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A new Mann-type iterative algorithm for maximal
monotone mappings in classical Banach spaces

BEKAYE CAMARA1 , MOUSTAPHA SENE1, AND NGALLA DJITTE1

ABSTRACT. Let E = Lq(1 < q < ∞) with dual space E∗. Let A : E → E∗ be a bounded and maximal
monotone mapping such that A−1(0) ̸= ∅. Let the sequence {xn} be generated iteratively by the following
algorithm: x1 ∈ E,

xn+1 = (1− λnθn)xn − λnJ
−1(Axn), n ≥ 1,

where J is the normalized duality mapping from E into E∗ and {λn} and {θn} are real sequences in (0, 1) with
suitable conditions. The main contribution of this paper is to prove that the sequence {xn} converges strongly
to x∗ which belongs to A−1(0). Numerical simulations are provided to illustrate the results.

1. INTRODUCTION

Let H be a real Hilbert space with inner product ⟨·, ·⟩H and norm ∥ · ∥H . An operator
A : H → H is called monotone if

⟨Ax−Ay, x− y⟩H ≥ 0 for all x, y ∈ H,(1.1)

and is called strongly monotone if there exists k > 0 such that

⟨Ax−Ay, x− y⟩H ≥ k∥x− y∥2H for all x, y ∈ H.(1.2)

Interest in monotone operators stems mainly from their usefulness in numerous applica-
tions. Many problems in nonlinear analysis and optimization theory can be formulated as
follows: find u such that 0 ∈ Au. This problem has been investigated by many researchers
(see for instance, Brézis and Lions [4], Martinet [24], Minty[27], Reich [38], Rockafellar
[40], Takahashi and Ueda [43] and others). Such a problem is connected with the convex
minimization problem. In fact, if f : H → (−∞,+∞] is a proper, lower-semicontinuous
convex function, then, it is known that the multi-valued map T := ∂f (the subdifferential
of f ) is maximal monotone (see, e.g., [27], [40]), where for w ∈ H ,

w ∈ ∂f(x) ⇔ f(y)− f(x) ≥ ⟨y − x,w⟩ ∀ y ∈ H

⇔ x ∈ Argmin
H

(f(·)− ⟨·, w⟩).

In particular, the inclusion 0 ∈ ∂f(x) is equivalent to f(x) = min
y∈H

f(y). Several existence

theorems have been established for the equation Au = 0 when A is of the monotone-type
(see e.g., Deimling [18], Pascali and Sburian [32]).

The extension of the monotonicity definition to operators from a Banach space into
its dual space has been the starting point for the development of nonlinear functional
analysis. The monotone maps constitute the most manageable class because of the very
simple structure of the monotonicity condition. The monotone mappings appear in a
rather wide variety of contexts since they can be found in many functional equations.
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Many of them appear also in calculus of variations as subdifferential of convex functions
(see for example, Pascali and Sburian [32], p. 101).

The first involves mappings from E to E∗. Here and in the sequel, ⟨·, ·⟩ stands for the
duality pairing between (a possible normed linear space) E and its dual E∗. A mapping
A : D(A) ⊂ E → E∗ is called monotone if for all x, y ∈ D(A),

⟨x− y,Ax−Ay⟩ ≥ 0.(1.3)

It is said to be strongly monotone if there exists a positive constant k such that for all x, y ∈
D(A),

⟨x− y,Ax−Ay⟩ ≥ k∥x− y∥2.(1.4)

The mapping A : D(A) ⊂ E → E∗ is called maximal monotone if it is monotone and its
graph G(A) is not properly contained is any other graph of monotone map.
Note that if E is a real Hilbert space H , then H = H∗ and (1.3) coincides with (1.1).

The second extension of the notion of monotonicity to real normed spaces involves map-
pings E into itself . A mapping A : D(A) ⊂ E → E is called accretive if and only if for all
x, y ∈ D(A), the following inequality is satisfied:

(1.5) ∥x− y∥ ≤ ∥x− y + s(Ax−Ay)∥, ∀ s > 0.

Due to result by Kato [21] it has been shown that A : D(A) ⊂ E → E is accretive if and
only if for all x, y ∈ D(A), there exists j(x−y) ∈ J(x−y) such that the following inequality
holds:

⟨Ax−Ay, j(x− y)⟩ ≥ 0,(1.6)

where J : E → 2E
∗

is the normalized duality mapping of E defined by:

J(x) :=
{
f ∈ E∗ : ⟨x, f⟩ = ∥x∥2 and ∥f∥E∗ = ∥x∥

}
.

