
CREAT. MATH. INFORM.
Volume 33 (2024), No. 1,
Pages 87 - 103

Online version at https://creative-mathematics.cunbm.utcluj.ro/

Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X

DOI: https://doi.org/10.37193/CMI.2024.01.09

Leverage Centrality on Barycentric Subdivision of Some
Graphs
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ABSTRACT. The centrality index on a graph is a real-valued function on the nodes, which provides a ranking
of vital nodes in the graph. Each node could be important from an angle, depending on how the concept of
importance is defined. There are various measures of centrality, and each one defines a node’s importance from
a different perspective and provides relevant analytical information about the graph. Leverage centrality of
nodes in a graph was defined by Joyce et al. in 2010 as a means to analyze connections within the brain. The
definition of this measure shows that it is unique among existing measures in that it counts not just a node’s
degree, but also its neighbor’s degrees. In this paper, we study the leverage centrality of nodes in the kth

barycentric subdivision of some classes of graphs. This is a new concept in literature. The process can make
regular graphs irregular, and the leverage center of the edge-subdivided graphs under study was investigated.

1. INTRODUCTION

A graph that can be obtained from a given graph by breaking up each edge into one
or more segments by inserting intermediate vertices between its two ends is called a sub-
division graph. The barycentric subdivision subdivides each edge of the graph. This is
a special subdivision, as it always results in a bipartite graph. The leverage centrality
measure identifies highly influential nodes within a network by identifying their leverage
centrality. Node’s leverage centrality is determined by how well connected they are in
comparison to their neighbor’s networks.

The most popular degree centrality defines central nodes to be those having the highest
number of connections, or degrees. While node degree often proves to identify critical net-
work elements, a highly essential node in the neural network may not necessarily have
ubiquitous connections to other nodes in the network as assumed by degree centrality.
An increasingly popular centrality metric, eigenvector centrality, is unique in that it con-
siders the centrality of immediate neighbors when computing the centrality of a node.
However, eigenvector centrality does not account for the disparity in the degree of a node
concerning its neighbors, which has different implications depending on the network’s
assortativity, or the tendency for nodes to be connected to similar degree nodes. Further-
more, it is computationally intensive as compared to other centrality metrics. Between-
ness centrality considers nodes along the shortest geodesic paths to be the most central
in the network. This centrality assumes that information travels through a network along
the shortest path in a serial fashion. Despite the potential utility of this measure of cen-
trality, it is not ideal for a system that processes information via unrestricted walk such
as the brain, where information typically does not follow shortest paths as they are not
predetermined. Leverage centrality captures nodes in the network which are connected
to more nodes than their neighbors and, therefore, control the content and quality of the
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information received by their neighbors. Leverage is designed to capture the local assor-
tative or disassortative behavior of the network, as node degree is evaluated with respect
to degrees of immediate neighbors [6].

This study is motivated by its application in diagnosing brain tumors. Brain tumors
can damage brain function if they grow large enough to press on surrounding tissues.
The non-neuronal brain cells grow and divide faster than normal, taking over space in the
brain. Since these abnormal cells form a brain hub, it is easily detected by the leverage
centrality using fMRI. A hub is the best connected node and therefore is likely to have
high leverage centrality since its degree is high concerning other nodes in the neighbor-
hood. Also, we can identify an edge in a graph with a cell in an organism, and its kth

barycentric subdivision as the kth division of the parent cell. This is quite what we need
for the reproduction and the growth of the organism. Here we derive some mathemat-
ical perspectives of that division. The leverage analysis in a tissue can be used to check
whether the functioning or growth takes place in a normal manner or not. In [11], we
defined the leverage center of a graph and have determined the same for some special
classes of graphs. As a continuous study, in this paper, we investigate the leverage center
of some edge subdivided graphs.

Definition 1.1. [10] Let G = (V,E) be a graph. Let e = uv be an edge of G and w is not a
vertex of G. The edge e is subdivided when it is replaced by edges e1 = uw and e2 = wv.

Definition 1.2. [10] If every edge of a graph G is subdivided, then the resulting graph is
called the barycentric subdivision of the graph G. In other words, a barycentric subdivi-
sion graph is a graph obtained by inserting a vertex of degree two into every edge of the
original graph. This graph is also known as a subdivision graph.

