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On Prime Ideal Space of a Partially Ordered Ternary
Semigroup

DATTATRAY SHINDE and MACHCHHINDRA GOPHANE

ABSTRACT. In this paper, we introduced the hull-kernel topology τ on the set P of prime ideals in a partially
ordered ternary semigroup T and investigated various topological properties of the structure space (P, τ). We
also obtained some useful results about compactness and connectedness of the set of all prime full ideals of T .

1. INTRODUCTION

In 1932, Lehmer [8] studied the literature of a ternary algebraic system. The ternary
semigroup is a particular case of n-ary semigroups. So many results on ternary semi-
groups have an analogous version for n-ary semigroups. The ideal theory in ternary
semigroups was introduced by F. M. Sioson in 1965. Shabir and Bashir [11] introduced
and studied the notion of prime, semiprime and irreducible ideals in ternary semigroups.

Iampan [2] has introduced the notion of partially ordered ternary semigroups, which
is a generalization of an ordered semigroup and a ternary semigroup. In [9], the ideal
theory of a partially ordered ternary semigroups is introduced. Siva Rami Reddy et al.
[10] defined and studied the notions of complete prime ideals, prime ideals, complete
semiprime ideals, semiprime ideals of partially ordered ternary semigroups. Shinde and
Gophane [12] introduced and studied the notions of prime, semiprime and irreducible
pseudo symmetric ideals in partially ordered ternary semigroups and proved that the set
of all strongly irreducible pseudo symmetric ideals is topologized.

Kar [4] introduced and studied the concept of the structure space of ternary semirings.
He also studied the various properties of this structure space. The notion of the structure
space of Γ- semigroups was introduced by Kar and Chattopadhyay in [5]. Kostaq et al. [7]
introduced the some special classes of all proper prime k-ideals, prime ideals and strongly
irreducible ideals in Γ- semirings. They also obtained the topological spaces of these ideals
of Γ- semirings. Jagtap and Pawar [3] studied the space of prime ideals of a Γ- semiring
and properties of the space of prime ideals of a Γ- semiring.

In this article, we introduce and study the concept of the structure space of partially or-
dered ternary semigroups. We consider the set P of all prime ideals of a partially ordered
ternary semigroup T and build the topology τ on P using the closure operator defined
in terms of intersection and inclusion relations among these ideals of partially ordered
ternary semigroup T . We investigate various topological properties of space (P, τ). This
topological space (P, τ) is referred as the structure space of the partially ordered ternary
semigroup T . We also studied the compactness, connectedness and separation axioms in
this topological space (P, τ).
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2. PRELIMINARIES

Definition 2.1. [8]A non-empty set T with a ternary operation [ ] : T × T × T −→ T is
called a ternary semigroup if [ ] satisfies the associative law, [[a b c] d e] = [a [b c d] e] =
[a b [c d e]], for all a, b, c, d, e ∈ T .

Definition 2.2. [2] A ternary semigroup T is said to be a partially ordered ternary semi-
group if there exist a partially ordered relation ≤ on T such that, a ≤ b ⇒ xya ≤
xyb, xay ≤ xby, axy ≤ bxy for all a, b, x, y ∈ T . In this section, we write T for a par-
tially ordered ternary semigroup.

Definition 2.3. [9] An element 0 ∈ T is said to be a zero element of T if 0xy = x0y =
xy0 = 0 and 0 ≤ t for all x, y, t ∈ T.

Definition 2.4. [9]An element e ∈ T is said to be an identity element of T if exx = xxe =
xex = x and x ≤ e for all x ∈ T.

Let X be a non-empty subset of T . We denote, {t ∈ T : t ≤ x, for some x ∈ X} by
(X].

Definition 2.5. [1]A non-empty subset I of T is said to be a left (respectively, right, lateral)
ideal of T if TTI ⊆ I (respectively, ITT ⊆ I , TIT ⊆ I ) and (I] = I. A non-empty subset
I of T is said to be an ideal of T if it is a left ideal, a right ideal and a lateral ideal of T.

Definition 2.6. [9]Let X be the non-empty subset of T . The intersection of all ideals of T
containing X is called an ideal of T generated by X and it is denoted by ⟨X⟩. The ideal
generated by {a} for some a ∈ T is denoted by ⟨a⟩.

