

n∑
k=0

Ck
n

[ ∫
I

∫
J

f(t)[h(t)]k[k(s)]n−kdEt ⊗ dF (s)

+

∫
I

∫
J

[h(t)]kg(s)[k(s)]n−kdEt ⊗ dF (s)

]
.

Rewriting the first and second part respectively as∫
I

∫
J

f(t)[h(t)]k[k(s)]n−kdEt ⊗ dF (s) = (f(A)⊗ 1)(h(A)⊗ 1)k(1⊗ k(B))n−k,∫
I

∫
J

[h(t)]kg(s)[k(s)]n−kdEt ⊗ dF (s) = (1⊗ g(B))(h(A)⊗ 1)k(1⊗ k(B))n−k.

Proving the claims above can be shown using the properties of the tensors given. There-
fore, we have

S = (f(A)⊗ 1 + 1⊗ g(B))

n∑
k=0

Ck
n(h(A)⊗ 1)k(1⊗ k(B))n−k

= (f(A)⊗ 1 + 1⊗ g(B))(h(A)⊗ 1 + 1⊗ k(B))n

for which the commutativity of h(A)⊗ 1 and 1⊗ k(B) has been employed. □

Proof of the following Theorem can be found in a paper by Dragomir [16].

Theorem 1.4. Assume A and B are selfadjoint operators with Sp(A) ⊂ I and Sp(B) ⊂ J . Let f
be continuous on I; g continuous on J and ψ continuous on an interval K that contains the product
of the intervals f(I)g(J), then

ψ(f(A)⊗ g(B)) =

∫
I

∫
J

ψ(f(t)g(s))dEt ⊗ dF (s), (1.2)

where A and B have the spectral resolutions

A =

∫
I

tdEt, B =

∫
J

sdFs.

Proof of the following Theorem can be found in a paper by Dragomir [16].



Simpson Tensorial Inequalities 109

Theorem 1.5. Assume A and B are selfadjoint operators with Sp(A) ⊂ I and Sp(B) ⊂ J . Let h
be continuous on I, k continuous on J and ψ continuous on an interval U that contains the sum
of the intervals h(I) + k(J), then

ψ(h(A)⊗ 1 + 1⊗ k(B)) =

∫
I

∫
J

ψ(h(t) + k(s))dEt ⊗ dF (s), (1.3)

where A and B have the spectral resolutions

A =

∫
I

tdEt, B =

∫
J

sdFs.

In the paper written by Budak [7] , the authors used Lemma 1 to obtain their results.
We will use the following Lemma, which is obtained by setting α = 1 in their result and
by using simple substitutions on the integrals on the left hand side.

Lemma 1.2. Let f : [a, b] → R be a differentiable mapping (a, b) such that f ′ ∈ L1([a, b]). Then,
the following equality holds:

1

3

(
2f(a)− f

(
a+ b

2

)
+ 2f(b)

)
−1

2

(∫ 1

0

f

(
(1− k)a+ k

a+ b

2

)
dk +

∫ 1

0

f

(
(1− k)

a+ b

2
+ kb

)
dk

)
=
b− a

4

∫ 1

0

(
u+

1

3

)(
f ′
((

1− u

2

)
a+

(
1 + u

2

)
b

)
−f ′

((
1 + u

2

)
a+

(
1− u

2

)
b

))
du.

2. MAIN RESULTS

Lemma 2.3. Assume that f is continuously differentiable on I, A and B are selfadjoint operators
with Sp(A), Sp(B) ⊂ I , then

1

3

(
2f (A)⊗ 1− f

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ f (B)

)
(2.4)

−1

2

∫ 1

0

(
f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
+ f

((
1− k

2

)
A⊗ 1 +

1 + k

2
1⊗B

))
dk

=
1⊗B −A⊗ 1

4

∫ 1

0

uf ′
((

1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

)
du

+
1⊗B −A⊗ 1

12

∫ 1

0

f ′
((

1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

)
du

−1⊗B −A⊗ 1

4

∫ 1

0

uf ′
((

1 + u

2

)
A⊗ 1 +

(
1− u

2

)
1⊗B

)
du

−1⊗B −A⊗ 1

12

∫ 1

0

f ′
((

1 + u

2

)
A⊗ 1 +

(
1− u

2

)
1⊗B

)
du.

