On Tensor Product of c-Spaces

P. K. SANTHOSH

Abstract

This paper is an extension of the research on (cartesian) product of c-spaces. This paper demonstrates that the finite (tensor)product of quotients of c-spaces can be represented as a quotient of its (tensor)product. Some properties of the tensor product of c-spaces have been investigated in this context. Properties of the space of c-continuous functions have been probed and the relevance of the standard c-structure on it has been established.

1. Introduction

The concept of connectedness was familiar to us through various branches like topology and graph theory. In image analysis, topological connectivity is much useful for studying images defined over a continuous space, whereas graph theoretic connectivity is more useful for studying images defined over a discrete space. There are, however, topological spaces whose connectivity does not result from a graph [10] and vice versa [2]. As discrete images can be viewed as a discretization of the continuous images, compatibility is essential for both type of approaches. Therefore, it is fairly obvious that topological or graph-theoretic connectivity alone is insufficient for practical purposes. Combined strategies are essential. Reinhard Börger's [9] theory of connected sets eliminates the drawbacks of graph theoretical and topological connectivity. He proposed the Theory of Connectivity Classes, an axiomatic approach to connectivity. He conducted a categorical study of these spaces. This space has enormous applications in Pattern Recognition, Signal Processing, Mathematical Morphology and Image Analysis [4, 5, 10, 14, 15].

Dugowson S., Muscat J. and Ronce C. et al. [3, 7, 9] enhanced the structural analysis of this space. Unexplored are structural properties, and this paper is an attempt in that direction. It is hoped that research in this area will stimulate application-based research.

2. Preliminaries

All concepts in this section are taken from [3, $9,11,12,15]$. A c-space or a connectivity space is a set X together with a collection \mathcal{C} of subsets such that the following properties hold.
(1) $\phi \in \mathcal{C}$ and $\{x\} \in \mathcal{C}$ for every $x \in X$.
(ii) If $\left\{C_{i}: i \in I\right\}$ be a non empty collection of subsets in \mathcal{C} with $\cap_{i \in I} C_{i} \neq \phi$, then $\underset{i \in I}{\cup} C_{i} \in \mathcal{C}$.
The collection \mathcal{C} of subsets X which satisfy the above axioms is called a c-structure or a connectivity class of X. Elements of a c-structure are called connected sets. Some examples of c-spaces are
(1) Discrete c-space $\left(X, \mathcal{D}_{X}\right)$, where $\mathcal{D}_{X}=\{\phi\} \cup\{\{x\}: x \in X\}$.
(2) Indiscrete c -space $\left(X, \mathcal{I}_{X}\right)$, where $\mathcal{I}_{X}=\mathcal{P}(X)$ is the power set of X.

[^0](3) The real line \mathbb{R} with all intervals.
(4) Co-finite c-spce $(X, \mathcal{C})=\mathcal{D}_{X} \cup\left\{A \subseteq X \mid A^{c}\right.$ is finite $\}$, where X is infinite.
(5) If X is a topological space, then the collection of all connected sets in X form a c-structure on X and the corresponding c-space is called the associated c-space of X.
(6) Let G be a finite simple graph. Then the collection of all edge connected sub graphs of G form a c-structure on G and the corresponding c-space is called the associated c-space of G.
The c-space $\left(X, C_{X}\right)$ is denoted by X unless otherwise stated. Let X and Y be two c-spaces and $f: X \rightarrow Y$ be a function. The function f is called c-continuous or catenuous if it maps connected sets of X to connected sets of Y. Further, a bijection $f: X \rightarrow Y$ is said to be a c-isomorphism or catenomorphism if both f and f^{-1} are c-continuous.
(1) Any continuous function from a topological space X to another topological space Y is clearly c-continuous.
(2) Consider the c-spaces X and Y where $X=\{1,2,3\}, Y=\{a, b, c, d\}, \mathcal{C}_{X}=\mathcal{D}_{X} \cup$ $\{\{1,2\},\{2,3\},\{1,2,3\}\}$ and $\mathcal{C}_{Y}=\mathcal{D}_{Y} \cup\{\{a, b\},\{c, d\}\}$. Define $f: X \rightarrow Y$ by $1 \rightarrow a, 2 \rightarrow a$ and $3 \rightarrow b$. Then f is c-continuous.
(3) If X and Y are as above and if $f: X \rightarrow Y$ be defined by $1 \rightarrow a, 2 \rightarrow a$ and $3 \rightarrow c$, then f is not c-continuous.

We may note that there are c-continuous functions from X to Y that are not continuous. For example, the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{lll}\sin \left(\frac{1}{x}\right) & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$ This function maps connected sets to connected sets and is not continuous at 0 .

