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On Tensor Product of c-Spaces

P. K. SANTHOSH

ABSTRACT. This paper is an extension of the research on (cartesian) product of c-spaces. This paper demon-
strates that the finite (tensor)product of quotients of c-spaces can be represented as a quotient of its (ten-
sor)product. Some properties of the tensor product of c-spaces have been investigated in this context. Properties
of the space of c-continuous functions have been probed and the relevance of the standard c-structure on it has
been established.

1. INTRODUCTION

The concept of connectedness was familiar to us through various branches like topol-
ogy and graph theory. In image analysis, topological connectivity is much useful for
studying images defined over a continuous space, whereas graph theoretic connectivity is
more useful for studying images defined over a discrete space. There are, however, topo-
logical spaces whose connectivity does not result from a graph [10] and vice versa [2]. As
discrete images can be viewed as a discretization of the continuous images, compatibility
is essential for both type of approaches. Therefore, it is fairly obvious that topological or
graph-theoretic connectivity alone is insufficient for practical purposes. Combined strate-
gies are essential. Reinhard Börger’s [9] theory of connected sets eliminates the drawbacks
of graph theoretical and topological connectivity. He proposed the Theory of Connectivity
Classes, an axiomatic approach to connectivity. He conducted a categorical study of these
spaces. This space has enormous applications in Pattern Recognition, Signal Processing,
Mathematical Morphology and Image Analysis [4, 5, 10, 14, 15].

Dugowson S., Muscat J. and Ronce C. et al. [3, 7, 9] enhanced the structural analysis
of this space. Unexplored are structural properties, and this paper is an attempt in that
direction. It is hoped that research in this area will stimulate application-based research.

2. PRELIMINARIES

All concepts in this section are taken from [3, 9, 11, 12, 15]. A c-space or a connectivity
space is a set X together with a collection C of subsets such that the following properties
hold.

(1) ϕ ∈ C and {x} ∈ C for every x ∈ X .
(ii) If {Ci : i ∈ I} be a non empty collection of subsets in C with ∩

i∈I
Ci ̸= ϕ, then

∪
i∈I

Ci ∈ C.

The collection C of subsets X which satisfy the above axioms is called a c-structure or a
connectivity class of X . Elements of a c-structure are called connected sets. Some examples
of c-spaces are

(1) Discrete c-space (X,DX), where DX = {ϕ} ∪ {{x} : x ∈ X}.
(2) Indiscrete c-space (X, IX), where IX = P(X) is the power set of X .
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(3) The real line Rwith all intervals.
(4) Co-finite c-spce (X, C) = DX ∪ {A ⊆ X|Ac is finite}, where X is infinite.
(5) If X is a topological space, then the collection of all connected sets in X form a

c-structure on X and the corresponding c-space is called the associated c-space of
X.

(6) Let G be a finite simple graph. Then the collection of all edge connected sub
graphs of G form a c-structure on G and the corresponding c-space is called the
associated c-space of G.

The c-space (X,CX) is denoted by X unless otherwise stated. Let X and Y be two
c-spaces and f : X → Y be a function. The function f is called c-continuous or catenuous if
it maps connected sets of X to connected sets of Y . Further, a bijection f : X → Y is said
to be a c-isomorphism or catenomorphism if both f and f−1 are c-continuous.

(1) Any continuous function from a topological space X to another topological space
Y is clearly c-continuous.

(2) Consider the c-spaces X and Y where X = {1, 2, 3}, Y = {a, b, c, d}, CX = DX ∪
{{1, 2}, {2, 3}, {1, 2, 3}} and CY = DY ∪ {{a, b}, {c, d}}. Define f : X → Y by
1 → a, 2 → a and 3 → b. Then f is c-continuous.

(3) If X and Y are as above and if f : X → Y be defined by 1 → a, 2 → a and 3 → c,
then f is not c-continuous.

