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On the Anti-Adjacency Spectra of Regular Graphs

FALGUNI JAIN D1 AND SUDEV NADUVATH2

ABSTRACT. For a graph G with vertex set V (G) = {v1, . . . , vn}, the anti-adjacency matrix, denoted by
A∗(G) is a square matrix of order n with rows and columns indexed by V (G), whose (i, j)− entry (i ̸= j) is 1,
if the vertices vi and vj are not adjacent and 0, otherwise. The diagonal entries of A∗(G) is 1. The eigenvalues
obtained from A∗(G) are called the anti-adjacency eigenvalues of the graph G and the corresponding spectra is
called the anti-adjacency spectra, denoted by a-spec(G). In this paper, we discuss the anti-adjacency spectra of
connected and disconnected regular graphs and their complement graphs.

1. INTRODUCTION

For definitions and concepts in graph theory, we refer to [14, 6]; for the concepts and
results in linear algebra, see [8, 13]. For further topics in spectral graph theory, see [3, 12].
Unless mentioned otherwise, all graphs mentioned in this paper are simple, finite and
undirected.

Studying the structural properties of graphs using different matrices and their associ-
ated spectra has been an area of research since a few decades. Structural properties of
graphs and their characterisation is possible by studying the eigenvalues and eigenspaces
of different matrices associated with graphs.

Some commonly studied matrices include adjacency matrix, Laplacian matrix, inci-
dence matrix and distance matrix. Various results and characterisation of graph proper-
ties have been obtained in term of the eigenvalues and spectra of the adjacency matrix.

The anti-adjacency matrix, in contrast to the adjacency matrix had been defined for di-
rected graphs (see [3]). The anti-adjacency eigenvalues for various directed graph classes
had been studied in the literature (see [1, 2, 4, 7, 10, 11, 15]). While the anti-adjacency
eigenvalues have been explored primarily in the context of directed graph classes, their
spectral properties for undirected graphs remain largely unexamined. Existing studies
on undirected graphs have focused on determinant and structure of anti-adjacency ma-
trix with less focus on the eigenvalues obtained from this matrix. This lack of investi-
gation presents a clear research gap, highlighting the potential for new insights through
the study of the anti-adjacency spectra of undirected graph classes. Spectral study of the
anti-adjacency matrix can be used to study the graph properties from a dual perspective;
that is, in terms of the adjacency as well as non-adjacency of the vertices.

The anti-adjacency spectra for some undirected graph classes and the relation between
the anti-adjacency eigenvalues and some graph parameters have been studied in [9].

Motivated by the studies mentioned above, in this paper, we focus on the anti-adjacency
spectra of connected and disconnected regular graphs and their complements. We also
characterise regular graphs, based on the anti-adjacency spectra.
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2. ANTI-ADJACENCY MATRIX OF GRAPHS

For a matrix A, the transpose of the matrix is denoted by AT . The trace of the matrix A
is denoted by tr(A). We denote the column vector of order n and all 1’s by 1n. We denote
the matrix of all 1’s of corresponding order by J .

Definition 2.1. [5] LetG be a graph on n vertices, with V (G) = {v1, . . . , vn} and adjacency
matrix A(G). Then, the anti-adjacency matrix, A∗(G) is a square matrix of order n, with
rows and columns indexed by the V (G), and each (i, j)− entry (i ̸= j) defined as follows:

a∗i,j =

{
1 if there is no edge between vi and vj ,
0 if there is an edge between vi and vj .

The diagonal entries (i = j) of A∗(G) is equal to 1.

More specifically, the anti-adjacency matrix of G is given by, A∗(G) = J − A(G). If A∗

and I are the anti-adjacency matrix of G and the identity matrix of order n, respectively,
then the polynomial ϕ(G, η) = |A∗−ηI| is called the anti-adjacency characteristic polynomial
of G. The eigenvalues η1, η2, . . . , ηn of A∗(G) are called the anti-adjacency eigenvalues of the
graph G. The eigenvectors corresponding to these eigenvalues are called anti-adjacency
eigenvectors. The anti-adjacency spectrum of a graph G, denoted by a-spec(G), is the list of
distinct eigenvalues with their multiplicities. If η1, η2, . . . , ηt are the distinct anti-adjacency
eigenvalues of the graphGwith multiplicitiesm1,m2, . . . ,mt, respectively, then, we write
the anti-adjacency spectrum as a-spec(G) = {η(m1)

1 , η
(m2)
2 , . . . , η

(mt)
t } (see [9]).