Definition 1.3. The kth barycentric subdivision is the barycentric subdivision of the
(k − 1)th barycentric subdivision of the graph.

Definition 1.4. The degree of a vertex v is the number of edges incident to v and is denoted
by deg(v).

Now the leverage centrality of a node v is defined as follows:

Definition 1.5. [14] Leverage centrality is a measure of the relationship between the de-
gree of a given node v and the degree of each of its neighbors vi averaged over all neigh-
bors Nv and is defined as:

l(v) =
1

deg(v)

∑
vi∈Nv

deg(v)− deg(vi)

deg(v) + deg(vi)

Definition 1.6. [11] The leverage center of a graph is defined as the set of nodes having
the highest leverage centrality in the graph.

Definition 1.7. [11] Unicentric leverage graphs are those with unique leverage centers.

Definition 1.8. [11] Bicentric leverage graphs are those with exactly two leverage centers.

1.1. Some Basic Propositions on Leverage Centrality.

Proposition 1.1. [8] Let G be a graph with n vertices. For any vertex v, |l(v)| ≤ 1− 2
n . Further-

more, these bounds are tight in the cases of stars and complete graphs.

Proposition 1.2. [4] For any graph G,
∑

v∈G l(v) ≤ 0.

Proposition 1.3. [4] In a graph G, a vertex of lowest degree (highest degree) cannot have a positive
(negative) leverage centrality. It is possible to have all the vertices in a graph except for one to have
negative leverage centrality, similarly, all but one have positive leverage centrality.
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Theorem 1.1. [4] In a graph G of order n, the maximum number of vertices with positive leverage
centrality is n− 1.

The leverage centrality l(v) = 0 for every vertex v ∈ G if and only if G is a regular
graph[4].

2. MAIN RESULTS

In this section, we outline the leverage centrality analysis of nodes in some special
classes of graphs and their leverage types. Firstly we illustrate the barycentric subdivision
of a star graph.

2.1. Star Graph. The star graph K1,n−1 has (n − 1) vertices with negative leverage cen-
trality. The leverage centrality of the central vertex can be calculated as:

1

n− 1

(
(n− 1)

(n− 1)− 1

(n− 1) + 1

)
= 1− 2

n

Also, the leverage centrality of all the pendant vertices is

FIGURE 1. Star Graph K1,8

1− (n− 1)

1 + (n− 1)
= −1 +

2

n

Therefore in the case of star graphs, the leverage centrality meets the two extremes and
only the central vertex has a positive leverage centrality [14]. Hence the central node is
the leverage center for the star graph.
Now we discuss in detail the kth barycentric subdivision of a star graph which we denote
by K1,n−1,k and it divides each edge k times. Firstly we analyse the case k = 1. Here the
central node is of degree (n − 1), all the inner nodes are of degree 2, and the outer nodes
are of degree 1.

There are three cases for the leverage centrality analysis of G = K1,n−1,1 depending on
the types of nodes of G.

(1) Case 1: v ∈ G is the central node
The central node has a degree of n− 1. Also,

Nv = {vi, deg(vi) = 2, 1 ≤ i ≤ n− 1}
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where Nv represents the neighborhood of v. Then

l(v) =
1

n− 1

n−1∑
i=1

(n− 1)− deg(vi)

(n− 1) + deg(vi)

=
1

n− 1
(n− 1)

(n− 1)− 2

(n− 1) + 2

=
n− 3

n+ 1

(2) Case 2: v ∈ G is an outer node
Here Nv consists of a single vertex w with deg(w) = 2. Hence

l(v) =
1− deg(w)

1 + deg(w)

=
−1

3

(3) Case 3: v ∈ G adjacent to both the central and outer vertices

Nv = {c, w where deg(c) = n− 1, deg(w) = 1}

l(v) =
1

2

(
3− n

1 + n
+

1

3

)
=

−(n− 5)

3(n+ 1)

Hence in this case there are only three distinct leverage centralities.
Now we analyze the case k = 2.

FIGURE 2. Barycentric subdivision K1,8,2

Here instead of case 3 above, there are two special cases as explained below. Cases 1
and 2 are similar.