Proof. We will start the proof with the Lemma 1.2. Simplifying and factoring arguments
in the integral on the left hand side we get

1

3

(
2f(a)− f

(
a+ b

2

)
+ 2f(b)

)
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−1

2

(∫ 1

0

f

((
1− k

2

)
a+

k

2
b

)
dk +

∫ 1

0

f

((
1− k

2

)
a+ b

(
1 + k

2

))
dk

)
=
b− a

4

∫ 1

0

(
u+

1

3

)(
f ′
((

1− u

2

)
a+

(
1 + u

2

)
b

)
−f ′

((
1 + u

2

)
a+

(
1− u

2

)
b

))
du.

Separating the right hand side and assuming that A and B have the spectral resolutions

A =

∫
tdE(t) and B =

∫
sdF (s).

If we take the integral
∫
I

∫
I
dEt ⊗ dFs, then we get

1

3

∫
I

∫
I

(
2f(t)− f

(
t+ s

2

)
+ 2f(s)

)
dEt ⊗ dFs

−1

2

∫
I

∫
I

∫ 1

0

f

((
1− k

2

)
t+

k

2
s

)
dkdEt ⊗ dFs

−1

2

∫
I

∫
I

∫ 1

0

f

((
1− k

2

)
t+

(
1 + k

2
s

))
dkdEt ⊗ dFs

=

∫
I

∫
I

s− t

4

∫ 1

0

uf ′
((

1− u

2

)
t+

(
1 + u

2

)
s

)
dudEt ⊗ dFs

+

∫
I

∫
I

s− t

12

∫ 1

0

f ′
((

1− u

2

)
t+

(
1 + u

2

)
s

)
dudEt ⊗ dFs

−
∫
I

∫
I

s− t

4

∫ 1

0

uf ′
((

1 + u

2

)
t+

(
1− u

2

)
s

)
dudEt ⊗ dFs

−
∫
I

∫
I

s− t

12

∫ 1

0

f ′
((

1 + u

2

)
t+

(
1− u

2

)
s

)
dudEt ⊗ dFs.

By utilizing the Fubini’s Theorem and Lemma 1 for appropriate choices of the functions
involved, we have successively∫

I

∫
I

∫ 1

0

f

((
1− k

2

)
t+

k

2
s

)
dkdEt ⊗ dFs

=

∫ 1

0

∫
I

∫
I

f

((
1− k

2

)
t+

k

2
s

)
dEt ⊗ dFsdk

=

∫ 1

0

f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
dk,∫

I

∫
I

s− t

4

∫ 1

0

uf ′
((

1− u

2

)
t+

(
1 + u

2

)
s

)
dudEt ⊗ dFs

=

∫ 1

0

u

∫
I

∫
I

s− t

4
f ′
(
1− u

2
t+

1 + u

2
s

)
dEt ⊗ dFsdu

=
1⊗B −A⊗ 1

4

∫ 1

0

uf ′
(
1− u

2
A⊗ 1 +

1 + u

2
1⊗B

)
du.

By utilizing these relations, we get the equality. □

Now we state our first Simpson type inequality of this paper.
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Theorem 2.6. Assume that f is continuously differentiable on I with ∥f ′∥I,+∞ := supt∈I |f ′(t)| <
+∞ and A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ I , then∣∣∣∣∣∣∣∣13

(
2f (A)⊗ 1− f

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ f (B)

)
(2.5)

−1

2

∫ 1

0

(
f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
+ f

((
1− k

2

)
A⊗ 1 +

1 + k

2
1⊗B

))
dk

∣∣∣∣∣∣∣∣
⩽ ∥1⊗B −A⊗ 1∥ 5

12
∥f ′∥I,+∞ .