Let $\left\{X_{i}: i \in I\right\}$ be a family of c-spaces and $\left\{f_{i}: X \rightarrow X_{i}: i \in I\right\}$ be a family of functions defined on a set X. Let $\mathcal{C}=\left\{A \subset X: f_{i}(A) \in \mathcal{C}_{X_{i}}\right.$ for every $\left.i\right\}$. Then \mathcal{C} is a c-structure on X and is called the strong c-structure generated by the given family of functions. The c-structure on the product space $\prod_{i \in I} X_{i}$ is the strong c-structure generated by the family of projection functions $\left\{\pi_{i}: i \in I\right\}$.

To visualize the connectedness in the product space, some examples of connected and disconnected sets from \mathbb{R}^{2} are given below. For figure $P 1$, we can note that $\pi_{1}(P 1)$ is an

Picture: 1
Disconnected set

Picture: 2

Picture: 3
Connected Sets
interval(and hence a connected set in \mathbb{R}) where as $\pi_{2}(P 1)$ is the union of two intervals in \mathbb{R} (and hence a disconnected subset of \mathbb{R}), so that figure $P 1$ is a disconnected subset of \mathbb{R}^{2}. For figures $P 2$ and $P 3$, it is clear that both projections are intervals in \mathbb{R} (and thereby connected in \mathbb{R}) and hence are connected in \mathbb{R}^{2}.

Let X be any nonempty set and \mathcal{B} be a collection of subsets of a set X. Then the smallest c-structure on X containing \mathcal{B} is called the c-structure generated by \mathcal{B}, and is denoted by
$\langle\mathcal{B}\rangle$. Elements of \mathcal{B} are called basic connected sets. Any two points in a connected set B in $\langle\mathcal{B}\rangle$ can be connected by a finite chain of basic connected sets that are contained in B. Let $\left\{X_{i}: i \in I\right\}$ be a family of c-spaces and $\left\{f_{i}: X_{i} \rightarrow X: i \in I\right\}$ be a family of functions. Then the weak c-structure generated by $\left\{f_{i}\right\}_{i \in I}$ is the smallest c-structure on X which make each function $f_{i} \mathrm{c}$-continuous and is denoted by $<\left\{f_{i}: i \in I\right\}>_{W}$. In particular, let X and Y be any two c-spaces. Let $f: X \rightarrow Y$ be an onto function. Then f is said to be a quotient map or Y is said to be a quotient space of X with respect to f if \mathcal{C}_{Y} is the smallest c-structure on Y which make f c-continuous. In other words, \mathcal{C}_{Y} is the weak c-structure on Y generated by $\{f\}$. The following Theorem[1] is true for any category and in particular for the category of c-spaces.

Theorem 2.1. Let X and Y be two c-spaces such that $f: X \rightarrow Y$ is a quotient map. Then for any c-space Z, a function $g: Y \rightarrow Z$ is c-continuous if and only if the composite function $g \circ f: X \rightarrow Z$ is c-continuous.

We may note the following proposition.
Proposition 2.1. [3] Let X be a set, \mathcal{A} a set of subsets of $X,\left(Y, \mathcal{C}_{Y}\right)$ a c-space and $f: X \rightarrow Y$ be a function. Then f is c-continuous from $(X,<\mathcal{A}>)$ to $\left(Y, \mathcal{C}_{Y}\right)$ if and only if $f(A) \in \mathcal{C}_{Y}$ for every $A \in \mathcal{A}$.

3. On Tensor Product of C-Spaces

This section examines the conditions under which the finite product of quotients of c-spaces becomes a quotient of its product. Before proceeding with the primary investigations, it is important to note the following premise.

Proposition 3.2. [13]
(1) Finite product(cartesian) of quotients of c-spaces need not be the quotients of its product.
(2) Let $f: X \rightarrow Y$ be a quotient map. Then $I_{X} \times f: X \times X \rightarrow X \times Y$ need not be a quotient map, where I_{X} is the identity map on X.

This prompts us to employ the concept of Tensor Product of c-spaces introduced by S. Dugowson[3] in order to solve the problem.

Definition 3.1. [3] Tensor Product

The connectivity tensor product $X_{1} \boxtimes X_{2}$ of two c-spaces $X_{i},(i=1,2)$ is the set $X_{1} \times X_{2}$ with the generated c-structure $<\left\{C_{1} \times C_{2}: C_{1} \in \mathcal{C}_{X_{1}}, C_{2} \in \mathcal{C}_{X_{2}}\right\}>$ on it.

We may note that [3], for any two c-spaces X_{1} and X_{2}, the c-structure $\mathcal{C}_{X_{1} \boxtimes X_{2}}$ is a smaller c-structure on the set $X_{1} \times X_{2}$ than the c-structure given by the cartesian product, since $C_{1} \times C_{2} \in \mathcal{C}_{X_{1} \times X_{2}}$ for every $C_{1} \in \mathcal{C}_{X_{1}}$ and $C_{2} \in \mathcal{C}_{X_{2}}$.