(1) Case 3: v ∈ G is adjacent to the outer node
Nv = {u,w}, where deg(u) = 1 and deg(w) = 2.

l(v) =
1

2

(
2− deg(u)

2 + deg(u)
+

2− deg(w)

2 + deg(w)

)
=

1

6
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(2) Case 4: v ∈ G is adjacent to the central node
Nv = {c, w}, where deg(c) = n− 1 and deg(w) = 2.

l(v) =
1

2

(
2− deg(c)

2 + deg(c)
+

2− deg(w)

2 + deg(w)

)
=

−(n− 3)

2(n+ 1)

Hence there are four distinct leverage centralities in this case. In both cases when n ≥ 4,
G becomes unicentric with the central node as the leverage center.

Finally, for the generalization of the above results in the kth barycentric subdivision for
k ≥ 3, we classify the newly formed vertices as the following three types:

• Type I: v is adjacent to the outer node.
• Type II: v is adjacent to the nodes of degree 2.
• Type III: v is adjacent to the central node.

Now we state our first theorem as follows.

Theorem 2.2. Let G = K1,n−1,k where n ≥ 2, k ≥ 3 be the kth barycentric subdivision of the
star graph K1,n−1 of order n. Then for v ∈ G,

l(v) =



n− 3

n+ 1
, if v is the central node

−1

3
, if v is an outer node.

1

6
, if v is a node of Type I

0, if v is a node of Type II.

−(n− 3)

2(n+ 1)
, if v is a node of Type III.

Proof. Let G = K1,n−1,k where n ≥ 2, k ≥ 3 be the kth barycentric subdivision of the
star graph K1,n−1 of order n. There are five cases for the leverage centrality analysis of
G = K1,n−1,k depending on the types of nodes of G. Here we need to consider only the
case of v ∈ G as a node of Type II. The remaining cases are discussed above.

If v ∈ G is a node of Type II, then Nv = {x,w}, where deg(x) = 2 and deg(w) = 2.

l(v) =
1

2

(
2− deg(x)

2 + deg(x)
+

2− deg(w)

2 + deg(w)

)
= 0

□

Corollary 2.1. Let G = K1,n−1,k where n ≥ 2, k ≥ 3 be the kth barycentric subdivision of the
star graph K1,n−1 of order n. Then

• For n = 2, k ≥ 3, G will be a bicentric leverage graph with Type I and Type III nodes as
leverage centers.

• For n = 3, k ≥ 3, G will be a unicentric leverage graph with Type I nodes as the leverage
center.

• For n ≥ 4, k ≥ 3, G will be a unicentric leverage graph with the central node as leverage
center.

In [12] we can see the analogous result for the most classical betweenness centrality.
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2.2. Wheel Graph. Let Wn be the wheel graph of degree n + 1. We use Wn,k to denote
the kth barycentric subdivision of the wheel Wn. Degree three vertices of the outer cycle
are the outer nodes. The newly formed vertices are classified as:

• Type I: v is adjacent to the outer node.
• Type II: v is adjacent to the nodes of degree 2.
• Type III: v is adjacent to the central node.

FIGURE 3. Wheel W6

Now we have the following theorem.

Theorem 2.3. Let G = Wn,k where n ≥ 3, k ≥ 3 be the kth barycentric subdivision of the wheel
Wn of order n+1. Then for v ∈ G,

l(v) =



n− 2

n+ 2
if v is the central node

1

5
if v is an outer node.

−1

10
if v is a node of Type I

0 if v is a node of Type II

−(n− 2)

2(n+ 2)
if v is a node of Type III

Proof. There are five cases for the leverage centrality analysis of G = Wn,k depending on
the types of nodes of G.

(1) Case 1: v ∈ G is the central node
The central node has a degree of n. Also,

Nv = {vi, 1 ≤ i ≤ n, deg(vi) = 2}

l(v) =
1

n

n∑
i=1

n− deg(vi)

n+ deg(vi)

=
n− 2

n+ 2

(2) Case 2: v ∈ G is an outer node
The outer node has degree 3, and its neighbors vi are of degree 2. Hence

l(v) =
1

3

3∑
i=1

(
3− deg(vi)

3 + deg(vi)

)
=

1

5
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(3) Case 3: v ∈ G is a node of Type I
Nv = {u,w}, where deg(u) = 3 and deg(w) = 2.

l(v) =
1

2

(
2− deg(u)

2 + deg(u)
+

2− deg(w)

2 + deg(w)