The anti-adjacency eigenvalues are always real, and hence are assumed to be arranged
in non-increasing order as η1 ≥ η2 ≥ . . . ≥ ηn. Hence, η1(= ηmax(G)) is the maximum
anti-adjacency eigenvalue and ηn(= ηmin(G)) is the minimum anti-adjacency eigenvalue.

In the context of adjacency matrix, the main eigenvalue of a graphG on n vertices, is that
eigenvalue of G, whose corresponding eigenvector is not orthogonal to the vector 1n (see
[12]). Similarly, we define the main anti-adjacency eigenvalue for a graph G on n vertices as
follows:

Definition 2.2. The anti-adjacency eigenvalue of a graphG on n vertices, is said to be main
anti-adjacency eigenvalue if the associated anti-adjacency eigenvector is not orthogonal to
the vector 1n. Otherwise, the anti-adjacency eigenvalue is non-main.

In the study of adjacency spectra of graphs, the adjacency algebra of a graph G, is the
algebra generated by the adjacency matrix A(G) (see [3]). In a similar context, we define
the anti-adjacency algebra of a graph G as follows:

Definition 2.3. For a graph G, with anti-adjacency matrix A∗, the anti-adjacency algebra of
G is defined as the set of all linear combinations of the powers of A∗; that is, the set of all
linear combinations of the matrices I,A∗, (A∗)2, . . ..

The following result on the anti-adjacency eigenvalues is significant and relevant in the
context of our study:

Theorem 2.1. For a graph G on n vertices, having at least one pair non-adjacent vertices,
−∆(G) ≤ ηmin(G) ≤ 0, where ∆(G) is the maximum degree of G.

Proof. Let G be the graph on n vertices and A∗(G) be the corresponding anti-adjacency
matrix. Let S ⊆ V (G) be the set of pairwise non-adjacent vertices in G. Without loss
of generality, let the first |S| rows (and columns) of A∗(G) correspond to the vertices of
S. Then, the matrix J of order |S| forms the upper left principal submatrix of A∗(G).
Thus, by interlacing properties relating the eigenvalues of a symmetric matrix and of its
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principal submatrix, we have, ηmin(G) is bounded by the minimum eigenvalue of J|S|.
Hence, ηmin(G) ≤ 0.

To prove to left side inequality, let X = (x1, x2, . . . , xn)
T be the eigenvector for the

eigenvalue ηn = ηmin(G). Then, A∗(G)X = ηnX . Therefore, from the i−th equation of
this vector equation, we get

ηnxi =
∑
j ̸∼i

xj ; i = 1, 2, . . . , n.

Taking the absolute value on both sides and using triangle inequality, we have

|ηn||xi| ≤
∑
j ̸∼i

|xj |; i = 1, 2, . . . , n.

We consider the i-th equation such that the right hand side of the above equation is min-
imum. This is possible only when the corresponding vertex has less anti-adjacency, or in
other words, more adjacency; that is, we consider the i-th equation corresponding to the
vertex of maximum degree, ∆(G). Then, we have

|ηn||xi| ≤ ∆(G)|xi|; deg(vi) = ∆(G).

Therefore, |ηn| = |ηmin(G)| ≤ ∆(G), proving the left side inequality. □

Remark 2.1. In this paper, the anti-adjacency eigenvectors of graphs need not be directly
obtained from the vector equation A∗X = ηX , but can also be a linear combination of the
vectors present in the same eigenspace of the anti-adjacency eigenvalue η.

3. ANTI-ADJACENCY SPECTRA OF REGULAR GRAPHS

The present section discusses the anti-adjacency spectra of k-regular graphs. Let G be
a simple undirected graph with the vertex set V (G) = {v1, . . . , vn} and edge set E(G) =
{e1, . . . , em}, and let A∗ be the anti-adjacency matrix of G. The graph G is said to be k-
regular if all the vertices has the same degree, equal to k.

The following theorem discusses the value of the maximum anti-adjacency eigenvalue
ηmax(G) and its associated anti-adjacency eigenvector for a k-regular graph G, possibly
disconnected.