Proof. If we take the operator norm of the previously obtained Lemma and use the triangle
inequality, we get∣∣∣∣∣∣∣∣13

(
2f (A)⊗ 1− f

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ f (B)

)
−1

2

∫ 1

0

(
f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
+ f

((
1− k

2

)
A⊗ 1 +

1 + k

2
1⊗B

))
dk

∣∣∣∣∣∣∣∣
⩽

1

4
∥1⊗B −A⊗ 1∥

∥∥∥∥∫ 1

0

uf ′
((

1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

)
du

∥∥∥∥
+

1

12
∥1⊗B −A⊗ 1∥

∥∥∥∥∫ 1

0

f ′
((

1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

)
du

∥∥∥∥
+
1

4
∥1⊗B −A⊗ 1∥

∥∥∥∥∫ 1

0

uf ′
((

1 + u

2

)
A⊗ 1 +

(
1− u

2

)
1⊗B

)
du

∥∥∥∥
+

1

12
∥1⊗B −A⊗ 1∥

∥∥∥∥∫ 1

0

f ′
((

1 + u

2

)
A⊗ 1 +

(
1− u

2

)
1⊗B

)
du

∥∥∥∥ .
By the properties of the integral and norm, we have∥∥∥∥∫ 1

0

uf ′
((

1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

)
du

∥∥∥∥
⩽
∫ 1

0

u

∥∥∥∥f ′((1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

)∥∥∥∥ du,
and ∥∥∥∥∫ 1

0

uf ′
((

1 + u

2

)
A⊗ 1 +

(
1− u

2

)
1⊗B

)
du

∥∥∥∥
⩽
∫ 1

0

u

∥∥∥∥f ′((1 + u

2

)
A⊗ 1 +

(
1− u

2

)
1⊗B

)∥∥∥∥ du.
Realize here that by Lemma 1,∣∣∣∣f ′((1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f ′(1− u

2
t+

1 + u

2
s

) ∣∣∣∣dEt ⊗ dFs.

Since ∣∣∣∣f ′(1− u

2
t+

1 + u

2
s

) ∣∣∣∣ ⩽ ∥f ′∥I,+∞

for u ∈ [0, 1] and t, s ∈ I . If we take the integral over
∫
I

∫
I

over dEt ⊗ dFs , then we get∣∣∣∣f ′((1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f ′(1− u

2
t+

1 + u

2
s

) ∣∣∣∣dEt ⊗ dFs

⩽ ∥f ′∥I,+∞

∫
I

∫
I

dEt ⊗ dFs = ∥f ′∥I,+∞ .
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From which we get the following∥∥∥∥∫ 1

0

uf ′
((

1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

)
du

∥∥∥∥
⩽
∫ 1

0

u

∥∥∥∥f ′((1− u

2

)
A⊗ 1 +

(
1 + u

2

)
1⊗B

)∥∥∥∥ du ⩽ ∥f ′∥I,+∞

∫ 1

0

udu =
1

2
∥f ′∥I,+∞ .

Similarly, we obtain∫ 1

0

u

∥∥∥∥f ′((1 + u

2

)
A⊗ 1 +

(
1− u

2

)
1⊗B

)∥∥∥∥ du ⩽ ∥f ′∥I,+∞

∫ 1

0

udu =
1

2
∥f ′∥I,+∞ .

Combining the properties given we obtain the original inequality∣∣∣∣∣∣∣∣13
(
2f (A)⊗ 1− f

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ f (B)

)
−1

2

∫ 1

0

(
f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
+ f

((
1− k

2

)
A⊗ 1 +

1 + k

2
1⊗B

))
dk

∣∣∣∣∣∣∣∣
⩽ ∥1⊗B −A⊗ 1∥ 5

12
∥f ′∥I,+∞ .

□

In the next Theorem we utilize the convexity properties to obtain the results.