Here, if E is a real Hilbert space, J becomes the identity map and condition (1.6) reduces
to (1.1). Hence, in real Hilbert spaces, accretive operators become monotone. Consequently,
accretive operators can be regarded as extension of Hilbert space monotonicity condition
to real normed spaces.

A mapping A : D(A) ⊂ E → E is called strongly accretive if there exists a constant
k > 0 such that for every x, y ∈ D(A), there exists j(x− y) ∈ J(x− y) such that

⟨Ax−Ay, j(x− y)⟩ ≥ k∥x− y∥2.

If A : E → E is of accretive-type and Au = 0 has a solution, then in order to approximate
a solution of Au = 0 Browder [5] introduced a pseudo-contractive operator T : E → E
defined by T := I −A, where I is the identity map on E. It is trivial to observe that zeros
of A correspond to fixed points of T . For Lipschitz strongly pseudo-contractive maps,
Chidume [11] proved the following theorem.

Theorem C1. (Chidume, [11]) Let E = Lp, 2 ≤ p < ∞, and K ⊂ E be nonempty
closed convex and bounded. Let T : K → K be a strongly pseudo-contractive and
Lipschitz map. For arbitrary x0 ∈ K, let a sequence {xn} be defined iteratively by
xn+1 = (1 − λn)xn + λnTxn, n ≥ 0, where {λn} ⊂ (0, 1) satisfies the following condi-
tions: (i)

∑∞
n=1 λn = ∞, (ii)

∑∞
n=1 λ

2
n < ∞. Then, {xn} converges strongly to the unique

fixed point of T .
By setting T := I − A in Theorem C1, the following theorem for approximating a

solution of Au = 0, where A is a strongly accretive and bounded operator, can be proved.
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Theorem C2. Let E = Lp with 2 ≤ p < ∞, and A : E → E be a strongly accretive and
bounded map. Assume A−1(0) ̸= ∅. For arbitrary x0 ∈ K, let a sequence {xn} be defined
iteratively by xn+1 = xn − λnAxn, n ≥ 0, where {λn} ⊂ (0, 1) satisfies the following
conditions: (i)

∑∞
n=1 λn = ∞, (ii)

∑∞
n=1 λ

2
n < ∞. Then, {xn} converges strongly to the

unique solution of Au = 0.
The main tool used in the proof of Theorem C1 is an inequality of Bynum [6]. This

theorem signalled the return to extensive research efforts on inequalities in Banach spaces
and their applications to iterative methods for solutions of nonlinear equations. Conse-
quently, Theorem C1 has been generalized and extended in various directions, leading
to flourishing areas of research, for the past thirty years or so, for numerous authors (see
e.g.,Censor and Reich [7], Chidume [11], Chidume [9, 10], Chidume and Ali [13], Chidume
and Chidume [14, 15], Chidume and Osilike [16], Deng [17], Liu [23], Weng [44], Liu [33],
Reich [34, 35, 39], Reich and Sabach [36, 37], Xiao [46], Xu [50, 48, 49], Berinde et al. [3],
Moudafi [28, 29, 30], Moudafi and Thera [31], Xu and Roach [52], Xu et al. [51], Zhu [54]
and a host of other authors). Recent monographs emanating from these researches include
those by Berinde [2], Chidume [8], Goebel and Reich [20], and William and Shahzad [45].

Unfortunately, the success achieved in using geometric properties developed from the
mid 1980s to early 1990s in approximating zeros of accretive-type mappings has not carried
over to approximating zeros of monotone-type operators in general Banach spaces. Part of
the problem is that since A maps E to E∗, for xn ∈ E, Axn is an element of E∗. Conse-
quently, a recursion formula containing xn and Axn may not be well defined. Attempts
have been made to overcome this difficulty by introducing the inverse of the normalized
duality mapping in the recursion formulas for approximating zeros of monotone-type
mappings.