Definition 2.7. [10]An ideal I of T is said to be a prime ideal of T provided I1, I2, I3 are
ideals of T and I1I2I3 ⊆ I implies I1 ⊆ I or I2 ⊆ I or I3 ⊆ I.

Definition 2.8. [10]An ideal I of T is said to be a semiprime ideal of T provided P is ideal
of T and Pn ⊆ I for some odd natural number n implies P ⊆ I.

Definition 2.9. [12]An ideal I of T is said to be a pseudo symmetric ideal if x, y, z ∈
T, xyz ∈ I implies xsytz ∈ I ∀s, t ∈ T.

Definition 2.10. [12]A proper pseudo symmetric ideal I of T is said to be a prime pseudo
symmetric ideal of T if I1I2I3 ⊆ I ⇒ I1 ⊆ I or I2 ⊆ I or I3 ⊆ I where I1, I2, I3 are the
pseudo symmetric ideals of T .

Definition 2.11. [12]A proper pseudo symmetric ideal I of T is said to be a semiprime
pseudo symmetric ideal of T if P is a pseudo symmetric ideal of T and Pn ⊆ I ⇒ P ⊆ I
for some odd natural number n.

Theorem 2.1. [12] The non-empty intersection of an arbitrary collection of prime pseudo sym-
metric ideals of T is a semiprime pseudo symmetric ideal of T.

Definition 2.12. [12]A proper pseudo symmetric ideal I of T is said to be irreducible (re-
spectively strongly irreducible) pseudo symmetric ideal of T if I1∩I2∩I3 = I (respectively
I1 ∩ I2 ∩ I3 ⊆ I) implies I1 = I or I2 = I or I3 = I (respectively I1 ⊆ I or I2 ⊆ I or I3 ⊆ I)
for any pseudo symmetric ideals I1, I2, I3 of T .

3. PRIME IDEAL SPACE

In this article, we write T for a partially ordered ternary semigroup with zero, unless
otherwise specified.
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Let P be the family of all prime ideals of T . For any subset A of P , we define A = {I ∈
P :

⋂
Iα∈A

Iα ⊆ I}. It can be seen that ∅ = ∅.

Theorem 3.2. Let A, B be any two subsets of P then
(i) A ⊆ A

(ii) A = Ā
(iii) A ⊆ B ⇒ A ⊆ B
(iv) A ∪B = A ∪B

Proof. (i) By the definition of A, for every α, Iα ∈ A. Therefore
⋂

Iα∈A

Iα ⊆ Iα implies

Iα ∈ A. Hence A ⊆ A.

(ii) By (i), we have A ⊆ A. Let I ∈ A. Then
⋂

Iα∈A

Iα ⊆ I . Now, Iα ∈ A implies that⋂
Iγ∈A

Iγ ⊆ Iα for all α ∈ ∆, where ∆ denotes the indexing set. Thus
⋂

Iγ∈A

Iγ ⊆
⋂

Iα∈A

Iα ⊆ I .

Therefore
⋂

Iγ∈A

Iγ ⊆ I . So I ∈ A and hence A ⊆ A. Thus A = Ā.

(iii) Suppose that A ⊆ B. Let I ∈ A. Then
⋂

Iα∈A

Iα ⊆ I . Since A ⊆ B, it follows that⋂
Iα∈B

Iα ⊆
⋂

Iα∈A

Iα ⊆ I . This shows that I ∈ B and hence A ⊆ B.

(iv) To prove, A ∪B = A∪B, firstly we prove that A ∪B ∪ C = A∪B ∪C for any subset
C of P . From (iii), A ⊆ A ∪B ∪ C,B ⊆ A ∪B ∪ C and C ⊆ A ∪B ∪ C. This implies that,
A ∪ B ∪ C ⊆ A ∪B ∪ C. Now let I ∈ A ∪B ∪ C. Then

⋂
Iα∈A∪B∪C

Iα ⊆ I . Obviously,

⋂
Iα∈A∪B∪C

Iα =

( ⋂
Iα∈A

Iα

)
∩

( ⋂
Iα∈B

Iα

)
∩

( ⋂
Iα∈C

Iα

)
. Since

⋂
Iα∈A

Iα,
⋂

Iα∈B

Iα and
⋂

Iα∈C

Iα

are ideals of T , also( ⋂
Iα∈A

Iα

)( ⋂
Iα∈B

Iα

)( ⋂
Iα∈C

Iα

)
⊆

( ⋂
Iα∈A

Iα

)
∩

( ⋂
Iα∈B

Iα

)
∩

( ⋂
Iα∈C

Iα

)
=

⋂
Iα∈A∪B∪C

Iα ⊆ I.