Theorem 3.2. For any k- regular graphG, possibly disconnected, on n vertices, η1 = ηmax(G) =
n − k with algebraic multiplicity 1. The anti-adjacency eigenvector associated with the anti-
adjacency eigenvalue n− k in G is 1n.

Proof. Let A∗ be the anti-adjacency matrix of G. Since G is k- regular, by the definition of
the anti-adjacency matrix, every row of A∗ has exactly n − k units. Therefore, n − k is an
anti-adjacency eigenvalue of G.

By Corollary 2.6 in [9], we have for any graph G on n vertices n −∆(G) ≤ ηmax(G) ≤
n− δ(G). In the present context, we have δ(G) = ∆(G) = k. Therefore, n−k ≤ ηmax(G) ≤
n− k.

Combining the above arguments, we get, for any k- regular graph G on n vertices,
ηmax(G) = n− k.

We shall now prove that the algebraic multiplicity of the anti-adjacency eigenvalue
n−k is 1. SinceA∗ is a real and symmetric matrix, it is enough to prove that the geometric
multiplicity of n − k is 1; that is, the dimension of the null space of A∗ − ηmaxI is 1. Let
E denote the eigenspace of the eigenvalue ηmax = n − k. Then, E = {X ∈ Rn|(A∗ −
ηmaxI)X = 0}. The geometric multiplicity of ηmax is the dimension of E.
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It can be noted that E is the null space of A∗ − ηmaxI . By the rank-nullity theorem, the
dimension of E is given by

dim(E) = n− dim(R(A∗ − ηmaxI))

where R(A∗ − ηmaxI) is the range of A∗ − ηmaxI .
In other words, the geometric multiplicity, dim(E) can be evaluated by calculating the

number of linearly independent columns of A∗ − ηmaxI . This can be done by calculating
the reduced row echelon form of A∗ − ηmaxI .

It can be easily verified that the row reduced echelon form ofA∗−ηmaxI has exactly n−1
non-zero rows. Hence, we get, dim(R(A∗ − ηmaxI)) = n− 1. Consequently, dim(E) = 1.

Let X = (x1, x2, . . . , xn)
T be the anti-adjacency eigenvector associated with the anti-

adjacency eigenvalue n − k. Then, by the equation A∗X = (n − k)X , the only possible
value for xi is 1, for i = 1, 2, . . . , n, completing the proof. □

Let η be an anti-adjacency eigenvalue of the graph G, mentioned in Theorem 3.2, such
that 1n is the corresponding anti-adjacency eigenvector. Then, A∗1n = η1n. It holds only
when deg(vi) = n− η; 1 ≤ i ≤ n and η = n− k; that is, G is k- regular graph. Combining
this observation with Theorem 3.2, we get the following characterisation of k- regular
graph G, which can possibly be disconnected also.

Theorem 3.3. A graph G of order n, possibly disconnected, is k- regular if and only if 1n is the
anti-adjacency eigenvector of G corresponding to the anti-adjacency eigenvalue n− k.

We know that, tr(A∗) =
n∑

i=1

ηi = n and tr(A∗)2 =
n∑

i=1

η2i = n2 − 2m (see [9]). Hence, the

following result is immediate.

Theorem 3.4. A graph G of order n, possibly disconnected, is k- regular if and only if n−k = η1

and nη1 =
n∑

i=1

η2i .

By Theorem 3.4, we infer that the regularity of a graph can be recognised from its anti-
adjacency spectrum.

The following theorem discusses the value of the minimum anti-adjacency eigenvalue
ηmin(G) and its associated anti-adjacency eigenvector for a disconnected k-regular graph

G =
r⋃

i=1

Gi(r > 1).

Note that, for a connected k-regular graph, there is no generalisation for the minimum
anti-adjacency eigenvalue.

Theorem 3.5. For any disconnected k- regular graph G =
r⋃

i=1

Gi(r > 1) on n vertices, such

that |V (Gi)| = ni; i = 1, . . . , r, ηn = ηmin(G) = −k with algebraic multiplicity r − 1. The
anti-adjacency eigenvectors associated with the anti-adjacency eigenvalue −k in G are given by

column vectors of n rows indexed by V (G) =
r⋃

i=1

V (Gi), in order, with first n1 rows having the

value −nj

n1
, the rows corresponding to the vertices of the component Gj , j = 2, . . . , r, having the

value 1, and 0 otherwise.