In the case of Banach spaces, for finding zeros point of a maximal monotone mappings by
using the proximal point algorithm, Kohshada and Takahashi [22] introduced the follow-
ing iterative sequence for a monotone mapping A : E → 2E

∗
:

(1.7) x1 = u ∈ E, xn+1 = J−1
(
αnJu+ (1− α)JJrnxn

)
, n ≥ 1,

where Jrn := (J + rnA)−1, and J is the duality mapping from E into E∗, {αn} ⊂ (0, 1)
and {rn} ⊂ (0,∞) satisfy limn→∞ αn = 0,

∑
αn = ∞ and limn→∞ rn = ∞. They proved

that if E is smooth and uniformly convex and A maximal monotone with A−1(0) ̸= ∅,
then the sequence {xn} converges strongly to an element of A−1(0). This result extends
the theorem proposed by Kohshada and Takahashi [22] to Banach spaces. However, the
algorithm requires the computation of (J + rnA)−1xn at each step of the process, which
makes difficult its implementation for applications. Following the work of Kohshada and
Takahashi [22], Zegeye introduced in [53] an iterative scheme for approximating zeros of
maximal monotone mappings defined in uniformly smooth and 2-uniformly convex real
Banach spaces. In fact, he proved the following theorem.

Theorem Z (Zegeye [53]). Let E be a uniformly smooth and 2-uniformly convex real Banach
space with dual E∗. Let A : E → E∗ be a Lipschitz continuous and monotone mapping with
constant L > 0 and A−1(0) ̸= ∅. For given u, x1 ∈ E, let {xn} be generated by the algorithm

xn+1 = J−1
(
βnJu+ (1− βn)(Jxn − αnAxn)

)
for all n ≥ 1,
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where J is the normalized duality mapping from E into E∗ and {αn} and {βn} are real se-
quences in (0, 1) satisfying (i) limn→∞ βn = 0, (ii)

∑
βn = ∞ and (iii) αn = o(βn). Sup-

pose that Bmin ∩
(
AJ−1

)−1

(0) ̸= ∅. Then {xn} converges strongly to x∗ ∈ A−1(0) and that

R(Ju) = Jx∗ ∈
(
AJ−1

)−1

(0), where R is a sunny generalized nonexpansive retraction of E∗

onto
(
AJ−1

)−1

(0).

Motivated by approximating zeros of monotone mappings, Chidume et. al. [12] proposed
a Krasnoselskii-type scheme and proved a strong convergence theorem in Lp, 2 ≤ p < ∞.
In fact, they obtained the following result.

Theorem CA (Chidume et. al. [12]). Let X= Lp, 2 ≤ p < ∞ and A : X → X∗ be a Lipschitz
map. Assume that there exists a constant k ∈ (0, 1) such that A satisfies the following condition:〈

Ax−Ay, x− y
〉
≥ k∥x− y∥

p
p−1 ,(1.8)

and that A−1(0) ̸= ∅. For arbitrary x1 ∈ X , define the sequence {xn} iteratively by:

xn+1 = J−1(Jxn − λAxn), n ≥ 1,(1.9)

where λ ∈ (0, δp) and δp is some positive constant. Then, the sequence {xn} converges strongly
to the unique solution of the equation Ax = 0.

In [12], they also proved a similar result for the class of Lipschitz and strongly monotone
mappings in Lp spaces for 1 < p ≤ 2.

Remark 1.1. Theorem CA is proved in Lp spaces, 2 ≤ p < ∞ with Lipschitz mapping satisfying
condition (1.8). The method of proof used in (1.8) is not extendable to the class of strongly monotone
mappings.

Following the works of Chidume et. al [12] and motivated by approximating zeros of
monotone-type mappings, several strong convergence results have been established by
various authors using the algorithm (1.9) proposed by Chidume et. al in [12] (see, e.g.,
Diop et. al. [19], Mendy et. al. [25], Mendy et. al [26], Sow et. al. [41]).
Recently, Mendy et. al. [25] proposed a pertubed version of the Mann-type algorithm
(1.9) proposed by Chidume et. al. [12] and proved strong convergence theorems for ap-
proximating zeros of bounded and maximal monotone mappings defined in 2-uniformly
convex and q-uniformly smooth (or p-uniformly convex and 2-uniformly smooth) real Ba-
nach spaces. In fact, they proved the following theorem.

Theorem MA (Mendy et. al. [25]). For q > 1, let E be a 2- uniformly convex and q-uniformly
smooth real Banach space and E∗ its dual space. Let A : E → E∗ be a bounded and maximal
monotone mapping such that A−1(0) ̸= ∅. For arbitrary x1 ∈ E, let {xn} be the sequence defined
iteratively by:

(1.10) xn+1 = J−1(Jxn − λnAxn − λnθ(Jxn − Jx1)), n ≥ 1,

where λ and {θn} are real sequences in (0, 1) satisfying the following conditions:

(i) θn → 0, λn = o(θn); (ii)

∞∑
n=1

λnθn = ∞; (iii)

∞∑
n=0

α2
n < ∞, lim sup

θn−1

θn
− 1

λnθn
≤ 0.