)
=

−1

10
(4) Case 4: v ∈ G is a node of Type II

Nv = {x,w}, where deg(x) = 2 and deg(w) = 2.

l(v) =
1

2

(
2− deg(x)

2 + deg(x)
+

2− deg(w)

2 + deg(w)

)
= 0

(5) Case 5: v ∈ G is a node of Type III
Nv = {c, w}, where deg(c) = n and deg(w) = 2.

l(v) =
1

2

(
2− deg(c)

2 + deg(c)
+

2− deg(w)

2 + deg(w)

)
=

−(n− 2)

2(n+ 2)

□

Remark 2.1. When n = 3, k ≥ 3, Wn,k becomes bicentric leverage graph. But for n ≥ 4, it is
unicentric.

Corollary 2.2. Let G = Wn,k where n ≥ 3, k ≥ 3 be the kth barycentric subdivision of the wheel
Wn of order n+1. Then for k = 1 and v ∈ G, we have the following:

l(v) =



n− 2

n+ 2
if v is the central node

1

5
if v is an outer node.

−1

5
if v is a node in between two outer nodes

4− 3n

5(n+ 2)
if v is a node in between the central node and an outer node.

Proof. The first two cases are obvious. If v is in between two outer nodes of degree three,
then

l(v) =
2− 3

5

=
−1

5
Now, if v is in between the central node and an outer node, then

l(v) =
1

2

(
2− n

2 + n
+

2− 3

5

)
=

4− 3n

5(n+ 2)

□

Remark 2.2. When n = 3 and k = 1, Wn,k is bicentric, but for n ≥ 4, it is unicentric.

In [12] we can see the analogous result for the betweenness centrality.
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2.3. Sunflower network. Sunflower network SFn consists of a wheel with central node
c and an n-cycle {v0, v1, . . . , vn−1} and additional n nodes {u0, u1, . . . , un−1} where ui is
joined by links to vi, vi+1 for 0 ≤ i ≤ n− 1, where i+ 1 is taken modulo n. vi’s are major
nodes and ui’s are minor nodes. The central node c of SFn has a node degree of n.

FIGURE 4. Sunflower network SF8

In the kth barycentric subdivision SFn,k of SFn, the newly formed vertices can mainly
be classified as follows:

• Type I: v is adjacent to the major node
• Type II: v is adjacent to the minor node
• Type III: v is adjacent to the central node

Another type of node is those which are adjacent only to the nodes of degree
two other than the minor nodes. Its leverage is zero.

Theorem 2.4. Let G = SFn,k, k ≥ 3 be the kth barycentric subdivision of SFn. Then for v ∈ G,

l(v) =



3

7
if v is a major node

0 if v is a minor node.
n− 2

n+ 2
if v is the central node

−3

14
if v is Type I

0 if v is Type II

−(n− 2)

2(n+ 2)
if v is Type III

Proof. For the major nodes vi, deg(vi) = 5 and all the neighbors are of degree two. Hence

l(v) =
1

5

(
5− 2

7

)
5

=
3

7

For the minor nodes, l(v) = 0. For the central node c,

l(v) =
1

n

(
n− 2

n+ 2

)
n

=
n− 2

n+ 2
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FIGURE 5. Barycentric subdivision SF8,3

Now, for the type I vertices, since they are adjacent to the major nodes

l(v) =
1

2

(
2− 5

7

)
=

−3

14

Similarly, for the Type II vertices, l(v) = 0. For the Type III vertices,

l(v) =
1

2

(
2− n

2 + n

)
=

−(n− 2)

2(n+ 2)

since they are adjacent to the central node. □

2.4. Helm Network. Helm Hn is a graph of order 2n+ 1 obtained from a wheel Wn with
cycle Cn having a pendant link attached to each node of the cycle. Hn consists of the
node set V (Hn) = {vi : 0 ≤ i ≤ n− 1} ∪ {ui : 0 ≤ i ≤ n− 1} ∪ {c} and link set E(Hn) =
{vivi+1 : 0 ≤ i ≤ n− 1} ∪ {viui : 0 ≤ i ≤ n− 1} ∪ {vic : 0 ≤ i ≤ n− 1}, where i+1 is taken
modulo n. The central node c of Hn has a node degree of n. Here vi’s are major nodes and
the pendant ui’s are minor nodes.