As I is a prime ideal of T , we get
⋂

Iα∈A

Iα ⊆ I or
⋂

Iα∈B

Iα ⊆ I or
⋂

Iα∈C

Iα ⊆ I , i.e. either

I ∈ A or I ∈ B or I ∈ C. Hence I ∈ A ∪ B ∪ C. This shows that A ∪B ∪ C ⊆ A ∪ B ∪ C
and hence A ∪B ∪ C = A∪B ∪C. Since ∅ = ∅, putting C = ∅, we get A ∪B = A∪B. □

Remark 3.1. The mapping A −→ A is a closure operator on P .

Definition 3.13. The closure operator A −→ A induces a topology τ on P . This topology
τ is called the hull-kernel topology and the topological space (P, τ) is called the structure
space of the partially ordered ternary semigroup T .

For any ideal I of T , we define X(I) = {J ∈ P : I ⊆ J} and Y (I) = P \X(I) = {J ∈
P : I ̸⊆ J}.

Theorem 3.3. Any closed set in P is of the form X(I) where I is a ideal of T .
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Proof. Let A be any closed set in P , where A ⊆ P . Let A = {Iα : α ∈ ∆} where ∆ is an
index set and I =

⋂
Iα∈A

Iα. Then I is a ideal of T . Let J ∈ A then
⋂

Iα∈A

Iα ⊆ J ⇒ I ⊆ J .

Therefore J ∈ X(I) and so A ⊆ X(I). If J ∈ X(I) then I ⊆ J ⇒
⋂

Iα∈A

Iα ⊆ J . Therefore

J ∈ A and hence X(I) ⊆ A. Thus A = X(I). □

Corollary 3.1. Any open set in P is of the form Y (I) where I is a ideal of T .

Let I be a ideal of T , we define for any a ∈ T , X(a) = {I ∈ P : a ∈ I} and Y (a) =
P \X(a) = {I ∈ P : a /∈ I}.

Theorem 3.4. The set {Y (a) :a∈T} forms a base for open sets for the hull-kernel topology τ on
P .

Proof. Let G be any open set in τ i.e. G ∈ τ . Then by Corollary 3.1, we have G = Y (I)
where I is an ideal of T . For any J ∈ G = Y (I) we have I ̸⊆ J . This implies that
there exists a ∈ I such that a /∈ J . Hence J ∈ Y (a). Therefore G ⊆ Y (a). Now to
show that Y (a) ⊆ G. Let K ∈ Y (a). Then a /∈ K. This gives that, I ̸⊆ K. Therefore
K ∈ Y (I) = G. Hence Y (a) ⊆ G. Thus we get J ∈ Y (a) ⊆ G. Then G =

⋃
a∈T

Y (a).

Therefore {Y (a) : a ∈ T} forms an open base for the hull-kernel topology τ on P . □

Theorem 3.5. The structure space (P, τ) is a T0-space.

Proof. Let I and J be two distinct elements of P . Then there is an element a either in I \ J
or in J \ I . Assume that a ∈ I \ J . But then J ∈ Y (a) and I /∈ Y (a) i. e. Y (a) is a
neighborhood of J not containing I . Hence (P, τ) is a T0-space. □

Theorem 3.6. The structure space (P, τ) is a T1-space if and only if no element of P is contained
in any other element of P .

Proof. Suppose that (P, τ) is a T1-space. Let I and J be any two distinct elements of P .
Then each I and J has a neighborhood not containing the other. Since I and J are arbitrary
elements of P , this shows that no element of P is contained in any other element of P .