Then, there exists γ0 > 0 such that if λn < γ0, ∀n ≥ 1, xn converges strongly to x∗ ∈ A−1(0).
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Notice that in the algorithm (1.10), at each iteration, one must compute at the same time
Jxn and Jx1 and the inverse of J at Jxn − λnAxn − λnθ(Jxn − Jx1). Likewise, the
algorithm (1.9) requires to compute Jxn and the inverse J−1(Jxn−λAxn at each iteration.
This can make the implementation of the algorithm uncomfortable and inaccurate due to
a number of errors that arise during the process.
It is our purpose in this paper to introduce a new Mann-type algorithm to approximate
the zero of a bounded maximal monotone mapping defined in q-uniformly smooth and
p-uniformly convex real Banach spaces. This class of Banach spaces includes all the Lp

and Sobolev spaces. The algorithm proposed in this work is simpler than (1.9) proposed
by Chidume et. al. in [12] and its modified version (1.10) by Mendy et. al. in [25] in the
sense that it does not require further calculus in the implementation. The last section is
devoted to numerical simulations to illustrate the results.

2. PRELIMINARIES

Let E be a real normed space and let S := {x ∈ E : ∥x∥ = 1}. E is said to be smooth if the
limit

(2.11) lim
t→0+

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ S. Further, E is said to be Fréchet differentiable if it is smooth and
the limit in (2.11) is attained uniformly for y ∈ SE . Finally E is uniformly smooth if it is
smooth and the limit in (2.11) is attained uniformly for each x, y ∈ SE . If E is a normed
linear space of dimension ≥ 2, then, the modulus of smoothness of E, ρE , is defined by

ρE(τ) := sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : ∥x∥ = 1, ∥y∥ = τ

}
for all τ > 0.

A normed linear space E is called uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

If there exists a constant c > 0 and a real number q > 1 such that ρE(τ) ≤ cτ q , then E is
said to be q-uniformly smooth.

Classical spaces with such properties are Lp, ℓp and Wm
p spaces for 1 < p < ∞ where,

Lp (or ℓp) or W
m
p is

{
2− uniformly smooth and p− uniformly convex if 2 ≤ p < ∞;
2− uniformly convex and p− uniformly smooth if 1 < p < 2.

Let Jq denote the generalized duality mapping from E to 2E
∗

defined by

Jq(x) :=
{
f ∈ E∗ : ⟨x, f⟩ = ∥x∥q and ∥f∥E∗ = ∥x∥q−1

}
,

where J2 is called the normalized duality mapping and is denoted simply by J .
It is well known that E is smooth if and only if J is single valued. Moreover, if E is a
reflexive, smooth and strictly convex real Banach space, then J−1 is single-valued, one-
to-one, surjective and it is the duality mapping from E∗ into E. Further, in Lp,Wm

p spaces
1 < p < ∞, the functions J and Jp are properly known as stated in the following remark.

Remark 2.2. (see e.g. Alber and Ryazantseva [1, p.36]) Let 1 < p < ∞, one has the following

(i) Lp : Jx = ∥x∥2−p
Lp

|x|p−2x, and for all x ̸= 0, Jp(x) = ∥x∥p−2Jx.
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(ii) W p
m : Jx = ∥x∥2−p

Wp
m

∑
|α|⩽m

(−1)|α|Dα
(
|Dαx|p−2Dαx

)
, and for all x ̸= 0, one has

Jpx = ∥x∥2−p
Wp

m
Jx, where for α = (α1, · · · , αn) ∈ Nn, one defines |α| =

n∑
i=1

αi.

In the sequel, we shall need the followings results.

Lemma 2.1 (Xu [47]). Let {ρn} be a sequence of non-negative real numbers satisfying the follow-
ing inequality

(2.12) ρn+1 ≤ (1− αn)ρn + αnσn + γn,

where {αn}, {σn} and {γn} are real sequences satisfying:

(i) {αn} ⊂]0, 1[ and
∑

αn = ∞;

(ii) lim sup
n→∞

σn ≤ 0;

(iii) γn ≥ 0 and
∑

γn < ∞.
Then, the sequence (ρn) converges to zero as n → ∞.