In the kth barycentric subdivision Hn,k of Hn, the newly formed vertices are classified
as follows:

• Type I: v is adjacent to the major node
• Type II: v is adjacent to the minor node
• Type III: v is adjacent to the central node
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Theorem 2.5. Let G = Hn,k , k ≥ 3 be the kth barycentric subdivision of Hn. Then for v ∈ G,

l(v) =



1

3
if v is a major node

−1

3
if v is a minor node.

n− 2

n+ 2
if v is the central node

−1

6
if v is Type I

1

6
if v is Type II

−(n− 2)

2(n+ 2)
if v is Type III

Proof. The major nodes vi’s are of degree 4, and all the neighbors are of degree two. Hence

l(v) =
1

4

(
4− 2

6

)
4

=
1

3

For the minor nodes,

l(v) =
1− 2

1 + 2

=
−1

3

For the central node c,

l(v) =
1

n

(
n− 2

n+ 2

)
n

=
n− 2

n+ 2

Now, for the type I vertices, since they are adjacent to the major nodes

l(v) =
1

2

(
2− 4

6

)
=

−1

6

Similarly, for the Type II vertices,

l(v) =
1

2

(
2− 1

3

)
=

1

6

For the Type III vertices,

l(v) =
1

2

(
2− n

2 + n

)
=

−(n− 2)

2(n+ 2)

since they are adjacent to the central node. □
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2.5. Fans. If we join a node of Cn to all other nodes, then the resulting graph is called a
fan and is denoted by Fn. Let {c, v0, v1, . . . , vn−2} be the nodes of Fn, where v0 and vn−2

are the nodes of degree two and let c be the node that is connected to all other nodes. Then
c is the central node of Fn with degree n − 1. The nodes of degree two are referred to as
minor nodes and the nodes of degree three to as major nodes.

In the kth barycentric subdivision Fn,k of Fn, the newly formed vertices can mainly be
classified as follows:

• Type I: v is adjacent to the major node
• Type II: v is adjacent to the minor node
• Type III: v is adjacent to the central node

Theorem 2.6. Let G = Fn,k , k ≥ 3 be the kth barycentric subdivision of Fn. Then for v ∈ G,

l(v) =



1

5
if v is a major node

0 if v is a minor node.
n− 3

n+ 1
if v is the central node

−1

10
if v is Type I

0 if v is Type II

−(n− 3)

2(n+ 1)
if v is Type III

Proof. The major nodes vi’s are of degree 3, and all the neighbors are of degree two. Hence

l(v) =
1

3

(
3− 2

5

)
3

=
1

5

For the minor nodes, l(v) = 0. For the central node c,

l(v) =
1

n− 1

(
(n− 1)− 2

n− 1 + 2

)
(n− 1)

=
n− 3

n+ 1

Now, for the type I vertices, since they are adjacent to the major nodes

l(v) =
1

2

(
2− 3

5

)
=

−1

10

Similarly, for the Type II vertices, l(v) = 0
For the Type III vertices,

l(v) =
1

2

(
2− (n− 1)

2 + (n− 1)

)
=

−(n− 3)

2(n+ 1)

since they are adjacent to the central node. □
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2.6. Friendship Graph. The kth barycentric subdivision of the friendship graph fn is de-
noted by fn,k where n ≥ 1, and k ≥ 2. In the friendship graph fn, the central vertex has a
node degree of 2n, and all other remaining vertices of degree 2 can be further classified in
a kth barycentric subdivision as follows:

• Type I: v is adjacent to the corners of the triangle.
• Type II: v is adjacent to the nodes of degree 2.
• Type III: v is adjacent to the central node.

Here, by the corners of the triangle we mean the two corners other than the central node.

Theorem 2.7. Let G= fn,k where n ≥ 1, k ≥ 2 be the kth barycentric subdivision of the friendship
graph fn of order 2n+ 1. Then for v ∈ G,

l(v) =


n− 1

n+ 1
if v is the central node.

0 if v is a node of Type I or Type II.

−(n− 1)

2(n+ 1)
if v is a node of Type III.

