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Alternating quadratic and cubic series with the tail of In 2

OvVIDIU FURDUI and ALINA SINTAMARIAN

ABSTRACT. In this paper we calculate several alternating quadratic series and a cubic series involving the
tail of In 2.

1. INTRODUCTION

In this paper we calculate several alternating quadratic series and a cubic series in-
volving the expression £ — - + L — ... This term is connected to the tail of In2 as

n n+1 n+2
follows
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23 n—1 n n+l n+2

The goal of this paper is to extend the results recorded in [3], in problems 3.28, 3.29 and
3.45, concerning the calculation of some quadratic series involving the tail of In2. Our
results, which deal with the calculation of alternating series, are new in the literature and
they are obtained based on a combination of techniques involving Abel’s summation for-
mula and shifting the index of summation. The last one allows us to reduce the calculation
of an alternating quadratic series to a linear series.

Before stating the main results of the paper, we briefly mention two special functions
that are used in our calculations.

The famous Riemann zeta function ¢ is defined by ((s) = 37", -, R(s) > 1. For |2| <
1, the Dilogarithm function Lis () is introduced in the mathematical literature by Lis(z) =
S Z—; = - @dt. When z = —1 or z = 1, we obtain the values Liy(—1) =
)l O —7{—; and Lip(1) = Y07 | 5 =((2) = %2. For properties of these and other

special functions, the reader is referred to [5].
2. MAIN RESULTS

The main results of this paper are the following theorems.

Theorem 2.1. Quadratic series with the tail of In 2
The following identities hold:
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N, 11 1 > 1] m2-1
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Theorem 2.2. A cubic series with the tail of In 2
The following equality is valid
- 11 1 ° 2 3’2 (2
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We collect, in the next lemma, some results that we need in proving Theorems 2.1 and
2.2.

Lemma 2.1. Linear series with the tail of In2
The following equalities are true:

Lo, o (1 1 1 1
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Before we prove the lemma, we observe that
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and it follows that
1 1 n 1 1
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This shows that the series in parts (a), (b), (c), (e) of Theorem 2.1, Theorem 2.2 and parts
(i), (iii) and (iv) of Lemma 2.1 are all convergent.
Now we prove Lemma 2.1.
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Proof. (i) Formula (2.1) implies that
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(iii) We have, using (2.1), that

e (_1)n l_ 1 1 B B 0 (_1)n /1 gn—1
Z n n n+1+n+2 _Z n 0 1+:ﬂdﬂj

n=1

1 1
_ / In(1+ x) dr / In(1+ x) du
o 14z 0 T

25



26 O. Furdui and A. Sintdimérian

(iv) According to (2.1), we obtain that
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We calculate the first integral in (2.3) and we have

/o e / Z n2 dr =3 5= 50) (2.4)

n=1

We calculate the second integral in (2.3). We integrate by parts, with f(z) = Lis(—x),
f(z) = —0tn) () = . 9(z) = In(1 + z), and we have that

Ui (— Y n2(1 + In?2 3
/0 112(+ ;)d = In(1 + z)Liy(— ‘0 /0 #dx = _HTCQ) + %7 (2.5)

1 In?(

since [, U4 4y — <3) (see [1, pp. 291-292]).
Combming (2.3), (2.4) and (2.5), the desired result holds and part (iv) of the lemma is
proved. O

Now we are ready to prove Theorem 2.1.

Proof. (a) We calculate the series by shifting the index of summation. We have
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and it follows, having in view part (iii) of Lemma 2.1, that
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We mention that this series was calculated by a different method, based on an integra-
tion technique, in [3, problem 3.45].
(b) We shift the index of summation and we obtain
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It follows, having in view part (a) of Theorem 2.1 and parts (i) and (iii) of Lemma 2.1, that

2 ¢(2) n?2  ¢(2)) , ¢2) _ ¢(2)
25——111 2+1H2+2—1+2< 9 — 9 )+ 4 —1112—1—T.

Now we give another proof, a gem in the theory of quadratic series, of parts (a) and (b) of
Theorem 2.1.
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Let

and
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We apply Abel’s summation formula, which states that if (a,,),>1 and (b,,),>1 are se-

n n
quences of real numbers and A4,, = Y ay, then Y arby = Apbpt1+ > Ag(by —br41), o1,

k=1 k=1 k=1
the infinite version

> agby, = lim Apbn + > Ag(be — brya). 2.7)
k=1 k=1
Let z, = 1 — n%rl + %ﬁ — ---. We calculate the series in part (a) of Theorem 2.1 by
2
using Abel’s summation formula, with a,, = 1 and b,, = (—1)" (% — n%rl + n%ﬂ — ) =

(—1)"22, and we have that
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We used that nlin;o n (n%rl — %—&-2 + n%r?) — - ) = 0, which follows based on (2.2).

It follows that T'— 2S = 1 —In 2. On the other hand, equality (2.6) implies that 25+ T =

In2-1- % Solving the system of linear equations we obtain that 7' = —%2) and
S = In2 1 ¢(2)

=72 T2 g -
(c) Multiply the series in part (b) by 2 and subtract the series from part (a).
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(d) Letz, =+ - 1+ 7%&-2 — -+ and observe that z,, + 2,41 = =. The following

n n+1 n°
identity can be proved by mathematical induction

(“D'Z + (<1722 4 ok (<1)2 = (1)

n>1. (2.8)

We calculate the series in part (d) by applying Abel’s summation formula with a,, =
(=1)"n? and b,, = 22 — 75, and we have, based on (2.8), that
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We used in the preceding calculations that nhﬁngo n(n + 1) [xi 11— m = 0, which
follows based on (2.2).

(e) We mention that the series in part (e) of Theorem 2.1 was calculated, by an integra-
tion technique, by Boyadzhiev in [2, formula 19].
Here, we calculate the series using a technique based on evaluating the alternating

) 3
cubic series > (—1)" (%L — gt ) by shifting the index of summation. We
n=1
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> 1 1 1 3
S:Z(_l) (n_n—|—1+n—|—2_-”>

n=1
e 3
1 1 1

= —In®2 D L (e —

" +7;2( )<n n+1l n+2 )
oo 3

n—1=i 3 i+1 1 1 1
= —In"2 1 — —
. +Z; ) Q+1 it2 i+3

1 1 n 1
1t 1+1 i+ 2

3
(3
—1) = (-1) /1 1 1
=_ln®2— =D 3 z_ — ...
w2y Gy G (G- )

(-1 /11 1 2
D iR 5

It follows, having in view part (iv) of Lemma 2.1, that
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Theorem 2.1 is proved.
Now we give the proof of Theorem 2.2.

Proof. We apply Abel’s summation formula, with a,, = n and b,, = (—1)"z2, where

1 1 N 1 2 1 1 N 1
i i+l it2 i i+l it2
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and we have that
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At step (*) we used parts (a) and (b) of Theorem 2.1 and parts (i) and (iii) of Lemma 2.1. We
also used in the preceding calculations that nh_}rgo n(n+1) ( %ﬂ - %H + %ﬁ - )3 =0,

which follows based on (2.2).

We mention that other challenging alternating quadratic series involving the tail of
various special functions, as well as open problems, can be found in [4].
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