Lemma 2.2. (See, e.g., Chidume [8]) Let q > 1 be a fixed real number and E be a smooth Banach
space. Then the following statements are equivalent:
i) E is q-uniformly smooth
ii) There is a constant dq > 0 such that for all x, y ∈ E

∥x+ y∥q ≤ ∥x|q + q⟨y, Jq(x)⟩+ dq∥y∥q.

Lemma 2.3. (See, e.g., Chidume [8]) Let E be a real normed space and Jq : E → 2E
∗
, 1 < q < ∞,

be the generalized duality map. Then, for any x, y ∈ E, the following inequality holds:

(2.13) ∥x+ y∥q ≤ ∥x∥q + q⟨y, jq(x+ y)⟩
for all jq(x+ y) ∈ Jq(x+ y).

Theorem 2.1 (Takahashi [42]). Let E be a uniformly convex real Banach space with Fréchet
differentiable norm and E∗ be its dual space. Let A : E∗ → 2E be a multivalued maximal
monotone mapping with A−1(0) ̸= ∅. Then, the following holds: for u ∈ E,

(2.14) lim
λ→∞

(I + λAJ)−1u exists and belongs to (AJ)−1(0),

where J is the normalized duality mapping from E into E∗. Moreover, if Ru := limλ→∞(I +
λAJ)−1u, then R is a sunny generalized nonexpansive retraction of E onto (AJ)−1(0).

3. MAIN RESULTS

We begin with the following immediate consequence of the above Theorem 2.1.

Lemma 3.4. Let E be a uniformly convex and uniformly smooth real Banach space with dual
space E∗ and A : E → E∗ be a maximal monotone mapping such that A−1(0) ̸= ∅. Given u ∈ E
and a sequence of positive real numbers {θn}n satisfying θn → 0 as n → +∞, there exists a
sequence {yn} in E such that:

θn(Jyn − Ju) +Ayn = 0, ∀n ≥ 1,

yn → y∗ with y∗ ∈ A−1(0),

where J is the normalized duality mapping from E into E∗.
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Proof. Since E uniformly convex and uniformly smooth, then the duality mapping J from
E into E∗ is single valued, onto and one to one and its inverse J−1 is the duality mapping
of E∗. Therefore, from Theorem 2.1, it follows that

lim
λ→∞

Jλu exists and belongs to (AJ−1)−1(0),

where Jλu := (I∗ + λAJ−1)−1Ju, and I∗ the identity map on E∗. For each n ≥ 1, define
zn := Jtnu where tn = θ−1

n . Then, the sequence {yn} given by yn := J−1zn for all n ≥ 1
satisfies the above relations. □

By taking u = 0 in Lemma 3.4, we have the following corollary.

Corollary 3.1. Let E be a uniformly convex and uniformly smooth real Banach space and A :
E → E∗ be a maximal monotone mapping such that A−1(0) ̸= ∅. Then, there exists a sequence
{yn} in E such that:

θnJyn +Ayn = 0, ∀n ≥ 1,(3.15)
yn → y∗ with y∗ ∈ A−1(0)(3.16)

where J is the normalized duality mapping from E into E∗.

Theorem 3.2. Let p > 1 and q > 1 be real numbers and let E be a q-uniformly smooth and
p-uniformly convex real Banach space. Let A : E → E∗ be a bounded and maximal monotone
map such that A−1(0) ̸= ∅. Assume that J−1A is accretive. Define the sequence {xn} as follows:
For x1 ∈ E given randomly,

(3.17) xn+1 = (1− λnθn)xn − λnJ
−1(Axn), n ≥ 1,

where {λn} and {θn} are real decreasing sequences in (0, 1) satisfying the following conditions:

(i) lim θn = 0,

(ii)
∞∑

n=1

λnθn = ∞, λq−1
n = o(θn),

(iii) lim sup

θn−1

θn
− 1

λnθn
≤ 0 and

∞∑
n=1

λq
n < ∞.

There exists a real positive constant γ0 such that if λq−1
n ≤ γ0θn for all n ≥ 1, the sequence {xn}

converges strongly to some x∗ ∈ A−1(0).

Proof. Let x∗ ∈ A−1(0), consider the real r > 0 large enough so that one has

sup {∥x∗∥q, ∥x1 − x∗∥q} <
rq

2
.