We may note that there are c-continuous functions from X to Y that are not continuous. For

example, the function f : R → R defined by f(x) =

{
sin( 1x ) if x ̸= 0
0 if x = 0

This function

maps connected sets to connected sets and is not continuous at 0.
Let {Xi : i ∈ I} be a family of c-spaces and {fi : X → Xi : i ∈ I} be a family of

functions defined on a set X . Let C = {A ⊂ X : fi(A) ∈ CXi
for every i}. Then C is

a c-structure on X and is called the strong c-structure generated by the given family of
functions. The c-structure on the product space

∏
i∈I

Xi is the strong c-structure generated

by the family of projection functions {πi : i ∈ I}.
To visualize the connectedness in the product space, some examples of connected and

disconnected sets from R2 are given below. For figure P1, we can note that π1(P1) is an

Connected SetsDisconnected set

Picture: 1 Picture: 2 Picture: 3

interval( and hence a connected set in R) where as π2(P1) is the union of two intervals in
R ( and hence a disconnected subset of R), so that figure P1 is a disconnected subset of
R2. For figures P2 and P3, it is clear that both projections are intervals in R( and thereby
connected in R) and hence are connected in R2.

Let X be any nonempty set and B be a collection of subsets of a set X . Then the smallest
c-structure on X containing B is called the c-structure generated by B, and is denoted by
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< B >. Elements of B are called basic connected sets. Any two points in a connected set
B in < B > can be connected by a finite chain of basic connected sets that are contained
in B. Let {Xi : i ∈ I} be a family of c-spaces and {fi : Xi → X : i ∈ I} be a family of
functions. Then the weak c-structure generated by {fi}i∈I is the smallest c-structure on
X which make each function fi c-continuous and is denoted by < {fi : i ∈ I} >

W
. In

particular, let X and Y be any two c-spaces. Let f : X → Y be an onto function. Then f is
said to be a quotient map or Y is said to be a quotient space of X with respect to f if CY is
the smallest c-structure on Y which make f c-continuous. In other words, CY is the weak
c-structure on Y generated by {f}. The following Theorem[1] is true for any category and
in particular for the category of c-spaces.

Theorem 2.1. Let X and Y be two c-spaces such that f : X → Y is a quotient map. Then
for any c-space Z, a function g : Y → Z is c-continuous if and only if the composite function
g ◦ f : X → Z is c-continuous.

We may note the following proposition.

Proposition 2.1. [3] Let X be a set, A a set of subsets of X , (Y, CY ) a c-space and f : X → Y
be a function. Then f is c-continuous from (X,< A >) to (Y, CY ) if and only if f(A) ∈ CY for
every A ∈ A.

3. ON TENSOR PRODUCT OF C-SPACES

This section examines the conditions under which the finite product of quotients of
c-spaces becomes a quotient of its product. Before proceeding with the primary investi-
gations, it is important to note the following premise.

Proposition 3.2. [13]
(1) Finite product(cartesian) of quotients of c-spaces need not be the quotients of its product.
(2) Let f : X → Y be a quotient map. Then IX ×f : X×X → X×Y need not be a quotient

map, where IX is the identity map on X .

This prompts us to employ the concept of Tensor Product of c-spaces introduced by S.
Dugowson[3] in order to solve the problem.

Definition 3.1. [3] Tensor Product
The connectivity tensor product X1⊠X2 of two c-spaces Xi, (i = 1, 2) is the set X1×X2

with the generated c-structure < {C1 × C2 : C1 ∈ CX1 , C2 ∈ CX2} > on it.

We may note that [3], for any two c-spaces X1 and X2, the c-structure CX1⊠X2
is a

smaller c-structure on the set X1 ×X2 than the c-structure given by the cartesian product,
since C1 × C2 ∈ CX1×X2

for every C1 ∈ CX1
and C2 ∈ CX2

.

Remark 3.1. Without any loss of generality, we can extend the same definition to arbitrary
product. That is, given a family of c-spaces, {Xi : i ∈ I}, it’s tensor product ⊠

i∈I
Xi is the

set Π
i∈I

Xi with the generated c-structure < { Π
i∈I

Ci : Ci ∈ CXi
for each i} > on it.