Conversely, suppose that no element of P is contained in any other element of P . Let
I and J be any two distinct elements of P . Then by assumption either I ̸⊂ J and J ̸⊂ I .
Therefore there exist a, b ∈ T such that a ∈ I , a /∈ J and b ∈ J , b /∈ I . Then we have
I ∈ Y (b) but I /∈ Y (a) and J ∈ Y (a) but J /∈ Y (b), it means that, each of I and J has a
neighborhood not containing the other. Hence (P, τ) is a T1-space. □

Corollary 3.2. If (P, τ) is a Hausdorff space, then no prime ideal contains any other prime ideal.
Alternatively, If the space (P, τ) is a Hausdorff space then the set of all minimal prime ideals and
maximal ideals coincide.

Corollary 3.3. Let M be the set of all proper maximal ideals of a partially ordered ternary semi-
group T with identity. Then (M, τM) is a T1-space, where τM is the induced topology on M from
(P, τ).

Theorem 3.7. The structure space (P, τ) is a Hausdorff space if and only if for any two distinct
pair of elements I and J of P there exist a, b ∈ T such that a /∈ I , b /∈ J and there does not exist
any element K of P such that a /∈ K and b /∈ K.

Proof. Suppose that (P, τ) is a Hausdorff space. Then for any two distinct pair of elements
I and J of P there exists two basic open sets Y (a) and Y (b) such that I ∈ Y (a), J ∈ Y (b)
and Y (a) ∩ Y (b) = ∅. Now I ∈ Y (a) and J ∈ Y (b) imply that a /∈ I and b /∈ J . Let
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if possible there exist K in P such that a /∈ K and b /∈ K. Then K ∈ Y (a) ∩ Y (b), a
contradiction, since Y (a) ∩ Y (b) = ∅. Thus there does not exist any element K of P such
that a /∈ K and b /∈ K.

Conversely, Suppose that the given condition holds. To show the space (P, τ) is a
Hausdorff space. Let I and J be two distinct elements of P . Then by assumption there
exists a, b ∈ T such that a /∈ I, b /∈ J and there does not exist any K of P such that a /∈ K
and b /∈ K. Then I ∈ Y (a), J ∈ Y (b) and Y (a) ∩ Y (b) = ∅. Hence (P, τ) is a Hausdorff
space. □

Theorem 3.8. If (P, τ) is a Hausdorff space containing more than one element then there exist
a, b ∈ T such that P = Y (a) ∪ Y (b) ∪X(I) where I is the ideal generated by a, b in T .

Proof. Suppose that (P, τ) is a Hausdorff space containing more than one element. Let
J,K ∈ P such that J ̸= K. Since (P, τ) is a Hausdorff space, there exists two basic open
sets Y (a) and Y (b) such that J ∈ Y (a),K ∈ Y (b) and Y (a) ∩ Y (b) = ∅. Let I be the ideal
generated by a, b ∈ T . Then I is the smallest ideal containing a and b. Let L ∈ P . Then
either a ∈ L, b /∈ L or a /∈ L, b ∈ L or a, b ∈ L. The case, a /∈ L, b /∈ L is not possible,
since a /∈ L, b /∈ L implies that L ∈ Y (a) and L ∈ Y (b) that is L ∈ Y (a) ∩ Y (b) which
is not possible because Y (a) ∩ Y (b) = ∅. Now in the first case, L ∈ Y (b) and hence P ⊆
Y (a)∪Y (b)∪X(I). In the second case, L ∈ Y (a) and hence P ⊆ Y (a)∪Y (b)∪X(I). In the
third case, L ∈ X(I) and hence P ⊆ Y (a)∪Y (b)∪X(I). Therefore P ⊆ Y (a)∪Y (b)∪X(I).
But Y (a) ∪ Y (b) ∪X(I) ⊆ P . Hence P = Y (a) ∪ Y (b) ∪X(I). □

Theorem 3.9. The structure space (P, τ) is a regular space if and only if for any I ∈ P and a /∈ I
for a ∈ T there exist an ideal J of T and b ∈ T such that I ∈ Y (b) ⊆ X(J) ⊆ Y (a).