Proof. Let G =
r⋃

i=1

Gi(r > 1) be the disconnected k- regular graph on n vertices, such that

|(V (Gi)| = ni; i = 1, . . . , r. Let A∗(Gi) denote the anti-adjacency matrix of Gi, i = 1, . . . , r.
The anti-adjacency matrix of G is given by A∗.
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Let Xj , j = 2, . . . , r, denote the column vector of n rows indexed by V (G) =
r⋃

i=1

V (Gi),

in order, with first n1 rows having the value −nj

n1
, the rows corresponding to the vertices

of the component Gj , j = 2, . . . , r, having the value 1, and 0 otherwise.

The anti-adjacency matrix A∗, for G =
r⋃

i=1

Gi(r > 1) , is given by,

A∗ =


A∗(G1) Jn1×n2

Jn1×n3
. . . Jn1×nr−1

Jn1×nr

Jn2×n1
A∗(G2) Jn2×n3

. . . Jn2×nr−1
Jn2×nr

...
... . . .

...
...

...
Jnr×n1

Jnr×n2
Jnr×n3

. . . Jnr×nr−1
A∗(Gr)

 ;

that is, A∗ is a block matrix, such that the matrices A∗(Gi), i = 1, . . . , r are the diagonal
blocks, and the matrix J of respective orders are the off-diagonal blocks.

Consider the product A∗Xj ; 2 ≤ j ≤ r. We obtain a column vector of n rows indexed
by V (G) with entries as follows:

The elements in the first n1 rows of the resulting vector are obtained by the matrix
multiplication of first n1 rows of A∗ with Xj . The first n1 rows of A∗ are given by the
block matrix: (

A∗(G1) Jn1×n2
Jn1×n3

. . . Jn1×nr−1
Jn1×nr

)
.

Hence, the elements in the first n1 rows of the resulting vector is given by −nj

n1
(n1 − k) +

nj =
nj

n1
k.

The elements in the rows corresponding to the vertices of the component Gj in the
resulting vector are obtained by the matrix multiplication of the rows corresponding to
the vertices of the component Gj in A∗ with Xj . The rows corresponding to the vertices
of the component Gj in A∗ are given by the block matrix:(

Jnj×n1 Jnj×n2 . . . A∗(Gj) . . . Jnj×nr

)
.

Hence, the elements in the rows corresponding to the vertices of the component Gj in the

resulting vector is given by n1
(

−nj

n1

)
+ (nj − k) = −k.

The elements in the rows, other than discussed above, in the resulting vector are ob-
tained by the matrix multiplication of the rows corresponding to the vertices of G, other
thanG1 andGj , withXj . Hence, the elements in these rows are given by n1

(
−nj

n1

)
+nj =

0.
It can be easily verified that −k is a common factor between all the elements of the

resulting vector. Factoring out (−k) results in the matrix Xj . Hence, we obtain A∗Xj =
(−k)Xj , for j = 2, . . . , r. Therefore, (−k) is an anti-adjacency eigenvalue of G, with Xj ,
for j = 2, . . . , r as the corresponding anti-adjacency eigenvectors.

Since, G is k- regular, we have ∆(G) = k. Combining the above observation and Theo-
rem 2.1, we have, ηmin(G) = −k.

We shall now prove that the algebraic multiplicity of the anti-adjacency eigenvalue −k
is r − 1. For this, it is enough to prove that the geometric multiplicity of −k is r − 1; that
is, the dimension of the null space of A∗ − ηminI is r − 1. Let E denote the eigenspace
of the eigenvalue ηmin = −k. Then, E = {X ∈ Rn|(A∗ − ηminI)X = 0}. The geometric
multiplicity of ηmin is the dimension of E.

It can be noted that E is the null space of A∗ − ηminI . By the rank-nullity theorem, the
dimension of E is given by

dim(E) = n− dim(R(A∗ − ηminI))
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where R(A∗ − ηminI) is the range of A∗ − ηminI .
In other words, the geometric multiplicity, dim(E) can be evaluated by calculating the

number of linearly independent columns of A∗ − ηminI . This can be done by calculating
the reduced row echelon form of A∗ − ηminI .