Proposition 3.3. For i ∈ I , let Xi, Yi be c-spaces and {fi : Xi → Yi : i ∈ I} be family of
functions . Then,

(1) The projection functions πi : ⊠
i∈I

Xi → Xi, for i ∈ I are c-continuous.

(2) The function h : ⊠
i∈I

Xi → ⊠
i∈I

Yi defined by h(x) = (fi(xi))i∈I , where x = (xi)i∈I is

c-continuous if and only if each fi is c-continuous.
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(3) Let X be a c-space and {gi : X → Xi : i ∈ I} be a family of functions. Define f : X →
⊠
i∈I

Xi by f(x) = (gi(x))i∈I , x ∈ X . If f is c-continuous, then each gi is c-continuous.

Converse is not true.

Proof of above statements directly follows from the Proposition 2.1. For the counter
example for statement (3), consider the following example.

Consider the c-spaces X = {1, 2, 3}, X1 = {a, b, c}, X2 = {d, e, f} with CX = DX ∪{X},
CX1

= DX1
∪ {X1} and CX2

= DX2
∪ {{d, e}}.

Then the c-structure generated by the collection {C1 × C2 : C1 ∈ CX1
, C2 ∈ CX2

} is
given by

DX1×X2∪{{(a, d), (a, e)}, {(b, d), (b, e)}, {(c, d), (c, e)}, {(a, d), (b, d), (c, d)}, {(a, e), (b, e),
(c, e)}, {(a, f), (b, f), (c, f)}, {(a, d), (a, e), (b, d), (c, d)}, {(a, d), (a, e), (b, e), (c, e)}, {(a, d),
(b, d), (b, e), (c, d)}, {(a, e), (b, d), (b, e), (c, e)}, {(a, d), (b, d), (c, d), (c, e)}, {(a, e), (b, e), (c, d),
(c, e)}, {(a, d), (a, e), (b, d), (b, e), (c, d), (c, e)}}.

Define f1 : X → X1 by 1 7→ a, 2 7→ b and 3 7→ c and f2 : X → X2 by 1 7→ d, 2 7→ e and
3 7→ e.

We can verify that both f1 and f2 are c-continuous.
Define f : X → X1 ⊠X2 by f(x) = (f1(x), f2(x)), x ∈ X .
Now, f(X) = {(a, d), (b, e), (c, e)}, which is not a connected set in X1 ⊠ X2. Hence

f is not c-continuous. Thus the converse fails. We may note that the above set f(X) =
{(a, d), (b, e), (c, e)} is connected in the cartesian product X1 ×X2.

The next theorem gives a partial settlement to our desired goal.

Theorem 3.2. Let Xi and Yi, i = 1, 2 be c-spaces such that fi : Xi → Yi, i = 1, 2 be two quotient
maps. Let Y = Y1 ⊠ Y2. Then CY =< {f1(C)× f2(D) : C ∈ CX1 , D ∈ CX2} >.

Proof. By definition, we have CY =< {A × B : A ∈ CY1
, B ∈ CY2

} >. Let CYQ
= <

{f1(C)× f2(D) : C ∈ CX1 , D ∈ CX2} >. Since f1(C)× f2(D) ∈ {A×B : A ∈ CY1 , B ∈ CY2}
for all C ∈ CX1 , D ∈ CX2 , we have

CYQ
⊆ CY (3.1)

On the other hand, let K ∈ CY . Let x = (x1, y1) and y = (x2, y2) be two elements of K.
Then, there exist basic connected sets Ai × Bi for i = 1 to n such that Ai ∈ CY1

, Bi ∈ CY2

for each i, x ∈ A1 × B1, y ∈ An × Bn, (Ai × Bi) ∩ (Ai+1 × Bi+1) ̸= ϕ for i = 1 to (n − 1)
and Ai ×Bi ⊆ K for every i.