Define the following constants:

M := sup
{
∥J−1Ax+ θx∥q : x ∈ B(x∗, r), 0 < θ < 1

}
+ 1 < +∞,

and

γ0 :=
rq

2dqMq
.

The remainder of the proof is devided in two steps.
Step 1: We prove by induction that the sequence {xn} is bounded.
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By definition x1 ∈ B(x∗, r). Suppose that xn ∈ B(x∗, r). Using Lemma 2.2 and the fact
that J−1A is accretive, we have the following computations

∥xn+1 − x∗∥q = ∥xn − x∗ − λn(J
−1Axn + θnxn)∥q

≤ ∥xn − x∗∥q − qλn⟨J−1Axn + θnxn, Jq(xn − x∗)⟩+ λq
ndq∥J−1Axn + θnxn∥q

≤ ∥xn − x∗∥q − qλn⟨J−1Axn, Jq(xn − x∗)⟩ − qλnθn⟨xn − x∗, Jq(xn − x∗)⟩

+ qλnθn⟨x∗, Jq(xn − x∗)⟩+ dqM
qλq

n

≤ ∥xn − x∗∥q − qλnθn∥xn − x∗∥q + qλnθn∥x∗∥ · ∥xn − x∗∥q−1 + dqM
qλq

n.

By Young’s inequality, for q′ > 1 with 1
q′ +

1
q = 1, we have

∥x∗∥ · ∥xn − x∗∥q−1 ≤ 1

q
∥x∗∥q + 1

q′
∥xn − x∗∥q

′(q−1).

Using this, we obtain the following:

∥xn+1 − x∗∥q ≤ [1− λnθn]∥xn − x∗∥q + λnθn∥x∗∥q + λnθndqM
qγ0

≤ [1− λnθn]r
q + 2λnθn

rq

2
= rq.

This implies that xn+1 ∈ B(x∗, r). Therefore, {xn} is bounded.

Step 2: We prove that the sequence {xn} converges to some x∗ ∈ A−1(0). Using Lemma
2.2 again, the fact J−1A is accretive and Corollary 3.1 we have the following estimates

∥xn+1 − yn∥q = ∥xn − yn − λn(J
−1Axn + θnxn)∥q

≤ ∥xn − yn∥q − qλn⟨J−1Axn + θnxn, Jq(xn − yn)⟩+ dqλ
q
n∥J−1Axn + θnxn∥q

≤ ∥xn − yn∥q − qλn⟨J−1Axn + θnxn, Jq(xn − yn)⟩+ dqM
qλq

n

= ∥xn − yn∥q − qλn⟨J−1Axn − J−1Ayn + J−1Ayn + θnxn, Jq(xn − yn)⟩+ dqM
qλq

n

≤ ∥xn − yn∥q − qλn⟨J−1Ayn + θnxn, Jq(xn − yn)⟩+ dqM
qλq

n

= ∥xn − yn∥q − qλnθn⟨xn − yn, Jq(xn − yn)⟩+ dqM
qλq

n

= (1− qλnθn)∥xn − yn∥q + dqM
qλq

n.

Hence,

(3.18) ∥xn+1 − yn∥q ≤ (1− qλnθn)∥xn − yn∥q + dqM
qλq

n.

Next, by Lemma 2.3 and Swartz inequality, we have

∥xn − yn∥q ≤∥xn − yn−1∥q + q⟨yn−1 − yn, Jq(xn − yn)⟩
≤∥xn − yn−1∥q + q∥yn−1 − yn∥ · ∥xn − yn∥q−1.(3.19)
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On the other hand, since J−1A is accretive, by using inequality (1.5) and Corollary 3.1 we
have

∥yn−1 − yn∥ ≤∥yn−1 − yn +
1

θn
(J−1Ayn−1 − J−1Ayn)∥

=∥yn−1 − yn +
1

θn
(θnyn − θn−1yn−1)∥

=

(
θn−1 − θn

θn

)
∥yn−1∥.(3.20)

From (3.18), (3.19), (3.20) and the fact that {xn} and {yn} are bounded, we obtain

(3.21) ∥xn+1 − yn∥q ≤ (1− qλnθn)∥xn − yn−1∥q +K

(
θn−1 − θn

θn

)
+ dqM

qλq
n,

for some constant K > 0.