Theorem 2.7. Assume that f is continuously differentiable on I and f ′ is convex and A,B are
selfadjoint operators with Sp(A), Sp(B) ⊂ I , then∣∣∣∣∣∣∣∣13

(
2f (A)⊗ 1− f

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ f (B)

)
(2.6)

−1

2

∫ 1

0

(
f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
+ f

((
1− k

2

)
A⊗ 1 +

1 + k

2
1⊗B

))
dk

∣∣∣∣∣∣∣∣
⩽

5

24
∥1⊗B −A⊗ 1∥ (∥f ′(A)∥+ ∥f ′(B)∥)

Proof. Since |f ′| is convex on I , then we get∣∣∣∣f ′(1− u

2
t+

1 + u

2
s

) ∣∣∣∣ ⩽ 1− u

2
|f ′(t)|+ 1 + u

2
|f ′(s)|

for all u ∈ [0, 1] and t, s ∈ I . If we take the integral
∫
I

∫
I

over dEt ⊗ dFs, then we get∣∣∣∣f ′(1− u

2
A⊗ 1 +

1 + u

2
1⊗B

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f ′(1− u

2
t+

1 + u

2
s

) ∣∣∣∣dEt ⊗ dFs

⩽
∫
I

∫
I

[
1− u

2
|f ′(t)|+ 1 + u

2
|f ′(s)|

]
dEt ⊗ dFs

=
1− u

2
|f ′(A)| ⊗ 1 +

1 + u

2
1⊗ |f ′(B)|.

If we take the norm in the inequality, we get the following∥∥∥∥f ′(1− u

2
A⊗ 1 +

1 + u

2
1⊗B

)∥∥∥∥ ⩽

∥∥∥∥1− u

2
|f ′(A)| ⊗ 1 +

1 + u

2
1⊗ |f ′(B)|

∥∥∥∥
⩽

1− u

2
∥|f ′(A)| ⊗ 1∥+ 1 + u

2
∥1⊗ |f ′(B)|∥

=
1− u

2
∥f ′(A)∥+ 1 + u

2
∥f ′(B)∥ .
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Therefore, we obtain ∫ 1

0

u

∥∥∥∥f ′(1− u

2
A⊗ 1 +

1 + u

2
1⊗B

)∥∥∥∥ du
⩽
∫ 1

0

u · 1− u

2
du · ∥f ′(A)∥+

∫ 1

0

u · 1 + u

2
du · ∥f ′(B)∥

=
1

12
∥f ′(A)∥+ 5

12
∥f ′(B)∥ .

Similarly, ∫ 1

0

∥∥∥∥f ′(1 + u

2
A⊗ 1 +

1− u

2
1⊗B

)∥∥∥∥ du
⩽
∫ 1

0

u · 1 + u

2
du · ∥f ′(A)∥+

∫ 1

0

u · 1− u

2
du · ∥f ′(B)∥

=
5

12
∥f ′(A)∥+ 1

12
∥f ′(B)∥ .

Combining everything, we get the desired result. □

We recall the following definition of a P convex function which will be needed for our
next Theorem. A nonnegative function f defined on the segment S is said to be a function
of P type if

f(λx+ (1− λ)y) ⩽ f(x) + f(y), x, y ∈ S, 0 ⩽ λ ⩽ 1.

Theorem 2.8. Assume that f is continuously differentiable on I and |f ′| is a P convex function
and A, B are selfadjoint operators with Sp(A), Sp(B) ⊂ I , then∣∣∣∣∣∣∣∣13

(
2f (A)⊗ 1− f

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ f (B)

)
(2.7)

−1

2

∫ 1

0

(
f

((
1− k

2

)
A⊗ 1 +

k

2
1⊗B

)
+ f

((
1− k

2

)
A⊗ 1 +

1 + k

2
1⊗B

))
dk

∣∣∣∣∣∣∣∣
⩽

5

12
∥1⊗B −A⊗ 1∥ (∥f ′(A)∥+ ∥f ′(B)∥).