It can be easily verified that the row reduced echelon form of A∗ − ηminI has exactly
n− r + 1 non-zero rows. Hence, we get, dim(R(A∗ − ηminI)) = n− r + 1. Consequently,
dim(E) = r − 1. □

The following corollary is trivial by Theorem 3.5.

Corollary 3.1. The number of components of a k- regular graph is equal to one more than the
algebraic multiplicity of −k, as the anti-adjacency eigenvalue.

The following theorem discusses the nature of the anti-adjacency eigenvectors for a k-
regular graph, possibly disconnected.

Theorem 3.6. For any k- regular graph G on n vertices, the sum of entries in the anti-adjacency
eigenvector associated with the anti-adjacency eigenvalue ηp, for p = 2, . . . , n (ηp ̸= ηmax(G))
vanishes.

Proof. Let G be a k- regular graph on n vertices and let A∗ be its anti-adjacency matrix.
Let ηp, for p = 2, . . . , n be an anti-adjacency eigenvalue of G, such that ηp ̸= ηmax(G). Let
X = (x1, x2, . . . , xn)

T be the associated anti-adjacency eigenvector. Then, A∗X = ηpX .
The i-th equation of this vector equation is given by

ηpxi =
∑
j ̸∼i

xj ; i = 1, 2, . . . n.

or,

(3.1) ηpxi −
∑
j ̸∼i

xj = 0; i = 1, 2, . . . n.

A∗ is a real symmetric matrix with a constant row (or column) sum equal to n− k. Hence,
adding all the n equations of 3.1, we get

ηp

(
n∑

i=1

xi

)
− (n− k)

(
n∑

i=1

xi

)
= 0

This is true only if ηp = n − k or
n∑

i=1

xi = 0. Since, ηp ̸= ηmax(G) = (n − k), we have,
n∑

i=1

xi = 0, completing the proof. □

By Theorem 3.6, for any graph G of order n, the anti-adjacency eigenvectors associated
with any anti-adjacency eigenvalues ηp, for p ̸= 1, (that is, ηp ̸= ηmax(G)), are orthogonal
to the vector 1n. Thus, these anti-adjacency eigenvalues are non-main.

In the case of a k- regular graph, every anti-adjacency eigenvector which is not spanned
by 1n, is orthogonal to 1n. Consequently, we have the following corollary.

Corollary 3.2. Graphs, possibly disconnected, with exactly one main anti-adjacency eigenvalue
are regular graphs with the same being the largest one.

For a disconnected graphG =
r⋃

i=1

Gi(r > 1) on n vertices, Theorem 3.2 and Theorem 3.5

combine to give r anti-adjacency eigenvalues of G; that is, η1 = n− k, ηn−r+2 = ηn−r+3 =
. . . = ηn−1 = ηn = −k. The following theorem discusses the remaining n− r eigenvalues
of G; that is, the value of ηp, for p = 2, . . . , n− r + 1.
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Theorem 3.7. The anti-adjacency eigenvalues ηp, p = 2, . . . , n − r + 1, for any disconnected k-

regular graphG =
r⋃

i=1

Gi(r > 1) on n vertices, with |(V (Gi)| = ni; i = 1, . . . , r, are precisely the

last ni − 1 anti-adjacency eigenvalues, in the non-increasing order, of its components Gi and their
multiplicities are sums of the corresponding multiplicities in each component Gi; i = 1, . . . , r.

Proof. Let G =
r⋃

i=1

Gi(r > 1) be the disconnected k- regular graph on n vertices, such that

|(V (Gi)| = ni; i = 1, . . . , r. Let A∗(Gi) denote the anti-adjacency matrix of Gi, i = 1, . . . , r.
The anti-adjacency matrix of G is given by A∗(G).

Let S(Gi) be the set of the last ni − 1 anti-adjacency eigenvalues, in the non-increasing
order, of the componentGi, and X(Gi) be the set of anti-adjacency eigenvectors associated
with the anti-adjacency eigenvalues in S(Gi), i = 1, . . . , r.

We shall prove that the elements of
n⋃

i=1

S(Gi) are the anti-adjacency eigenvalues of G.

Let η ∈
n⋃

i=1

S(Gi). Then, η is an anti-adjacency eigenvalue of one of the components of G,

say Gi. Let X ∈ X(Gi) be the anti-adjacency eigenvector associated with η.
Construct a column vector Y of n rows indexed by V (G), such that the block corre-

sponding to vertices of Gi is the column vector X and the remaining rows has the entry
0.