Remark 3.1. Without any loss of generality, we can extend the same definition to arbitrary product. That is, given a family of c-spaces, $\left\{X_{i}: i \in I\right\}$, it's tensor product $\underset{i \in I}{\otimes} X_{i}$ is the set $\prod_{i \in I} X_{i}$ with the generated c-structure $<\left\{\prod_{i \in I} C_{i}: C_{i} \in \mathcal{C}_{X_{i}}\right.$ for each $\left.i\right\}>$ on it.

Proposition 3.3. For $i \in I$, let X_{i}, Y_{i} be c-spaces and $\left\{f_{i}: X_{i} \rightarrow Y_{i}: i \in I\right\}$ be family of functions. Then,
(1) The projection functions $\pi_{i}: \underset{i \in I}{\boxtimes} X_{i} \rightarrow X_{i}$, for $i \in I$ are c-continuous.
(2) The function $h: \underset{i \in I}{\boxtimes} X_{i} \rightarrow \underset{i \in I}{\boxtimes} Y_{i}$ defined by $h(x)=\left(f_{i}\left(x_{i}\right)\right)_{i \in I}$, where $x=\left(x_{i}\right)_{i \in I}$ is c-continuous if and only if each f_{i} is c-continuous.
(3) Let X be a c-space and $\left\{g_{i}: X \rightarrow X_{i}: i \in I\right\}$ be a family of functions. Define $f: X \rightarrow$ $\underset{i \in I}{\boxtimes} X_{i}$ by $f(x)=\left(g_{i}(x)\right)_{i \in I}, x \in X$. If f is c-continuous, then each g_{i} is c-continuous. Converse is not true.

Proof of above statements directly follows from the Proposition 2.1. For the counter example for statement (3), consider the following example.

Consider the c-spaces $X=\{1,2,3\}, X_{1}=\{a, b, c\}, X_{2}=\{d, e, f\}$ with $\mathcal{C}_{X}=\mathcal{D}_{X} \cup\{X\}$, $\mathcal{C}_{X_{1}}=\mathcal{D}_{X_{1}} \cup\left\{X_{1}\right\}$ and $\mathcal{C}_{X_{2}}=\mathcal{D}_{X_{2}} \cup\{\{d, e\}\}$.

Then the c-structure generated by the collection $\left\{C_{1} \times C_{2}: C_{1} \in \mathcal{C}_{X_{1}}, C_{2} \in \mathcal{C}_{X_{2}}\right\}$ is given by
$\mathcal{D}_{X_{1} \times X_{2}} \cup\{\{(a, d),(a, e)\},\{(b, d),(b, e)\},\{(c, d),(c, e)\},\{(a, d),(b, d),(c, d)\},\{(a, e),(b, e)$, $(c, e)\},\{(a, f),(b, f),(c, f)\},\{(a, d),(a, e),(b, d),(c, d)\},\{(a, d),(a, e),(b, e),(c, e)\},\{(a, d)$, $(b, d),(b, e),(c, d)\},\{(a, e),(b, d),(b, e),(c, e)\},\{(a, d),(b, d),(c, d),(c, e)\},\{(a, e),(b, e),(c, d)$, $(c, e)\},\{(a, d),(a, e),(b, d),(b, e),(c, d),(c, e)\}\}$.

Define $f_{1}: X \rightarrow X_{1}$ by $1 \mapsto a, 2 \mapsto b$ and $3 \mapsto c$ and $f_{2}: X \rightarrow X_{2}$ by $1 \mapsto d, 2 \mapsto e$ and $3 \mapsto e$.

We can verify that both f_{1} and f_{2} are c-continuous.
Define $f: X \rightarrow X_{1} \boxtimes X_{2}$ by $f(x)=\left(f_{1}(x), f_{2}(x)\right), x \in X$.
Now, $f(X)=\{(a, d),(b, e),(c, e)\}$, which is not a connected set in $X_{1} \boxtimes X_{2}$. Hence f is not c-continuous. Thus the converse fails. We may note that the above set $f(X)=$ $\{(a, d),(b, e),(c, e)\}$ is connected in the cartesian product $X_{1} \times X_{2}$.

The next theorem gives a partial settlement to our desired goal.
Theorem 3.2. Let X_{i} and $Y_{i}, i=1,2$ be c-spaces such that $f_{i}: X_{i} \rightarrow Y_{i}, i=1,2$ be two quotient maps. Let $Y=Y_{1} \boxtimes Y_{2}$. Then $\mathcal{C}_{Y}=<\left\{f_{1}(C) \times f_{2}(D): C \in \mathcal{C}_{X_{1}}, D \in \mathcal{C}_{X_{2}}\right\}>$.