Proof. Suppose that (P, τ) is a regular space. Let I ∈ P and a /∈ I for a ∈ T . As a /∈ I ,
we have I ∈ Y (a) and Y (a) is an open set of P implies X(a) = P \ Y (a) is a closed set
of P not containing I . As (P, τ) is a regular space, there exist two disjoints open sets
say G and H such that I ∈ G,P \ Y (a) ⊆ H and G ∩ H = ∅. P \ Y (a) ⊆ H implies
that P \ H ⊆ Y (a). Since H is an open set of P implies P \ H is a closed set and hence
there exist a ideal J of T such that, P \ H = X(J), by Theorem 3.3. So we find that
X(J) ⊆ Y (a). Again G ∩H = ∅, we have H ⊆ P \G. Since G is open set, P \G is closed
and hence there exists a ideal K of T such that P \ G = X(K) i. e. H ⊆ X(K). Since
I ∈ G, I /∈ P \ G = X(K). This implies that K ̸⊆ I . Thus there exists b ∈ K(⊂ T ) such
that b /∈ I . So I ∈ Y (b). Now we show that H ⊆ X(b). Let M ∈ H ⊆ X(K). Then K ⊆ M .
Since b ∈ K, it gives that b ∈ M and hence M ∈ X(b). Therefore H ⊆ X(b). This implies
that P \X(b) ⊆ P \H = X(J) ⇒ Y (b) ⊆ X(J). Thus we get for any I ∈ P there exist an
ideal J of T and b ∈ T such that I ∈ Y (b) ⊆ X(J) ⊆ Y (a).

Conversely, suppose that for any I ∈ P and a /∈ I, a ∈ T there exist an ideal J of T and
b ∈ T such that I ∈ Y (b) ⊆ X(J) ⊆ Y (a). To show the space (P, τ) is a regular space. Let
I ∈ P and X(K) be any closed set not containing I . Since I /∈ X(K), we have K ̸⊆ I . This
implies that there exists a ∈ K such that a /∈ I . Now by the given condition, there exists a
ideal J of T and b ∈ T such that I ∈ Y (b) ⊆ X(J) ⊆ Y (a). Since a ∈ K,Y (a) ∩X(K) = ∅.
This implies that X(K) ⊆ P \ Y (a) ⊆ P \ X(J). Since X(J) is a closed set, P \ X(J) is
an open set containing the closed set X(K). Therefore Y (b) ∩ (P \X(J)) = ∅. So we find
that Y (b) and P \ X(J) are two disjoints open sets containing I and X(K) respectively.
Therefore (P, τ) is a regular space. □

Corollary 3.4. The structure space (P, τ) is a T3-space if and only if for any I ∈ P and a /∈ I for
a ∈ T there exist an ideal J of T and b ∈ T such that I ∈ Y (b) ⊆ X(J) ⊆ Y (a).
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Theorem 3.10. The structure space (P, τ) is a compact space if and only if for any collection
{ai}i∈∆ (where ∆ is indexing set) of T there exists a finite subcollection {a1, a2, . . . , an} in T
such that I ∈ P there exist ai such that ai /∈ I .

Proof. Suppose that (P, τ) is a compact space. Then the open cover {Y (ai) : ai ∈ T} of
(P, τ) has a finite subcover {Y (ai) : i = 1, 2, . . . , n}. Let I be any element of P . Then
I ∈ {Y (ai) : i = 1, 2, . . . , n}. Therefore I ∈ Y (ai) for some ai ∈ T . Hence ai /∈ I . Thus
{a1, a2, . . . , an} is the required finite subcollection of elements of T such that for any I ∈ P
there exist ai such that ai /∈ I .

Conversely, suppose that the given condition holds. To show the space (P, τ) is a
compact space. Let {Y (ai) : ai ∈ T} be an open cover of (P, τ). Assume that no
finite subcollection of {Y (ai) : ai ∈ T} be forms a cover of P . This means that for
any finite set {a1, a2, . . . , an} of elements of T , Y (a1) ∪ Y (a2) ∪ . . . ∪ Y (an) ̸= P ⇒
P \ [Y (a1) ∪ Y (a2) ∪ . . . ∪ Y (an)] ̸= ∅ ⇒ X(a1) ∩ X(a2) ∩ . . . ∩ X(an) ̸= ∅. This implies
there exist I ∈ P such that I ∈ X(a1) ∩X(a2) ∩ . . . ∩X(an) gives that a1, a2, . . . , an ∈ I .
Which is a contradiction to our hypothesis. Hence our assumption {Y (ai) : ai ∈ T} has no
finite subcover which covers P is wrong. Therefore {Y (ai) : ai ∈ T} has finite subcover
which covers P . Hence (P, τ) is a compact space. □

Corollary 3.5. If T is finitely generated, then the space (P, τ) is compact.