Consider the product A∗(G)Y . We obtain a column vector of n rows indexed by V (G)
with entries as follows:

The rows corresponding to the vertices of Gi in the resulting vector is precisely the
block matrix ηX . The entries in the remaining rows is the sum of entries ofX . By Theorem
3.6, we have, the entries in the remaining rows is 0.

Hence, A∗(G)Y = ηY . Therefore, the elements of
n⋃

i=1

S(Gi) are the anti-adjacency

eigenvalues of G, and the corresponding anti-adjacency eigenvectors are given by the
column vector Y , as shown. □

4. ANTI-ADJACENCY ALGEBRA OF REGULAR GRAPHS

In the following theorem, we characterise regular graphs, possibly disconnected, in
terms of their anti-adjacency algebra.

Theorem 4.8. A graph G of order n, possibly disconnected, is regular if and only if the matrix J
belongs to the anti-adjacency algebra of G.

Proof. LetG be the graph on n vertices, possibly disconnected. LetA∗ be its anti-adjacency
matrix. Let deg(vi) denote the degrees of the vertex vi in G, for i = 1, 2, . . . , n.

First assume that G is k- regular graph. Then, by Theorem 3.2, n − k is an anti-
adjacency eigenvalue of G. Let ψ(G, η) be the minimal polynomial of A∗. We have,
ψ(G, η) = (η − (n − k))f(η), where f(η) is some polynomial in η. Since ψ(G,A∗) = 0.
Therefore, A∗f(A∗) = (n − k)f(A∗). This is true when each column of f(A∗) is an anti-
adjacency eigenvector of A∗ associated with the anti-adjacency eigenvalue n− k. By The-
orem 3.2, each column of f(A∗) must be 1n or a multiple of 1n. Also, f(A∗) is a linear
combination of powers of a symmetric matrix A∗. Thus, f(A∗) will also be symmetric.
Combining with the fact that each column is a multiple of 1n, we get f(A∗) = βJ , for
some constant β. Therefore, J belongs to the anti-adjacency algebra of G.

Conversely, assume that J belongs to the anti-adjacency algebra of G. Then, J can be
expressed as a linear combination of powers of A∗ as: J = β0I + β1A

∗ + . . . + βm(A∗)m.
From this equation, we note that JA∗ = A∗J .
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We have the (i, j) − th entry of JA∗ is n − deg(vj) and the (i, j) − th entry of A∗J is
n− deg(vi). By the equality JA∗ = A∗J , we have deg(vi) = deg(vj), for all i, j. Therefore,
G is regular, completing the proof. □

We can calculate the value of the constant β in Theorem 4.8 as follows: Let n − k =
η1, η2, . . . , ηt be the distinct anti-adjacency eigenvalues ofG in the decreasing order. Then,
the minimal polynomial of A∗, ψ(G, η) is given by

ψ(G, η) = (η − (n− k))(η − η2) . . . (η − ηt) = (η − (n− k))f(η)

As mentioned in the proof of Theorem 4.8, we have f(A∗) = βJ .
We have, the eigenvalues of f(A∗) are given by f(n − k), f(η2), f(η3), . . . , f(ηt). Also,

f(η2) = f(η3) = . . . = f(ηt) = 0.
Comparing the maximum eigenvalue of f(A∗) and βJ , we have f(n− k) = βn, giving

β = f(n−k)
n .

By the proof of Theorem 4.8, we also note that the polynomial P (x) which results in
P (A∗) = J is given by P (x) = 1

β f(x) =
n

f(n−k)f(x). On simplification, we get,

P (x) = n

t∏
i=2

x− ηi
(n− k)− ηi

.

Combining the above observation with Theorem 4.8, we have the following result:

Theorem 4.9. Let G be a graph on n vertices, possibly disconnected, with the anti-adjacency
matrix A∗. There exists a polynomial P (x) such that P (A∗) = J , if and only if G is regular. If G
is k- regular, then

P (x) = n

t∏
i=2

x− ηi
(n− k)− ηi

.

where η2, . . . , ηt are distinct anti-adjacency eigenvalues of G in the decreasing order.