Let (ai, bi) ∈ (Ai ×Bi) ∩ (Ai+1 ×Bi+1) for i=1 to (n-1).
Then ai, ai+1 ∈ Ai+1 and bi, bi+1 ∈ Bi+1 for i = 0 to (n − 1), where a0 = x1, an = x2,

b0 = y1 and bn = y2. Since a0, a1 ∈ A1 and since A1 ∈ CY1
=< {f1(C) : C ∈ CX1

} >, there
exists a finite sequence of basic connected sets {f1(Di) : Di ∈ CX1

, i = 1, 2, . . . ,m1} such
that a0 ∈ f1(D1), a1 ∈ f1(Dm1), f1(Di)∩f1(Di+1) ̸= ϕ for = 1 to (m1−1) and f1(Di) ⊆ A1

for every i.
Similarly, there exists a finite sequence of basic connected sets {f2(Ei) : Ei ∈ CX2

, i =
1, 2, . . . , n1} such that b0 ∈ f2(E1), b1 ∈ f2(En1

), f2(Ei)∩f2(Ei+1) ̸= ϕ for i = 1 to (n1−1)
and f2(Ei) ⊆ B1 for every i.

Let m1 ≤ n1. Let f1(Di) = f1(Dm1) for (m1 + 1) ≤ i ≤ n1.
Now consider the finite sequence S1 = {f1(Di) × f2(Ei) : i = 1 to n1} of connected

sets in (Y, CYQ
).

Clearly (a0, b0) ∈ f1(D1)× f2(E1) and (a1, b1) ∈ f1(Dn1
)× f2(En1

). Also,

[f1(Di)× f2(Ei)]
⋂
[f1(Di+1)× f2(Ei+1)]

= [f1(Di) ∩ f1(Di+1)]× [f2(Ei)
⋂
f2(Ei+1)]

̸= ϕ for each i=1 to (n1-1)
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Further, f1(Di)× f2(Ei) ⊆ A1 ×B1 ⊆ K for every i. Thus S1 is a finite chain of connected
sets in (Y, CYQ

) containing (a0, b0) and (a1, b1) and contained in K.
Similarly there exists a finite chain S2 of connected sets f1(Di)×f2(Ei), n1+1 ≤ i ≤ n2

( by renaming Di’s and Ei’s accordingly) such that (a1, b1) ∈ f1(Dn1+1) × f2(En1+1),
(a2, b2) ∈ f1(Dn2)× f2(En2). Further, f1(Di)× f2(Ei) ⊆ A2 ×B2 ⊆ K for every n1 + 1 ≤
i ≤ n2.

Since [f1(Dn1
) × f2(En1

)]
⋂
[f1(Dn1+1) × f2(En1+1)] ̸= ϕ, concatenation of the finite

chains S1 and S2, that is, S1+S2 is a finite chain of connected sets in K such that (a0, b0) ∈
f1(D1)× f2(E1) and (a2, b2) ∈ f1(Dn2)× f2(En2).

Proceeding similarly, there is a finite chain S1 + S2 + . . . + Sn of connected sets in K
such that x = (a0, b0) ∈ f1(D1)× f2(E1) and y = (an, bn) ∈ f1(Dnn

)× f2(Enn
).

Thus any two elements of K can be joined by a finite sequence of basic connected sets
in {f1(C) × f2(D) : C ∈ CX1

, D ∈ CX2
} and hence C ∈< {f1(C) × f2(D) : C ∈ CX1

, D ∈
CX2} >. That is, K ∈ CYQ

. Thus
CY ⊆ CYQ

(3.2)
From the equations (3.1) and (3.2), theorem follows. □

The following theorem solves our problem regarding the finite product of quotients.
Unresolved is the problem of arbitrary product of quotients.

Theorem 3.3. Let {Xi : i = 1 to n} and {Yi : i = 1 to n} be two family of c-spaces such that for

each i, fi : Xi → Yi be a quotient map. Let X =
n

⊠
i=1

Xi and Y =
n

⊠
i=1

Yi. Define f : X → Y by

f =
n∏

i=1

fi. Then Y is a quotient space of X with respect to f .