Proof. Let {a1, a2, . . . , an} be a finite set of generators of T . Then for any I ∈ P there exist
ai such that ai /∈ I . Hence by Theorem 3.10, (P, τ) is a compact space. □

The arbitrary intersection of all prime ideals of T is a semiprime ideal of T , provided it
is non-empty. We give a necessary condition for the intersection of prime ideals of T to be
a prime ideal in the following theorem,

Theorem 3.11. Let {Ii}i∈∆ (where ∆ is any indexing set) be a family of all prime ideals of T such
that {Ii}i∈∆ forms a chain of ideals then

⋂
i∈∆

Ii is a prime ideal of T.

Proof. Let {Ii}i∈∆ (where ∆ is any indexing set) be a family of all prime ideals of T. It
is clear that

⋂
i∈∆

Ii is an ideal of T. Let I1, I2 and I3 be any three ideals of T such that

I1I2I3 ⊆
⋂
i∈∆

Ii. If either I1 ⊆ Ii ∀i ∈ ∆ or I2 ⊆ Ii ∀i ∈ ∆ or I3 ⊆ Ii ∀i ∈ ∆ then either

I1 ⊆
⋂
i∈∆

Ii or I2 ⊆
⋂
i∈∆

Ii or I3 ⊆
⋂
i∈∆

Ii . If possible, let I1, I2, I3 ̸⊆
⋂
i∈∆

Ii then there exist

i, j and k such that I1 ̸⊆
⋂
i∈∆

Ii, I2 ̸⊆
⋂
j∈∆

Ij and I3 ̸⊆
⋂
k∈∆

Ik. Since {Ii}i∈∆ form a chain

of ideals, let Ii ⊆ Ij ⊆ Ik. This implies that I2, I3 ̸⊆ Ii. Since I1I2I3 ⊆ Ii and Ii is prime
ideal of T , we must have either I1 ⊆ Ii or I2 ⊆ Ii or I3 ⊆ Ii. Which is a contradiction.
Therefore, either I1 ⊆

⋂
i∈∆

Ii or I2 ⊆
⋂
i∈∆

Ii or I3 ⊆
⋂
i∈∆

Ii . Hence
⋂
i∈∆

Ii is a prime ideal of

T. □

Definition 3.14. The structure space (P, τ) of T is called irreducible if for any decompo-
sition P = U ∪ V ∪ W , where U ,V and W are closed subsets of P then either P = U or
P = V or P = W .

Theorem 3.12. Let U be a closed subset of P . Then U is irreducible if and only if
⋂

Ii∈ U
Ii is a

prime ideal of T .



On Prime Ideal Space of a Partially Ordered Ternary Semigroup 83

Proof. Assume that U is irreducible. To prove that
⋂

Ii∈ U
Ii is a prime ideal of T . Let A,B

and C be any three ideals of T such that ABC ⊆
⋂

Ii∈ U
Ii. Then ABC ⊆ Ii, ∀ i. As Ii is a

prime ideal of T , we have A ⊆ Ii or B ⊆ Ii or C ⊆ Ii, ∀ i. Then Ii ∈ U ∩A or Ii ∈ U ∩B or
Ii ∈ U ∩C give Ii ∈ (U ∩A)∪(U ∩B)∪(U ∩C). Therefore U = (U ∩A)∪(U ∩B)∪(U ∩C) =[
(U ∩A) ∪ (U ∩B)

]
∪(U ∩C). But (U ∩A), (U ∩B) and (U ∩C) are closed subsets of U and

U is irreducible imply, U = (U ∩A)∪(U ∩B) or U = (U ∩C) ⇒ U = (U ∩A) or U = (U ∩B)

or U = (U ∩ C). Hence U ⊆ A or U ⊆ B or U ⊆ C. This shows that, A ⊆
⋂

Ii∈ U
Ii or

B ⊆
⋂

Ii∈ U
Ii or C ⊆

⋂
Ii∈ U

Ii. Therefore
⋂

Ii∈ U
Ii is a prime ideal of T .