We demonstrate the formation of the polynomial P (x) by an example. Consider the
3−regular disconnected graph G as shown in the figure 1.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

FIGURE 1. A 3−regular disconnected graph G

Let A∗ be the anti-adjacency matrix of G. Then, we have

a− spec(G) = {11(1), 3(1), 2(2), 1(3), 0(2),−1(4),−3(1)}.
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The minimal polynomial is given by ψ(G, η) = (η − 11)f(η), such that

f(η) = (η − 3)(η − 2)(η − 1)(η)(η + 1)(η + 3).

The constant β from the proof of theorem 4.8 is given by β = f(11)
14 = 8×9×10×11×12×14

14 =
95040. It can be simultaneously noted that f(A∗) = 95040J .

Therefore, we have, P (x) = (x−3)(x−2)(x−1)(x)(x+1)(x+3)
95040 = x6−2x5−10x4+20x3+9x2−18x

95040 .
Hence, the polynomial P which results in P (A∗) = J , for the graph G, is given by

P (x) =
x6 − 2x5 − 10x4 + 20x3 + 9x2 − 18x

95040
.

5. ANTI-ADJACENCY SPECTRA OF COMPLEMENT OF REGULAR GRAPHS

Let G be a k- regular graph of order n, possibly disconnected, whose anti-adjacency
matrix is denoted by A∗. Let n− k = η1, η2, . . . , ηn be the anti-adjacency eigenvalues of G,
in non-increasing order.

Let G be the complement of G whose anti-adjacency matrix is denoted by A∗. Let
η1, η2, . . . , ηn be the anti-adjacency eigenvalues of G, in non-increasing order.

It can be easily verified that A∗ +A∗ = J + I , where I is the identity matrix of order n.
The following theorem discusses about the anti-adjacency eigenvalues of the graph G,

in terms of ηi; i = 1, . . . , n.

Theorem 5.10. If G is a k- regular graph on n vertices,possibly disconnected, then

(i) the vector 1n is an anti-adjacency eigenvector of G and G, with n− k and k+1 being the
respective anti-adjacency eigenvalues.

(ii) if X ̸= 1n is an anti-adjacency eigenvector of G with anti-adjacency eigenvalue η, then
its corresponding anti-adjacency eigenvalue in G is 1− η.

Proof. Let A∗ and A∗ be the anti-adjacency matrices of G and G, respectively. If G is k-
regular, then G is (n− 1−k)− regular. Therefore, by Theorem 3.3, the vector 1n is an anti-
adjacency eigenvector for both G and G, corresponding to the anti-adjacency eigenvalue
n−k forG, and n− (n−k−1) = k+1 forG. It can be easily verified that k+1 = ηmax(G).

Let X ̸= 1n, be an anti-adjacency eigenvector of G with anti-adjacency eigenvalue η.
By Theorem 3.6, we have JX = 0. Consider A∗X .

A∗X = (J + I −A∗)X

= JX +X −A∗X

= 0 +X − ηX

= (1− η)X

Therefore, X is an anti-adjacency eigenvector of G with 1 − η being the corresponding
anti-adjacency eigenvalue. □

By Theorem 5.10, it can be easily verified that G and G have the same anti-adjacency
eigenvectors.

By Theorem 3.5, we infer that if G is a disconnected k- regular graph with r com-
ponents, then ηmin(G) = −k, with algebraic multiplicity being r − 1. Also we have,
1 − ηmin(G) = 1 − (−k) = k + 1 = ηmax(G). Moreover, the anti-adjacency matrix of
G in this case is a block-diagonal matrix, with r blocks and each block matrix having k+1
as the constant row (or column) sum. Hence, the algebraic multiplicity of k + 1 as the
anti-adjacency eigenvector of G is r. Therefore, we make the following observation:
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Observation 5.11. IfG is a disconnected k- regular graph on n vertices with r components
Gi; i = 1, . . . , r, then ηmax(G) = k + 1, with algebraic multiplicity r. The corresponding
anti-adjacency eigenvectors are column vectors Xi of n rows, indexed by the vertices of
G, with rows corresponding to the vertices of graphGi having entry 1 and rest of the rows
having entry as 0.

It can be noted that 1n is also an anti-adjacency eigenvector of G corresponding to
the anti-adjacency eigenvalue k + 1 in the previous observation, since 1n is the linear
combination of Xi; i = 1, . . . , r.