Proof. By definition, we have $\mathcal{C}_{Y}=<\left\{A \times B: A \in \mathcal{C}_{Y_{1}}, B \in \mathcal{C}_{Y_{2}}\right\}>$. Let $\mathcal{C}_{Y_{Q}}=<$ $\left\{f_{1}(C) \times f_{2}(D): C \in \mathcal{C}_{X_{1}}, D \in \mathcal{C}_{X_{2}}\right\}>$. Since $f_{1}(C) \times f_{2}(D) \in\left\{A \times B: A \in \mathcal{C}_{Y_{1}}, B \in \mathcal{C}_{Y_{2}}\right\}$ for all $C \in \mathcal{C}_{X_{1}}, D \in \mathcal{C}_{X_{2}}$, we have

$$
\begin{equation*}
\mathcal{C}_{Y_{Q}} \subseteq \mathcal{C}_{Y} \tag{3.1}
\end{equation*}
$$

On the other hand, let $K \in \mathcal{C}_{Y}$. Let $x=\left(x_{1}, y_{1}\right)$ and $y=\left(x_{2}, y_{2}\right)$ be two elements of K. Then, there exist basic connected sets $A_{i} \times B_{i}$ for $i=1$ to n such that $A_{i} \in \mathcal{C}_{Y_{1}}, B_{i} \in \mathcal{C}_{Y_{2}}$ for each $i, x \in A_{1} \times B_{1}, y \in A_{n} \times B_{n},\left(A_{i} \times B_{i}\right) \cap\left(A_{i+1} \times B_{i+1}\right) \neq \phi$ for $i=1$ to ($n-1$) and $A_{i} \times B_{i} \subseteq K$ for every i.

Let $\left(a_{i}, b_{i}\right) \in\left(A_{i} \times B_{i}\right) \cap\left(A_{i+1} \times B_{i+1}\right)$ for $\mathrm{i}=1$ to (n-1).
Then $a_{i}, a_{i+1} \in A_{i+1}$ and $b_{i}, b_{i+1} \in B_{i+1}$ for $i=0$ to $(n-1)$, where $a_{0}=x_{1}, a_{n}=x_{2}$, $b_{0}=y_{1}$ and $b_{n}=y_{2}$. Since $a_{0}, a_{1} \in A_{1}$ and since $A_{1} \in \mathcal{C}_{Y_{1}}=<\left\{f_{1}(C): C \in \mathcal{C}_{X_{1}}\right\}>$, there exists a finite sequence of basic connected sets $\left\{f_{1}\left(D_{i}\right): D_{i} \in \mathcal{C}_{X_{1}}, i=1,2, \ldots, m_{1}\right\}$ such that $a_{0} \in f_{1}\left(D_{1}\right), a_{1} \in f_{1}\left(D_{m_{1}}\right), f_{1}\left(D_{i}\right) \cap f_{1}\left(D_{i+1}\right) \neq \phi$ for $=1$ to $\left(m_{1}-1\right)$ and $f_{1}\left(D_{i}\right) \subseteq A_{1}$ for every i.

Similarly, there exists a finite sequence of basic connected sets $\left\{f_{2}\left(E_{i}\right): E_{i} \in \mathcal{C}_{X_{2}}, i=\right.$ $\left.1,2, \ldots, n_{1}\right\}$ such that $b_{0} \in f_{2}\left(E_{1}\right), b_{1} \in f_{2}\left(E_{n_{1}}\right), f_{2}\left(E_{i}\right) \cap f_{2}\left(E_{i+1}\right) \neq \phi$ for $i=1$ to $\left(n_{1}-1\right)$ and $f_{2}\left(E_{i}\right) \subseteq B_{1}$ for every i.

Let $m_{1} \leq n_{1}$. Let $f_{1}\left(D_{i}\right)=f_{1}\left(D_{m_{1}}\right)$ for $\left(m_{1}+1\right) \leq i \leq n_{1}$.
Now consider the finite sequence $S_{1}=\left\{f_{1}\left(D_{i}\right) \times f_{2}\left(E_{i}\right): i=1\right.$ to $\left.n_{1}\right\}$ of connected sets in $\left(Y, \mathcal{C}_{Y_{Q}}\right)$.