Conversely, suppose that
⋂

Ii∈ U
Ii is a prime ideal of T . To show that U is irreducible.

Let X ,Y and Z are closed subsets of U such that U = X ∪ Y ∪ Z . Then
⋂

Ii∈ U
Ii ⊆⋂

Ii∈ X
Ii,

⋂
Ii∈ U

Ii ⊆
⋂

Ii∈ Y
Ii and

⋂
Ii∈ U

Ii ⊆
⋂

Ii∈ Z
Ii. We have,

⋂
Ii∈ U

Ii =
⋂

Ii∈ X ∪ Y ∪ Z
Ii =

( ⋂
Ii∈ X

Ii

)
∩

( ⋂
Ii∈ Y

Ii

)
∩

( ⋂
Ii∈ Z

Ii

)

Now,( ⋂
Ii∈X

Ii

)( ⋂
Ii∈Y

Ii

)( ⋂
Ii∈Z

Ii

)
⊆

( ⋂
Ii∈X

Ii

)
∩

( ⋂
Ii∈Y

Ii

)
∩

( ⋂
Ii∈Z

Ii

)
=

⋂
Ii∈ X ∪ Y ∪ Z

Ii=
⋂
Ii∈U

Ii.

Since,
⋂

Ii∈ U
Ii is prime ideal of T , then we have

⋂
Ii∈ X

Ii ⊆
⋂

Ii∈ U
Ii or

⋂
Ii∈ Y

Ii ⊆
⋂

Ii∈ U
Ii or⋂

Ii∈ Z
Ii ⊆

⋂
Ii∈ U

Ii. Therefore
⋂

Ii∈ U
Ii =

⋂
Ii∈ X

Ii or
⋂

Ii∈ U
Ii =

⋂
Ii∈ Y

Ii or
⋂

Ii∈ U
Ii =

⋂
Ii∈ Z

Ii.

Now for any Ik ∈ U . Then we have
⋂

Ii∈ U
Ii =

⋂
Ii∈ X

Ii ⊆ Ik or
⋂

Ii∈ U
Ii =

⋂
Ii∈ Y

Ii ⊆ Ik or⋂
Ii∈ U

Ii =
⋂

Ii∈ Z
Ii ⊆ Ik. Since X ,Y and Z are closed subsets of U , so either Ii ⊆ Ik for all

Ii ∈ X or Ii ⊆ Ik for all Ii ∈ Y or Ii ⊆ Ik for all Ii ∈ Z . Thus Ik ∈ X = X or Ik ∈ Y = Y
or Ik ∈ Z = Z , since X ,Y and Z are closed subsets of U . Therefore U ⊆ X or U ⊆ Y or
U ⊆ Z . Hence U = X or U = Y or U = Z . Consequently, U is irreducible. □

For any subset U of P , we define R(U) =
⋂

Ij∈ U
Ij . Clearly R(P) =

⋂
Ij∈ P

Ij is P-radical

of T . Always R(P) ⊆ R(U). We know that U ⊆ P is dense in P if U = P .

Theorem 3.13. The subset U of P is dense in P if and only if R(U) = R(P).

Proof. Suppose that the subset U of P is dense in P . Since U ⊆ P , we have R(P) ⊆ R(U).
To show that R(U) ⊆ R(P). As U = P gives U = {I ∈ P :

⋂
Iα∈ U

Iα ⊆ I} = P . A ∈ P
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implies A ∈ U . Then R(U) ⊆ A. As this is true for each A ∈ P , we get R(U) =
⋂

Iα∈ U
Iα ⊆⋂

Iα∈ P
Iα = R(P). Hence R(U) = R(P).