Proof. Since |f ′| is P convex on I , then we get∣∣∣∣f ′(1 + u

2
s+

1− u

2
t

) ∣∣∣∣ ⩽ |f ′(t)|+ |f ′(s)|.

for all u ∈ [0, 1] and t, s ∈ I .
If we take the integral

∫
I

∫
I

over dEt ⊗ dFs, then we get∣∣∣∣f ′(1 + u

2
1⊗B +

1− u

2
A⊗ 1

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f ′(1 + u

2
s+

1− u

2
t

) ∣∣∣∣dEt ⊗ dFs

⩽
∫
I

∫
I

[
|f ′(t)|+ |f ′(s)|

]
dEt ⊗ dFs

= |f ′(A)| ⊗ 1 + 1⊗ |f ′(B)|.
for all u ∈ [0, 1].
If we take the norm in the inequality, we get the following∥∥∥∥f ′(1 + u

2
s+

1− u

2
t

)∥∥∥∥ ⩽ ∥|f ′(A)| ⊗ 1 + 1⊗ |f ′(B)|∥

⩽ ∥|f ′(A)| ⊗ 1∥+ ∥1⊗ |f ′(B)|∥ = ∥f ′(A)∥+ ∥f ′(B)∥ .
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Similarly, we obtain ∣∣∣∣f ′(1− u

2
s+

1 + u

2
t

) ∣∣∣∣ ⩽ |f ′(t)|+ |f ′(s)|.

for all u ∈ [0, 1] and t, s ∈ I .
If we take the integral

∫
I

∫
I

over dEt ⊗ dFs, then we get∣∣∣∣f ′(1− u

2
1⊗B +

1 + u

2
A⊗ 1

) ∣∣∣∣ = ∫
I

∫
I

∣∣∣∣f ′(1− u

2
s+

1 + u

2
t

) ∣∣∣∣dEt ⊗ dFs

⩽
∫
I

∫
I

[
|f ′(t)|+ |f ′(s)|

]
dEt ⊗ dFs

= |f ′(A)| ⊗ 1 + 1⊗ |f ′(B)|.
for all u ∈ [0, 1].
If we take the norm in the inequality, we get the following∥∥∥∥f ′(1− u

2
s+

1 + u

2
t

)∥∥∥∥ ⩽ ∥|f ′(A)| ⊗ 1 + 1⊗ |f ′(B)|∥

⩽ ∥|f ′(A)| ⊗ 1∥+ ∥1⊗ |f ′(B)|∥ = ∥f ′(A)∥+ ∥f ′(B)∥ .
Therefore we obtain, ∫ 1

0

u

∥∥∥∥f ′(1 + u

2
1⊗B +

1− u

2
A⊗ 1

)∥∥∥∥ du
⩽
∫ 1

0

u (∥f ′(A)∥+ ∥f ′(B)∥) du =
1

2
(∥f ′(A)∥+ ∥f ′(B)∥) .

Similarly, ∫ 1

0

∥∥∥∥f ′(1− u

2
1⊗B +

1 + u

2
A⊗ 1

)∥∥∥∥ du
⩽
∫ 1

0

(∥f ′(A)∥+ ∥f ′(B)∥) du = (∥f ′(A)∥+ ∥f ′(B)∥) .

Using these properties on all the terms , we obtain the following

1

8
∥1⊗B −A⊗ 1∥ (∥f ′(A)∥+ ∥f ′(B)∥)

+
1

12
∥1⊗B −A⊗ 1∥ (∥f ′(A)∥+ ∥f ′(B)∥)

+
1

8
∥1⊗B −A⊗ 1∥ (∥f ′(A)∥+ ∥f ′(B)∥)

+
1

12
∥1⊗B −A⊗ 1∥ (∥f ′(A)∥+ ∥f ′(B)∥)

=
5

12
∥1⊗B −A⊗ 1∥ (∥f ′(A)∥+ ∥f ′(B)∥) .

and by summing up all gives us the desired inequality. □
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3. SOME EXAMPLES AND CONSEQUENCES

It is known that if U and V are commuting, that is UV = V U , then the exponential
function satisfies the property

exp(U) exp(V ) = exp(V ) exp(U) = exp(U + V ).