Clearly $\left(a_{0}, b_{0}\right) \in f_{1}\left(D_{1}\right) \times f_{2}\left(E_{1}\right)$ and $\left(a_{1}, b_{1}\right) \in f_{1}\left(D_{n_{1}}\right) \times f_{2}\left(E_{n_{1}}\right)$. Also,

$$
\begin{aligned}
& {\left[f_{1}\left(D_{i}\right) \times f_{2}\left(E_{i}\right)\right] \cap\left[f_{1}\left(D_{i+1}\right) \times f_{2}\left(E_{i+1}\right)\right] } \\
&=\left[f_{1}\left(D_{i}\right) \cap f_{1}\left(D_{i+1}\right)\right] \times\left[f_{2}\left(E_{i}\right) \bigcap f_{2}\left(E_{i+1}\right)\right] \\
& \neq \phi \text { for each } \mathrm{i}=1 \text { to }\left(n_{1}-1\right)
\end{aligned}
$$

Further, $f_{1}\left(D_{i}\right) \times f_{2}\left(E_{i}\right) \subseteq A_{1} \times B_{1} \subseteq K$ for every i. Thus S_{1} is a finite chain of connected sets in $\left(Y, \mathcal{C}_{Y_{Q}}\right)$ containing $\left(a_{0}, b_{0}\right)$ and $\left(a_{1}, b_{1}\right)$ and contained in K.

Similarly there exists a finite chain S_{2} of connected sets $f_{1}\left(D_{i}\right) \times f_{2}\left(E_{i}\right), n_{1}+1 \leq i \leq n_{2}$ (by renaming D_{i} 's and E_{i} 's accordingly) such that $\left(a_{1}, b_{1}\right) \in f_{1}\left(D_{n_{1}+1}\right) \times f_{2}\left(E_{n_{1}+1}\right)$, $\left(a_{2}, b_{2}\right) \in f_{1}\left(D_{n_{2}}\right) \times f_{2}\left(E_{n_{2}}\right)$. Further, $f_{1}\left(D_{i}\right) \times f_{2}\left(E_{i}\right) \subseteq A_{2} \times B_{2} \subseteq K$ for every $n_{1}+1 \leq$ $i \leq n_{2}$.

Since $\left[f_{1}\left(D_{n_{1}}\right) \times f_{2}\left(E_{n_{1}}\right)\right] \bigcap\left[f_{1}\left(D_{n_{1}+1}\right) \times f_{2}\left(E_{n_{1}+1}\right)\right] \neq \phi$, concatenation of the finite chains S_{1} and S_{2}, that is, $S_{1}+S_{2}$ is a finite chain of connected sets in K such that $\left(a_{0}, b_{0}\right) \in$ $f_{1}\left(D_{1}\right) \times f_{2}\left(E_{1}\right)$ and $\left(a_{2}, b_{2}\right) \in f_{1}\left(D_{n_{2}}\right) \times f_{2}\left(E_{n_{2}}\right)$.

Proceeding similarly, there is a finite chain $S_{1}+S_{2}+\ldots+S_{n}$ of connected sets in K such that $x=\left(a_{0}, b_{0}\right) \in f_{1}\left(D_{1}\right) \times f_{2}\left(E_{1}\right)$ and $y=\left(a_{n}, b_{n}\right) \in f_{1}\left(D_{n_{n}}\right) \times f_{2}\left(E_{n_{n}}\right)$.

Thus any two elements of K can be joined by a finite sequence of basic connected sets in $\left\{f_{1}(C) \times f_{2}(D): C \in \mathcal{C}_{X_{1}}, D \in \mathcal{C}_{X_{2}}\right\}$ and hence $C \in<\left\{f_{1}(C) \times f_{2}(D): C \in \mathcal{C}_{X_{1}}, D \in\right.$ $\left.\mathcal{C}_{X_{2}}\right\}>$. That is, $K \in \mathcal{C}_{Y_{Q}}$. Thus

$$
\begin{equation*}
\mathcal{C}_{Y} \subseteq \mathcal{C}_{Y_{Q}} \tag{3.2}
\end{equation*}
$$

From the equations (3.1) and (3.2), theorem follows.
The following theorem solves our problem regarding the finite product of quotients. Unresolved is the problem of arbitrary product of quotients.

Theorem 3.3. Let $\left\{X_{i}: i=1\right.$ to $\left.n\right\}$ and $\left\{Y_{i}: i=1\right.$ to $\left.n\right\}$ be two family of c-spaces such that for
 $f=\prod_{i=1}^{n} f_{i}$. Then Y is a quotient space of X with respect to f.

That is, in the case of tensor product of c-spaces, finite product of quotients of c-spaces is the quotient of its product.

Proof. Given that $f: X \rightarrow Y$ be defined by $f=\prod_{i=1}^{n} f_{i}$. Then by Proposition 3.3, f is c-continuous.