Therefore, using Lemma 2.1 with αn = qλnθn, σn =
K

(
θn−1−θn

θn

)
λnθn

and γn = dqM
qλq

n, it
follows that ∥xn − yn−1∥ converges to zero. That is xn converges to x∗ ∈ A−1(0). □

Remark 3.3. Real sequences that satisfy conditions (i)-(iii) could be λn = (n + 1)−a and θn =
(n + 1)−b, n ≥ 1 with 0 < b < (q − 1)a, 1

q < a < 1 and a + b < 1. In fact, (i), (ii) and
the second part of (iii) are easy to check. For the first part of condition (iii), using the fact that
(1 + x)s ≤ 1 + sx, for x > −1 and 0 < s < 1, we have

0 ≤

(
θn−1

θn
− 1

)
λnθn

=
[(

1 +
1

n

)b

− 1
]
· (n+ 1)a+b

≤b · (n+ 1)a+b

n
= b · n+ 1

n
· 1

(n+ 1)1−(a+b)
→ 0 as n → ∞.

In the next corollaries we deduce the convergence in Lp-spaces, 1 < p < ∞.

Corollary 3.2. Let E = Lq, 1 < q < 2 and E∗ be its dual space. Let A : E → E∗ be a bounded
and maximal monotone map such that A−1(0) ̸= ∅. Assume that J−1A is accretive. Let the
sequence {xn} be defined as follows: For arbitrary chosen x1 ∈ E,

(3.22) xn+1 = (1− λnθn)xn − λnJ
−1(Axn), n ≥ 1,

where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:
(i) lim θn = 0,

(ii)
∞∑

n=1

λnθn = ∞, λn = o(θn),

(iii) lim sup

θn−1

θn
− 1

λnθn
≤ 0 and

∞∑
n=1

λq
n < ∞.

There exists a real positive constant γ0 such that if λq−1
n ≤ γ0θn for all n ≥ 1, the sequence {xn}

converges strongly to some x∗ ∈ A−1(0).

Proof. Observing that Lq-spaces, 1 < q < 2 are q-uniformly smooth and 2-uniformly
convex, the result is a direct application of Theorem 3.2. □

Corollary 3.3. Let E = Lp, 2 ≤ p < ∞ and E∗ be its dual space. Let A : E → E∗ be a
bounded and maximal monotone map such that A−1(0) ̸= ∅. Assume that J−1A is accretive. Let
the sequence {xn} be defined as follows: For arbitrary chosen x1 ∈ E,

(3.23) xn+1 = (1− λnθn)xn − λnJ
−1(Axn), n ≥ 1,
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where {λn} and {θn} are sequences in (0, 1) satisfying the following conditions:
(i) limλn = 0 and lim θn = 0,

(ii)
∞∑

n=1

λnθn = ∞, λn = o(θn),

(iii) lim sup

θn−1

θn
− 1

λnθn
≤ 0 and

∞∑
n=1

λ2
n < ∞.

There exists a real positive constant γ0 such that if λn ≤ γ0θn for all n ≥ 1, the sequence {xn}
converges strongly to some x∗ ∈ A−1(0).

Proof. Observing that Lp-spaces, 2 ≤ p < ∞ are 2-uniformly smooth and p-uniformly
convex, the result follows from Theorem 3.2. □

4. APPLICATIONS TO MAXIMAL MONOTONE MAPPINGS AND NUMERICAL SIMULATIONS

Throughout this paragraph, let E = Lq([0, 1]) where q = 3
2 and its conjugate p = 3. That

is, E = L 3
2
([0, 1]) and E∗ = L3([0, 1]). And let us define

λn =
1

(n+ 1)
5
6

and θn =
1

(n+ 1)
1
12

.

Observe that E is q-uniformly smooth. Moreover the sequence {λn} and {θn} satisfy the
condition in Theorem 3.2.

4.1. Numerical simulations of the algorithm (3.17). :
Let the mapping A : E → E∗ be defined by Ax(t) = 2

3x(t) for all t ∈ [0, 1]. It is clear that
the map A is well defined and maximal monotone. Moreover, it is bounded and J−1A
is accretive. Therefore, according to theorem 3.2, the sequence {xn} defined by (3.17)
converges strongly to x∗ = 0, the unique solution of Au = 0.
Further from Remark 2.2, the corresponding algorithm is the following:

(4.24) xn+1 = (1− λnθn)xn − 2λn∥xn∥2−p|xn|p−2xn, n ≥ 1.