That is, in the case of tensor product of c-spaces, finite product of quotients of c-spaces is the
quotient of its product.

Proof. Given that f : X → Y be defined by f =
n∏

i=1

fi. Then by Proposition 3.3, f is

c-continuous.
Also by Theorem 3.2, CY =< {

n∏
i=1

fi(C) : C ∈ CXi
} >.

Let C be any other c-structure on Y with respect to which f is c-continuous. By Propo-
sition 2.1, we have

f : X → (Y,C ) is c-continuous
⇐⇒ f(C1 × C2 × . . .× Cn) ∈ C , Ci ∈ CXi

for i = 1 to n,

⇐⇒
n∏

i=1

fi(C) ∈ C , C ∈ CXi
,

⇐⇒ < {
n∏

i=1

fi(C) : C ∈ CXi} >⊆ C ,

⇐⇒ CY ⊆ C .

Thus CY is the smallest c-structure on Y with respect to which f : X → Y is c-continuous
and hence Y is a quotient space of X with respect to f . □

4. MORE ON THE SPACE OF C-CONTINUOUS FUNCTIONS

Let X and Y be two c-spaces and C(X,Y ) denotes the set of all c-continuous func-
tions from X to Y . In [3], a c-structure on C(X,Y ) is defined to be as follows. A sub-
set M of C(X,Y ) is said to be connected if for every K ∈ CX , < M,K >∈ CY , where
< M,K >=

⋃
f∈M

f(K). Let us call this c-structure as the standard c-structure on C(X,Y ).
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Unless otherwise specified, from here onwards, C(X,Y ) is considered as a c-space with
the standard c-structure.

In [3], it is also proved that, M is connected in C(X,Y ) if and only if for all x ∈ X ,
< M, {x} >∈ CY .

Proposition 4.4. Let X and Y be two c-spaces. Then the evaluation map e : X ⊠ C(X,Y ) → Y
defined by e(x, f) = f(x), for x ∈ X and f ∈ C(X,Y ) is c-continuous.

Proof. To prove the c-continuity of e, by Proposition 2.1, it is enough to prove that e(C1 ×
C2) is connected in Y for C1 ∈ CX and C2 ∈ CC(X,Y ).

Since C2 is connected in C(X,Y ), in particular we have,
⋃

f∈C2

f(C1) is connected in Y .

That is,

{f(x) : x ∈ C1, f ∈ C2} is connected in Y.

Hence {e(x, f) : x ∈ C1, f ∈ C2} is connected in Y . Thus e(C1×C2) is connected in Y . □

Remark 4.2. The above proposition will not be true if we replace tensor product with
cartesian product. That is, the evaluation map e : X × C(X,Y ) → Y defined by e(x, f) =
f(x), for x ∈ X and f ∈ C(X,Y ) need not be c-continuous.

For example, consider the c-spaces (X, CX) and (Y, CY ) , where X={a, b, c}, Y = {1, 2, 3},
CX = DX ∪ {{a, b}, X} and CY = DY ∪ {{1, 2}, {2, 3}, Y }.

Define two functions f1 and f2 from X to Y as

f1(x) =

 1 if x = a
2 if x = b
3 if x = c

and

f2(x) =

 2 if x = a
3 if x = b
3 if x = c

It can be easily verified that both f1 and f2 are c-continuous.
Since < {f1, f2}, {a} >= {1, 2}, < {f1, f2}, {b} >= {2, 3} and < {f1, f2}, {c} >= {3},

{f1, f2} is connected in C(X,Y ).
Consider the connected set C = {{a, f1}, {b, f2}} in product space X × C(X,Y ). Now,

e(C) = {f1(a), f2(b)}
= {1, 3}

is not connected in Y . Hence e : X × C(X,Y ) → Y is not c-continuous

Theorem 4.4. Let X , Y and Z be three c-spaces. Then a map f : X ⊠ Z → Y is c-continuous if
and only the induced map f̂ : Z → C(X,Y ) is c-continuous, where f̂(z)(x) = f(x, z).