Conversely, suppose that R(U) = R(P). To show that U = P . Assume that P \ U ≠ ∅.
Then there is a prime ideal say A of T such that A ∈ P \U that is A ∈ P and A /∈ U . A /∈ U
implies there exists any open set say Y (I) containing A such that Y (I) ∩

(
U \ {A}

)
= ∅.

That is open set of P containing A does not contains any other element of U other than A.
Therefore R(P) =

⋂
Iα∈ P

Iα ⊂ R(U) =
⋂

Iα∈ U
Iα. Then R(U) ̸= R(P), which contradicts our

hypothesis. Thus P \ U = ∅. Hence U = P i.e. U is dense in P . □

Definition 3.15. A partially ordered ternary semigroup T is called a Noetherian partially
ordered ternary semigroup if it satisfies the ascending chain condition for ideals of T , for
any sequence I1 ⊆ I2 ⊆ I3 ⊆ . . . of ideals of T , then there exists a positive integer m such
that Im = Im+1 = . . .

Theorem 3.14. [6] A topological space is compact if and only if each family of closed sets which
has the finite intersection property has a non-void intersection.

Theorem 3.15. If T is a Noetherian partially ordered ternary semigroup then the structure space
(P, τ) is countably compact.

Proof. Let {X(In)}∞n = 1 be a countable collection of closed sets in P with finite intersection
property. Let us consider the following ascending chain of prime ideals of T ,

⟨I1⟩ ⊆ ⟨I1 ∪ I2⟩ ⊆ ⟨I1 ∪ I2 ∪ I3⟩ ⊆ . . .

Since T is a Noetherian partially ordered ternary semigroup there exist a positive integer
m such that,

⟨I1 ∪ I2 ∪ . . . ∪ Im⟩ = ⟨I1 ∪ I2 ∪ . . . ∪ Im+1⟩ = . . .

Thus it follows that ⟨I1 ∪ I2 ∪ . . . ∪ Im⟩ ∈
∞⋂

n = 1

X(In). Hence
∞⋂

n = 1

X(In) ̸= ∅ and hence

(P, τ) is countably compact. □

Corollary 3.6. If T is a Noetherian partially ordered ternary semigroup and (P, τ) is second
countable then (P, τ) is compact.

Proof. Proof follows from Theorem 3.15 and the fact that a second countable space is com-
pact if it is countably compact. □

The set of all idempotent elements of T is denoted by E(T ), i.e. E(T ) = {a ∈ T : aaa =
a}.

Definition 3.16. An ideal I of T is said to be full ideal if E(T ) ⊆ I.

Definition 3.17. An ideal I of T is said to be a prime full ideal if it is both prime and full
ideal.

Let F be the family of all prime full ideals of T . Then we see that F is a subset of P and
(F , τF ) is a topological space where τF is the subspace topology.

Theorem 3.16. The space (F , τF ) is a compact space if E(T ) ̸= {0}.
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Proof. Let {X(Ii)}i∈∆ (where ∆ is any indexing set) be any collection of closed sets in F
with finite intersection property. Let I be the prime full ideal generated by E(T ). Since
any prime full ideal J of T contains E(T ), then J contains I . Hence I ∈

⋂
i∈∆

X(Ii) ̸= ∅.

Consequently, the space (F , τF ) is a compact space. □

Theorem 3.17. The space (F , τF ) is a connected space if E(T ) ̸= {0}.

Proof. Let I be the prime ideal generated by E(T ). Since any prime full ideal J contains
E(T ), J contains I . Hence I belongs to any closed set X(K) of F . Consequently, any two
closed sets of F are not disjoint. Hence (F , τF ) is a connected space. □

4. CONCLUSION

This paper is a continuation of the study of ideals in a partially ordered ternary semi-
group. We have mainly focused here on the space of prime ideals of partially ordered
ternary semigroups. In this article, we consider the set P of all prime ideals in a partially
ordered ternary semigroup T endowed with the topology τ . We investigated various
topological properties of space (P, τ). This topological space (P, τ) is referred to as the
structure space of the partially ordered ternary semigroup T . Furthermore, we have intro-
duced the concept of prime full ideals in partially ordered ternary semigroups and proved
that the space of prime full ideals of a partially ordered ternary semigroup is compact. The
study of bi-ideals in a ternary semigroup will be considered in future work.
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