Proof. The central node v has a degree of 2n, and all its neighbors are of degree 2. Hence

l(v) =
1

2n

(
2n− 2

2n+ 2

)
2n

=
n− 1

n+ 1

Now if v is a Type I or Type II node, its neighbors are of degree 2. So l(v) = 0 in this case.
Finally, if v is a node of Type III, it is adjacent to both the central node and a node of degree
2. Hence

l(v) =
1

2

(
2− 2n

2 + 2n

)
=

−(n− 1)

2(n+ 1)

□

Remark 2.3. For n > 1, the friendship graph fn is unicentric.

In [12] we can see the analogous result for the betweenness centrality.

2.7. Butterfly Graph. The butterfly graph is a planar undirected graph with 5 vertices
and 6 edges. It can be constructed by joining 2 copies of the cycle graph C3 with a common
vertex and is therefore isomorphic to the friendship graph f2.

2.8. Petersen Graph. Petersen graph is 3-regular and hence the leverage centrality of
each node is zero. If G denotes the Petersen graph, then the kth barycentric subdivision
of G is denoted by Gk. For k ≥ 3, we classify the newly formed nodes as follows:

• Type I: v is adjacent to the corner node(inner or outer).
• Type II: v is adjacent to the nodes of degree 2.
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Theorem 2.8. Let G= Gk, k ≥ 3 be the kth barycentric subdivision of the Petersen graph. Then
for v ∈ G,

l(v) =


1

5
if v is the corner node(both inner and outer)

−1

10
if v is a node of Type I.

0 if v is a node of Type II.

Proof. Both the inner and outer corner nodes are of degree 3 and its neighbors vi are of
degree 2. Hence if v is a corner node, then

l(v) =
1

3

3∑
i=1

3− deg(vi)

3 + deg(vi)

=
1

5

Now if v is a node of Type I, then one of its neighbors is the corner node which has degree
3 and the other neighbor is of degree 2. Hence

l(v) =
1

2

(
2− 3

5

)
=

−1

10

The remaining case is obvious. □

Corollary 2.3. Let G= Gk, k = 1 be the first barycentric subdivision of the Petersen graph. Then
for v ∈ G,

l(v) =


1

5
if v is the corner node(both inner and outer)

−1

5
if v is a node of Type I.

2.9. Moser spindle. The Moser spindle is a 7-node unicentric leverage graph with the
degree 4 nodes as the leverage center. In the kth, k ≥ 3 barycentric subdivision of the
moser spindle, we classify the nodes of degree 2 as follows:

• Type I: v is adjacent to the degree 4 node
• Type II: v is adjacent to the nodes of degree 2
• Type III: v is adjacent to the nodes of degree 3

Theorem 2.9. Let G= Gk, k ≥ 3 be the kth barycentric subdivision of the Moser spindle. Then
for v ∈ G,

l(v) =



1

3
if v is the degree 4 node.

1

5
if v is a degree 3 node.

−1

6
if v is a node of Type I.

0 if v is a node of Type II.
−1

10
if v is a node of Type III.
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Proof. If v is the degree 4 node, then Nv = {vi : deg(vi) = 2, 1 ≤ i ≤ 4}

l(v) =
1

4

4∑
i=1

4− deg(vi)

4 + deg(vi)

=
1

3

If v is a degree 3 node, then Nv = {vi : deg(vi) = 2, 1 ≤ i ≤ 3}

l(v) =
1

3

3∑
i=1

3− deg(vi)

3 + deg(vi)

=
1

5

Now if v is a node of Type I, then Nv = {u,w} where deg(u) = 4 and deg(w) = 2

l(v) =
1

2

(
2− deg(u)

2 + deg(u)
+

2− deg(w)

2 + deg(w)

)
=

−1

6

If v is a node of Type II, then clearly l(v) = 0. Finally if v is a node of Type III, then
Nv = {u,w} where deg(u) = 3 and deg(w) = 2

l(v) =
1

2

(
2− deg(u)

2 + deg(u)

)
=

−1

10
□

Corollary 2.4. Let G= Gk, k = 1 be the first barycentric subdivision of the Moser spindle. Then
for v ∈ G,

l(v) =



1

3
if v is the degree 4 node.

1

5
if v is a degree 3 node.