Also by Theorem 3.2, $\mathcal{C}_{Y}=<\left\{\prod_{i=1}^{n} f_{i}(C): C \in \mathcal{C}_{X_{i}}\right\}>$.
Let \mathscr{C} be any other c-structure on Y with respect to which f is c-continuous. By Proposition 2.1, we have
$f: X \rightarrow(Y, \mathscr{C})$ is c-continuous

$$
\begin{array}{ll}
\Longleftrightarrow & f\left(C_{1} \times C_{2} \times \ldots \times C_{n}\right) \in \mathscr{C}, C_{i} \in \mathcal{C}_{X_{i}} \text { for } i=1 \text { to } n, \\
\Longleftrightarrow & \prod_{i=1}^{n} f_{i}(C) \in \mathscr{C}, C \in \mathcal{C}_{X_{i}} \\
\Longleftrightarrow & <\left\{\prod_{i=1}^{n} f_{i}(C): C \in \mathcal{C}_{X_{i}}\right\}>\subseteq \mathscr{C} \\
\Longleftrightarrow & \mathcal{C}_{Y} \subseteq \mathscr{C} .
\end{array}
$$

Thus \mathcal{C}_{Y} is the smallest c-structure on Y with respect to which $f: X \rightarrow Y$ is c-continuous and hence Y is a quotient space of X with respect to f.

4. More on the Space of c-continuous Functions

Let X and Y be two c-spaces and $\mathcal{C}(X, Y)$ denotes the set of all c-continuous functions from X to Y. In [3], a c-structure on $\mathcal{C}(X, Y)$ is defined to be as follows. A subset M of $\mathcal{C}(X, Y)$ is said to be connected if for every $K \in \mathcal{C}_{X},<M, K>\in \mathcal{C}_{Y}$, where $<M, K>=\bigcup_{f \in M} f(K)$. Let us call this c-structure as the standard c-structure on $\mathcal{C}(X, Y)$.

Unless otherwise specified, from here onwards, $\mathcal{C}(X, Y)$ is considered as a c-space with the standard c-structure.

In [3], it is also proved that, M is connected in $\mathcal{C}(X, Y)$ if and only if for all $x \in X$, $<M,\{x\}>\in \mathcal{C}_{Y}$.

Proposition 4.4. Let X and Y be two c-spaces. Then the evaluation map e $: X \boxtimes \mathcal{C}(X, Y) \rightarrow Y$ defined by $e(x, f)=f(x)$, for $x \in X$ and $f \in \mathcal{C}(X, Y)$ is c-continuous.

Proof. To prove the c-continuity of e, by Proposition 2.1, it is enough to prove that $e\left(C_{1} \times\right.$ C_{2}) is connected in Y for $C_{1} \in \mathcal{C}_{X}$ and $C_{2} \in \mathcal{C}_{\mathcal{C}(X, Y)}$.

Since C_{2} is connected in $\mathcal{C}(X, Y)$, in particular we have, $\bigcup_{f \in C_{2}} f\left(C_{1}\right)$ is connected in Y. That is,

$$
\left\{f(x): x \in C_{1}, f \in C_{2}\right\} \text { is connected in } Y .
$$

Hence $\left\{e(x, f): x \in C_{1}, f \in C_{2}\right\}$ is connected in Y. Thus $e\left(C_{1} \times C_{2}\right)$ is connected in Y.
Remark 4.2. The above proposition will not be true if we replace tensor product with cartesian product. That is, the evaluation map $e: X \times \mathcal{C}(X, Y) \rightarrow Y$ defined by $e(x, f)=$ $f(x)$, for $x \in X$ and $f \in \mathcal{C}(X, Y)$ need not be c-continuous.

For example, consider the c-spaces $\left(X, \mathcal{C}_{X}\right)$ and $\left(Y, \mathcal{C}_{Y}\right)$, where $\mathrm{X}=\{a, b, c\}, Y=\{1,2,3\}$, $\mathcal{C}_{X}=\mathcal{D}_{X} \cup\{\{a, b\}, X\}$ and $\mathcal{C}_{Y}=\mathcal{D}_{Y} \cup\{\{1,2\},\{2,3\}, Y\}$.

Define two functions f_{1} and f_{2} from X to Y as

$$
f_{1}(x)= \begin{cases}1 & \text { if } x=a \\ 2 & \text { if } x=b \\ 3 & \text { if } x=c\end{cases}
$$

and

$$
f_{2}(x)= \begin{cases}2 & \text { if } x=a \\ 3 & \text { if } x=b \\ 3 & \text { if } x=c\end{cases}
$$

It can be easily verified that both f_{1} and f_{2} are c-continuous.
Since $<\left\{f_{1}, f_{2}\right\},\{a\}>=\{1,2\},<\left\{f_{1}, f_{2}\right\},\{b\}>=\{2,3\}$ and $<\left\{f_{1}, f_{2}\right\},\{c\}>=\{3\}$, $\left\{f_{1}, f_{2}\right\}$ is connected in $\mathcal{C}(X, Y)$.