Also, if U is invertible and a, b ∈ R and a < b then∫ b

a

exp(tU)dt = U−1 [exp(bU)− exp(aU)] .

Moreover, if U and V are commuting and V − U is invertible, then∫ 1

0

exp((1− k)U + kV )dk =

∫ 1

0

exp(k(V − U)) exp(U)dk

=

(∫ 1

0

exp(k(V − U))dk

)
exp(U)

= (V − U)−1 [exp(V − U)− I] exp(U) = (V − U)−1 [exp(V )− exp(U)] .

Since the operators U = A ⊗ 1 and V = 1 ⊗ B are commutative and if 1 ⊗ B − A ⊗ 1 is
invertible, then ∫ 1

0

exp((1− k)A⊗ 1 + k1⊗B)dk

= (1⊗B −A⊗ 1)−1 [exp(1⊗B)− exp(A⊗ 1)] .

Corollary 3.1. If A,B are selfadjoint operators with Sp(A), Sp(B) ⊂ [m,M ] and 1⊗B−A⊗1
is invertible, then by Theorem 2.6 (2.5), we get∣∣∣∣∣∣∣∣13

(
2 exp (A)⊗ 1− exp

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ exp (B)

)
(3.8)

−(1⊗B −A⊗ 1)−1 ×
(
exp(1⊗B)− exp(A⊗ 1)

)∣∣∣∣∣∣∣∣
⩽ ∥1⊗B −A⊗ 1∥ 5

12
exp(M).

Corollary 3.2. Since for f(t) = exp(t), t ∈ R, |f ′| is convex, then by Theorem 2.7 (2.6) we get∣∣∣∣∣∣∣∣13
(
2 exp (A)⊗ 1− exp

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ exp (B)

)
(3.9)

−(1⊗B −A⊗ 1)−1 ×
(
exp(1⊗B)− exp(A⊗ 1)

)∣∣∣∣∣∣∣∣
⩽

5

24
∥1⊗B −A⊗ 1∥ (∥exp(A)∥+ ∥exp(B)∥) .

Corollary 3.3. Choosing f(t) = exp(t), t ∈ R, and since |f ′| is P convex, then by Theorem 2.8
(2.7) we get ∣∣∣∣∣∣∣∣13

(
2 exp (A)⊗ 1− exp

(
A⊗ 1 + 1⊗B

2

)
+ 2 · 1⊗ exp (B)

)
(3.10)

−(1⊗B −A⊗ 1)−1 ×
(
exp(1⊗B)− exp(A⊗ 1)

)∣∣∣∣∣∣∣∣
⩽

5

12
∥1⊗B −A⊗ 1∥ (∥exp(A)∥+ ∥exp(B)∥).
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The obtained results concerning the inequalities given and the examples given differ
from the ones in the existing literature because they are of Simpson type, and not of the
classical Ostrowski type which was given by Dragomir [17]. The other results concerning
the tensorial inequalities in Hilbert space are of the Hermite-Hadamard type as given
by [16, 31]. Therefore the inequalities and the approach given in this paper are indeed
new, and yield new boundaries of the tensorial type in Hilbert space.

4. CONCLUSION

Tensors have become important in various fields, for example in physics because they
provide a concise mathematical framework for formulating and solving physical prob-
lems in fields such as mechanics, electromagnetism, quantum mechanics, and many oth-
ers. As such inequalities are crucial in numerical aspects. Reflected in this work is the
Simpson tensorial inequality. Using the Lemma which we derived enabled us to obtain
various types of Simpson type inequalities. Examples of specific convex functions and
their inequalities using our results are given in the section some examples and conse-
quences. Plans for future research can be reflected in the fact that the obtained inequalities
in this work can be sharpened or generalized by using other methods.
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