−4

15
if v is in between the degree 4 and a degree 3 node

−1

5
if v is in between two degree 3 nodes

Proof. The first two cases are obvious. If v is in between the degree 4 and a degree 3 node,
then Nv = {u,w} where deg(u) = 4 and deg(w) = 3

l(v) =
1

2

(
2− deg(u)

2 + deg(u)
+

2− deg(w)

2 + deg(w)

)
=

−4

15

If v is in between two degrees 3 nodes, then Nv = {u,w} where deg(u) = 3 and deg(w) = 3

l(v) =
1

2

(
2− deg(u)

2 + deg(u)
+

2− deg(w)

2 + deg(w)

)
=

−1

5
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□

Corollary 2.5. Let G= Gk, k = 2 be the second barycentric subdivision of the Moser spindle.
Then for v ∈ G, we get the same result as the above theorem except in the case that the Type II
nodes are not there.

2.10. Bull Graph. The bull graph is a planar undirected graph with 5 vertices and 5
edges, in the form of a triangle with two disjoint pendant edges. It is a bicentric lever-
age graph with a centrality of 7

30 . Two corners of the triangle have a degree of 3 and the
other corner is of degree 2. In the kth barycentric subdivision, the newly formed nodes
can be classified as:

• Type I: v is adjacent to the degree 3 corner node
• Type II: v is adjacent to the nodes of degree 2.
• Type III: v is adjacent to the pendant node

Theorem 2.10. Let G= Gk, k ≥ 2 be the kth barycentric subdivision of the Bull Graph. Then for
v ∈ G,

l(v) =



1

5
if v is a degree 3 corner node.

−1

10
if v is a node of Type I.

0 if v is a node of Type II.
1

6
if v is a node of Type III.

−1

3
if v is a pendant vertex.

Proof. If v is a degree 3 corner node, then Nv = {vi : deg(vi) = 2, 1 ≤ i ≤ 3}

l(v) =
1

3

3∑
i=1

3− deg(vi)

3 + deg(vi)

=
1

5

Now if v is a node of Type I ,then Nv = {u,w} where deg(u) = 3 and deg(w) = 2

l(v) =
1

2

(
2− deg(u)

2 + deg(u)
+

2− deg(w)

2 + deg(w)

)
=

−1

10

If v is a node of Type II, then clearly l(v) = 0. Now if v is a node of Type III, then Nv =
{u,w} where deg(u) = 2 and deg(w) = 1

l(v) =
1

2

(
2− deg(w)

2 + deg(w)

)
=

1

6
If v is the pendant node, then

l(v) =
1− 2

3

=
−1

3
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□

Theorem 2.11. Let G= Gk, k = 1 be the first barycentric subdivision of the Bull Graph. Then for
v ∈ G,

l(v) =



1

5
if v is a degree 3 corner node.

−1

10
if v is adjacent to degree 2 and degree 3 corners

−1

5
if v is in between degree 3 nodes.

0 if v is a node of Type II.
1

15
if v is a node of Type III.

−1

3
if v is a pendant vertex.

Definition 2.9. A null leverage graph is a graph in which all the vertices are of leverage zero.

Before concluding, we narrate an application of barycentric subdivision by converting
a null leverage graph to a non-null leverage graph. Cn(Cn) is the graph obtained by taking
the barycentric subdivision of the cycle Cn and joining each newly inserted vertices of two
incident edges by an edge [13]. It resembles Cn inscribed in Cn. We label the vertices of

FIGURE 6. C7(C7)

the underlying cycle Cn as {u1, u2, ..., un} and that of the inner cycle as {v1, v2, ..., vn}.
Since the cycle is 2-regular, the leverage of all the vertices is zero. But the newly formed
graph Cn(Cn) is a non-null leverage graph. Since

l(ui) =
1

2

(
2− 4

6

)
2

=
−1

3

and

l(vi) =
1

4

(
4− 2

6

)
2

=
1

6

So the leverage centers are changed from ui to vi, i = 1, 2, ..., n in Cn(Cn).
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3. CONCLUSIONS

The leverage centrality analysis in the kth barycentric subdivision of some classes of
graphs has been investigated and we found some regularity in centrality for k ≥ 3. When
we compare the result with the most classical betweenness centrality, we find that the cen-
trality varies with k in the case of betweenness centrality, as it is based on the number of
shortest paths. Using barycentric subdivision and some graph operations, we can study
and compare the leverage centers of various graphs, the number of distinct leverage cen-
tralities, the bounds of leverage centralities, etc. Also, this study can be extended to other
centrality measures.

Acknowledgments. Our thanks go out to an anonymous referee who provided helpful
feedback.
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