Consider the connected set $C=\left\{\left\{a, f_{1}\right\},\left\{b, f_{2}\right\}\right\}$ in product space $X \times \mathcal{C}(X, Y)$. Now,

$$
\begin{aligned}
e(C) & =\left\{f_{1}(a), f_{2}(b)\right\} \\
& =\{1,3\}
\end{aligned}
$$

is not connected in Y. Hence $e: X \times \mathcal{C}(X, Y) \rightarrow Y$ is not c-continuous
Theorem 4.4. Let X, Y and Z be three c-spaces. Then a map $f: X \boxtimes Z \rightarrow Y$ is c-continuous if and only the induced map $\hat{f}: Z \rightarrow \mathcal{C}(X, Y)$ is c-continuous, where $\hat{f}(z)(x)=f(x, z)$.

Proof. Let $\hat{f}: Z \rightarrow \mathcal{C}(X, Y)$ be c-continuous.
We know that by Proposition 4.4, the evaluation map $e: X \boxtimes \mathcal{C}(X, Y) \rightarrow Y$ defined by $e(x, f)=f(x)$, for $x \in X$ and $f \in \mathcal{C}(X, Y)$ is c-continuous. Now consider the diagram

$$
X \boxtimes Z \xrightarrow{i d_{X} \times \hat{f}} X \boxtimes \mathcal{C}(X, Y) \xrightarrow{e} Y .
$$

Since $f=e \circ\left(i d_{X} \times \hat{f}\right), f$ is c-continuous.

Conversely let $f: X \boxtimes Z \rightarrow Y$ is c-continuous. Let C be a connected set in Z. To show $\hat{f}(C)$ is connected in $\mathcal{C}(X, Y)$, let K be any connected set in X.

$$
\begin{aligned}
<\hat{f}(C), K> & =\bigcup_{x \in C} \hat{f}(x)(K) \\
& =\bigcup_{x \in C y \in K} \hat{f}(x)(y) \\
& =\bigcup_{x \in C y \in K}\{f(y, x)\} \\
& =f(K \times C)
\end{aligned}
$$

Since f is c-continuous, $f(K \times C)$ is connected in Y. Thus $\hat{f}(C)$ is connected in Y. Since $C \in \mathcal{C}_{Z}$ is arbitrary, \hat{f} is c-continuous.

Theorem 4.5. Let $\mathcal{C}^{\prime}(X, Y)$ denote the set $\mathcal{C}(X, Y)$ with some c-structure \mathfrak{C}. If the evaluation map $e: X \boxtimes \mathcal{C}^{\prime}(X, Y) \rightarrow Y$ is c-continuous, then \mathfrak{C} is contained in the standard c-structure on $\mathcal{C}(X, Y)$.

Proof. Let $e: X \boxtimes \mathcal{C}^{\prime}(X, Y) \rightarrow Y$ is c-continuous. Then by Theorem 4.4, the induced $\operatorname{map} \hat{e}: \mathcal{C}^{\prime}(X, Y) \rightarrow \mathcal{C}(X, Y)$ is c-continuous, where $\hat{e}(f)(x)=e(x, f)$, for $x \in X$ and $f \in \mathcal{C}^{\prime}(X, Y)$.

Let C be a connected set in $\mathcal{C}^{\prime}(X, Y)$. Then $\hat{e}(C)$ is connected in $\mathcal{C}(X, Y)$. Thus for every $x \in X,<\hat{e}(C),\{x\}>$ is connected in Y. But,

$$
\begin{aligned}
<\hat{e}(C),\{x\}> & =\bigcup_{f \in C} \hat{e}(f)(x) \\
& =\bigcup_{f \in C}\{e(x, f)\} \\
& =\bigcup_{f \in C}\{f(x)\} \\
& =<C,\{x\}>
\end{aligned}
$$

Thus $<C,\{x\}>$ is connected in Y for $x \in X$ and hence C is connected in the standard cstructure on $\mathcal{C}(X, Y)$. Consequently, \mathfrak{C} is contained in the standard c-structure on $\mathcal{C}(X, Y)$.

Even though the following theorem is a special case of the Theorem 3.3 which we proved earlier, it fortifies the relevance of the standard c-structure on the function space $\mathcal{C}(X, Y)$.