Proof. Let f̂ : Z → C(X,Y ) be c-continuous.
We know that by Proposition 4.4, the evaluation map e : X ⊠ C(X,Y ) → Y defined by

e(x, f) = f(x), for x ∈ X and f ∈ C(X,Y ) is c-continuous. Now consider the diagram

X ⊠ Z
idX×f̂→ X ⊠ C(X,Y )

e→ Y.

Since f = e ◦ (idX × f̂), f is c-continuous.
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Conversely let f : X ⊠ Z → Y is c-continuous. Let C be a connected set in Z. To show
f̂(C) is connected in C(X,Y ), let K be any connected set in X .

< f̂(C),K > =
⋃

x∈C

f̂(x)(K)

=
⋃

x∈C

⋃
y∈K

f̂(x)(y)

=
⋃

x∈C

⋃
y∈K

{f(y, x)}

= f(K × C)

Since f is c-continuous, f(K × C) is connected in Y . Thus f̂(C) is connected in Y . Since
C ∈ CZ is arbitrary, f̂ is c-continuous. □

Theorem 4.5. Let C′(X,Y ) denote the set C(X,Y ) with some c-structure C. If the evaluation
map e : X ⊠ C′(X,Y ) → Y is c-continuous, then C is contained in the standard c-structure on
C(X,Y ).

Proof. Let e : X ⊠ C′(X,Y ) → Y is c-continuous. Then by Theorem 4.4, the induced
map ê : C′(X,Y ) → C(X,Y ) is c-continuous, where ê(f)(x) = e(x, f), for x ∈ X and
f ∈ C′(X,Y ).

Let C be a connected set in C′(X,Y ). Then ê(C) is connected in C(X,Y ). Thus for every
x ∈ X , < ê(C), {x} > is connected in Y . But,

< ê(C), {x} > =
⋃

f∈C

ê(f)(x)

=
⋃

f∈C

{e(x, f)}

=
⋃

f∈C

{f(x)}

= < C, {x} >

Thus < C, {x} > is connected in Y for x ∈ X and hence C is connected in the standard c-
structure on C(X,Y ). Consequently, C is contained in the standard c-structure on C(X,Y ).

□

Even though the following theorem is a special case of the Theorem 3.3 which we
proved earlier, it fortifies the relevance of the standard c-structure on the function space
C(X,Y ).

Theorem 4.6. Let A, B and X be three c-spaces. Let p : A → B be a quotient map. Then
idX × p : X ⊠A → X ⊠B is a quotient map, where idX is the identity map on X .

Proof. Let p : A → B be a quotient map. Let (X⊠B)q denotes the quotient space of X×A
with respect to the map π = idX × p. Let g : X ⊠ B → (X ⊠ B)q be the identity map. We
claim g is a c-isomorphism.

Since π : X⊠A → (X⊠B)q is c-continuous, by Theorem 4.4, the induced map π̂ : A →
C(X, (X ⊠B)q) defined by π̂(a)(x) = π(x, a) a ∈ A, x ∈ X is c-continuous.

Define ĝ : B → C(X, (X ⊠B)q) by ĝ(b)(x) = g(x, b). We claim ĝ is c-continuous.
For a ∈ A, x ∈ X we have π̂(a)(x) = π(x, a) = (idX × p)(x, a) = (x, p(a)). Thus,

(ĝ ◦ p)(a)(x) = ĝ(p(a))(x)
= (x, p(a))
= π̂(a)(x)

Hence ĝ ◦ p = π̂. Since p is a quotient map, by Theorem 2.1, ĝ is c-continuous. Hence by
Theorem 4.4, g : X ⊠B → (X ⊠B)q is c-continuous.
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It can be easily verified that g−1 : (X⊠B)q → X⊠B is c-continuous. Since g is bijective,
g is a c-isomorphism. Hence the proof. □

Remark 4.3. In TOP, the category of topological spaces, the corresponding results holds
if X is a locally compact Hausdorff topological space [6].
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