We know that G = G. Therefore, if G is a k- regular connected graph of order n,
such that G is disconnected, then the algebraic multiplicity of n− k as the anti-adjacency
eigenvalue of G is more than 1, in contrast to Theorem 3.2. Consequently, the associated
anti-adjacency eigenvectors would be of the form discussed in Observation 5.11.

Note that if G is a k- regular connected graph of order n, such that G is still connected,
then Theorem 3.2 holds true.

By Theorem 5.10, we have, if n − k = η1, η2, . . . , ηn are the anti-adjacency eigenvalues
of a k- regular graph G of order n, then k + 1 = η1, 1 − η2 = η2, . . . , 1 − ηn = ηn are the
anti-adjacency eigenvalues of G.

The following theorem discusses the anti-adjacency characteristic polynomial of G, in
terms of the anti-adjacency characteristic polynomial of G, where G is a k- regular graph
on n vertices.

Theorem 5.12. For a k- regular graph G of order n, possibly disconnected,

ϕ(G, η) = (−1)n
η − k − 1

η + n− k − 1
ϕ(G, 1− η).

Proof. We have, n− k = η1, η2, . . . , ηn are the anti-adjacency eigenvalues of G. Hence,

ϕ(G, η) = (η − (n− k))(η − η2) . . . (η − ηn).

Since, k+1 = η1, 1− η2 = η2, . . . , 1− ηn = ηn are the anti-adjacency eigenvalues of G, we
have,

ϕ(G, η) = (η − (k + 1))(η − (1− η2)) . . . (η − (1− ηn))

or

ϕ(G, η) = (η − (k + 1))(η − 1 + η2) . . . (η − 1 + ηn).

Therefore,

ϕ(G, η)

ϕ(G, 1− η)
=

(η − (k + 1))(η − 1 + η2) . . . (η − 1 + ηn)

(1− η − (n− k))(1− η − η2) . . . (1− η − ηn)

= (−1)n
η − k − 1

η + n− k − 1
,

completing the proof. □

We illustrate the result in Theorem 5.12 by an example as follows. Consider a 4− regu-
lar graph G as shown in the figure.
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v1

v2
v3

v4

v5

v6
v7

A∗(G) =



1 0 0 1 1 0 0

0 1 0 0 1 1 0

0 0 1 0 0 1 1

1 0 0 1 0 0 1

1 1 0 0 1 0 0

0 1 1 0 0 1 0

0 0 1 1 0 0 1


.

We have, ϕ(G, η) = −η7 + 7η6 − 14η5 + 21η3 − 7η2 − 7η + 3. Therefore, ϕ(G, 1 − η) =
η7 − 7η5 + 14η3 − 7η + 2. Also,

(−1)n
η − k − 1

η + n− k − 1
= (−1)7

η − 5

η + 2
.

Therefore,

(−1)n
η − k − 1

η + n− k − 1
ϕ(G, 1− η) = −η7 + 7η6 − 7η5 − 21η4 + 28η3 + 14η2 − 21η + 5.

It can be verified that the right hand side of the above equation is same as ϕ(G, η).
The following result gives the lower bound for ηn = ηmin(G) in terms of the regularity

of the graph G, similar to Theorem 2.1.

Proposition 5.1. If G is a k- regular graph with anti-adjacency eigenvalue η1 ≥ η2 ≥ . . . ≥ ηn,
then ηn ≥ −k.

Proof. Let G be a k- regular graph with anti-adjacency eigenvalue n − k = η1 ≥ η2 ≥
. . . ≥ ηn. Then, k + 1 ≥ 1 − η2 ≥ . . . ≥ 1 − ηn are the anti-adjacency eigenvalues of G. In
particular, k + 1 ≥ 1− ηn. That is, ηn ≥ −k. □

6. CONCLUSIONS

In this paper, the anti-adjacency spectra of connected and disconnected regular graphs
have been studied. The notion of anti-adjacency algebra, analogous to the adjacency al-
gebra of graphs had been introduced. Characterisation of regular graphs in terms of anti-
adjacency algebra had been done. The anti-adjacency spectra of complement of connected
and disconnected regular graphs has also been discussed. The results can be extended to
other classes of regular graphs and graphs derived from regular graphs.
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