Theorem 4.6. Let A, B and X be three c-spaces. Let $p: A \rightarrow B$ be a quotient map. Then $i d_{X} \times p: X \boxtimes A \rightarrow X \boxtimes B$ is a quotient map, where $i d_{X}$ is the identity map on X.
Proof. Let $p: A \rightarrow B$ be a quotient map. Let $(X \boxtimes B)_{q}$ denotes the quotient space of $X \times A$ with respect to the map $\pi=i d_{X} \times p$. Let $g: X \boxtimes B \rightarrow(X \boxtimes B)_{q}$ be the identity map. We claim g is a c-isomorphism.

Since $\pi: X \boxtimes A \rightarrow(X \boxtimes B)_{q}$ is c-continuous, by Theorem 4.4, the induced map $\hat{\pi}: A \rightarrow$ $\mathcal{C}\left(X,(X \boxtimes B)_{q}\right)$ defined by $\hat{\pi}(a)(x)=\pi(x, a) a \in A, x \in X$ is c-continuous.

Define $\hat{g}: B \rightarrow \mathcal{C}\left(X,(X \boxtimes B)_{q}\right)$ by $\hat{g}(b)(x)=g(x, b)$. We claim \hat{g} is c-continuous.
For $a \in A, x \in X$ we have $\hat{\pi}(a)(x)=\pi(x, a)=\left(i d_{X} \times p\right)(x, a)=(x, p(a))$. Thus,

$$
\begin{aligned}
(\hat{g} \circ p)(a)(x) & =\hat{g}(p(a))(x) \\
& =(x, p(a)) \\
& =\hat{\pi}(a)(x)
\end{aligned}
$$

Hence $\hat{g} \circ p=\hat{\pi}$. Since p is a quotient map, by Theorem 2.1, \hat{g} is c-continuous. Hence by Theorem 4.4, $g: X \boxtimes B \rightarrow(X \boxtimes B)_{q}$ is c-continuous.

It can be easily verified that $g^{-1}:(X \boxtimes B)_{q} \rightarrow X \boxtimes B$ is c-continuous. Since g is bijective, g is a c-isomorphism. Hence the proof.
Remark 4.3. In TOP, the category of topological spaces, the corresponding results holds if X is a locally compact Hausdorff topological space [6].

Acknowledgments. I am obliged to Late Prof. P. T. Ramachandran, Department of Mathematics, University of Calicut for his guidance and motivation to complete this work. The financial support from the U.G.C, Govt. of India is greatly acknowledged.

References

[1] Adámek, J.; Herrlich, H.; Strecker, G. E. Abstract and concrete categories - The joy of cats. http://katmat.math.uni-bremen.de/acc.
[2] Bretto, A. Comparability graphs and digital topology. Comput. Vis. Image Underst. 82 (2001), no. 1, 33-41.
[3] Dugowson, S. On connectivity spaces. arXiv:1001.2378v1[math.GN], 14 Jan (2010).
[4] Heijmans, H. J. A. M. Connected morphological operators for binary images. Comput. Vis. Image Underst. 73 (1999), no. 1, 99-120.
[5] Kong, T. Y.; Roscoe A. W.; Rosenfeld A. Concept of digital topology. Topology Appl. 46 (1992), 219-262.
[6] Munkres, J. R. Topology: A first course, Thirteenth edition. Prentice-Hall of India Pvt. Ltd., 1999.
[7] Muscat, J.; Buhagiar, D. Connective spaces. Mem. Fac. Sci. Shimane Univ. Series B: Math. Sc. 39 (2006), 1-13.
[8] Ratheesh, K. P.; Madhavan Namboothiri, N. M. On c-spaces and connective spaces. South Asian J. Math. 4 (2013), no. 1, 48-56.
[9] Reinhard, B. Connectivity spaces and component categoreis. Categorical Topology, Proc. Conference Toledo, Ohio (1983), 71-89.
[10] Ronse, C. Set-theoretic algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imaging Vision. 8 (1998), no. 1, 41-58.
[11] Santhosh, P. K. On products and embedding of c-spaces. J. Adv. Stud. Topol. 4 (2013), no. 4, 18-24.
[12] Santhosh, P. K. On the quotients of c-spaces. Bol. Soc. Paran. Mat. 35 (2017), no. 1, 97-109.
[13] Santhosh, P. K. On Sums and Quotients of c-spaces. Paper communicated.
[14] Serra, J. Connections for sets and functions. Fund. Inform. 41 (2000), no. 1, 147-186.
[15] Serra, J. Connectivity on complete lattices. J. Math. Imaging Vision. 9 (1998), 231-251.
Post Graduate Department of Mathematics
Govt. College Mokeri, Kerala, India
Email address: santhoshgpm2@gmail.com

[^0]: Received: 08.09.2022. In revised form: 11.06.2023. Accepted: 18.06.2023
 2020 Mathematics Subject Classification. 54A05, 54D05,05C10, 05C40.
 Key words and phrases. c-space, connectivity space, c-continuous function, function space, tensor product.