The numerical simulations for algorithm (4.24) give the following results:

For x1(t) = t2,∀ t ∈ [0, 1], we have the following table and graph of the norm ∥xn∥

Number of iterations n ∥xn∥ for algorithm (4.24)
36 0.0014343181023861132
37 0.0013663886821424817
38 0.0013032276778647185
39 0.0012443932479560796
40 0.0011894940968733773
41 0.0011381826359605383
42 0.0010901492068283371
43 0.001045117181777406
44 0.0010028387915638297
45 0.0009630915590670635

FIGURE 1. The values of ∥xn∥ with respect to n for x1(t) = t2.
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In the graphs below, the y-axis represents the values of ∥xn∥ and the x-axis represents the
number of iterations n.

FIGURE 2. The graph of ∥xn∥ with respect to n for x1(t) = t2.

When x1(t) = e−t cos(t), ∀ t ∈ [0, 1], we have the following table of some values of the
norm of xn with respect to the iterations.

Number of iterations n ∥xn∥ for algorithm (4.24)
47 0.0013230858360684555
48 0.0012759088502935824
49 0.0012312593464365899
50 0.0011889568373183903
51 0.001148836874022876
52 0.0011107493486950664
53 0.0010745570048359978
54 0.001040134126425833
55 0.0010073653816086259
56 0.0009761448003327562

FIGURE 3. The values of ∥xn∥ with respect to n for x1(t) = e−t cos(t).

The corresponding graph of the values of the norm of xn with respect to the iterations is
given in the next figure.
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FIGURE 4. The graph of ∥xn∥ with respect to n for x1(t) = e−t cos(t).

In the tables 1 and 3, we remark that for ϵ = 10−3, taking the initial value as the function
x1(t) = t2, the simulation results show that for each number of iterations n ≥ 45, ∥xn∥ < ϵ
and for x1(t) = e−t cos(t), one has ∥xn∥ < ϵ for each n ≥ 56.
As it can be seen, the figures 2 and 4 show the convergence of the iterative sequence given
by (4.24) to x∗ = 0, the unique solution of Au = 0.

4.2. Numerical simulations of the algorithm (3.17) with A = J . :
Let q = 3

2 and its conjugate p = 3, define A : Lq([0, 1]) → Lp([0, 1]) by (Ax)(t) = Jx(t).
It is well-established fact that the normalized duality map J is maximally monotone and
uniformly continuous on bounded subsets of Lq .
Keep λn and θn defined as follows:

λn =
1

(n+ 1)
5
6

and θn =
1

(n+ 1)
1
12

.

The corresponding algorithm to (3.17) is the following:

(4.25) xn+1 = (1− λnθn)xn − λnxn, n ≥ 1.

The numerical simulations for algorithm (4.25) give the following results:

For x1(t) = t2 one has the following table and graph of ∥xn∥.

Number of iteration n ∥xn∥ for algorithm (4.25)
6 0.0033711525384336597
7 0.0022740865102903896
8 0.0016062159745367064
9 0.0011758582035416927

10 0.0008859033263804309

FIGURE 5. The values of ∥xn∥ with respect to n for x1(t) = t2.
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FIGURE 6. The graph of ∥xn∥ with respect to n for x1(t) = t2.

For x1(t) = e−t cos(t) one has the following table of some values of and graph of ∥xn∥.

Number of iteration n ∥xn∥ for algorithm (4.25)
6 0.004424098904624768
7 0.00298437508374279
8 0.0021079017494830825
9 0.0015431259579549933
10 0.0011626065243740466
11 0.0008968384266678706

FIGURE 7. The values of ∥xn∥ with respect to n for x1(t) = e−t cos(t).

FIGURE 8. The graph of ∥xn∥ with respect to n for x1(t) = e−t cos(t).
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We remark from tables 5 and 7 that for ϵ = 10−3 and x1(t) = t2, one has

∥xn∥ < ϵ, ∀ n ≥ 11,

and for x1(t) = e−t cos(t), one has

∥xn∥ < ϵ, ∀ n ≥ 12.

Further the figures 6 and 8 show the convergence of the iterative sequence given by (4.25)
to zero, unique solution of the equation Au = 0.
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1 UNIVERSITÉ GASTON BERGER

Email address: camarabekayee78@gmail.com
Email address: moustapha2.sene@ugb.edu.sn
Email address: ngalla.djitte@ugb.edu.sn


