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Approximate solutions to the fractional differential
equations using fractional power series approach and
nature inspired optimization techniques

RATIKA RASTOGI', O.P. MISRA!, AND RAJSHREE MISHRA?

ABSTRACT. In this paper, fractional power series (FPS) is considered as approximate function while solving
fractional differential equations (FDEs). The optimal solution is then determined using metaheuristic algorithms
such as particle swarm optimization (PSO) and differential evolution (DE). The optimization problems are pre-
sented using FDEs with their corresponding initial conditions. For all test problems covered in this paper, the
algorithms have been developed using MATLAB software and executed on computer. A graphical comparison
between the approximate solutions generated and the exact ones shows how effective the method is. Addition-
ally, we evaluate the mean square error (MSE) between the exact and approximation solution to demonstrate the
performance of our suggested technique, Differential Evolution - Fractional power series (DE-FPS) and Particle
Swarm Optimization - Fractional power series (PSO-FPS), which is shown to be superior in comparison to the
variational iteration method (VIM), Grey Wolf Optimization - Variational iteration method (GWO-VIM), and
one other numerical iterative scheme.

1. INTRODUCTION

At present, one of the most significant areas of mathematics for simulating systems
related to real-life problems is fractional calculus. It focuses heavily on the study of ar-
bitrary order derivatives and integrals, which are important in modern mathematical re-
search [23]. Because of its vast applicability, fractional calculus theory has been effectively
applied to a variety of real-world problems during the past four decades. The fractional
derivative has become more significant in problem solving in engineering and biological
sciences because of the incorporation of the memory effect. Therefore, the idea of frac-
tional integrals and derivatives has been widely used recently in a variety of biological
and engineering contexts. Fractional-ordered derivatives are more widely used [37] in
comparison to integer-ordered derivatives, because in most cases they offer better model-
ing results..

Several researchers such as Reich [32], Mateescu [22], Mastorakis [21], Babaei [5], Sadol-
lah et. al. [34] and Rastogi et. al. [30] have used metaheuristic algorithms to solve a
variety of ordinary differential equations. Also, many scholars have generally used both
analytical and numerical techniques for solving the fractional-order differential equations
[12, 3,8, 36,20, 10, 13,1, 17, 14].

This paper presents the solution of the following type of fractional differential equa-
tions (FDEs) using fractional power series and metaheuristic algorithms:

(1.1) D%%(z) = g(z,u(x)), n—1<a<n
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where g is a function of = and u(z), and D® represents the Caputo fractional deriva-
tive of order a.. The Caputo FDE has a value of o between [0, 1] which exists in several
biological and physical systems [2, 4, 18, 19]. This type of problem was mentioned by the
mathematician Leibniz in his letter to L'Hospital in 1695.

It is noted here that metaheuristic methods can operate precisely and obtain appropri-
ate and satisfactory results related to execution time and precision, compared to classical
optimization approaches, which may have problems in dealing with real-world issues
due to local optimum, significant time, and difficult execution.

Differential evolution is a population-based optimization algorithm that effectively an-
alyzes solution spaces. It is a common method for tackling optimization issues because of
its uncomplicated nature and efficacy. It has been effectively employed in a variety of dis-
ciplines, including parameter estimation, data mining, and engineering design [35, 24, 27].

Particle Swarm Optimization (PSO) is a population-based optimization algorithm in-
spired by the collective behavior of fish schools and flock of birds. Because of its ease of
use and effectiveness, it has been extensively utilized for solving optimization problems
across a range of domains [9, 7, 25].

The structure of our paper is as follows. The fundamental ideas are discussed in Section
2. The terminologies related to the proposed algorithm are provided in Section 3. In
Section 4, the experimental results are given. Section 5 provides the conclusion.

2. FUNDAMENTAL IDEAS [15, 16, 33, 11]

Fractional integration, fractional derivatives and fractional power series will be defined
in the following subsections.

2.1. Riemann-Liouville fractional integer [15]. The Riemann-Liouville fractional inte-
gral operator of order « of a function g(t) € C,, u > —1is J%g(t) = ﬁ fot(t—x)““’lg(a:)dx7 t>
0, J%(t) = g(t).

For g(t) € Cpu, 0 > —1,, > 0,7 > —1, properties of the operator J
F(fy + 1) xoz-i—’y

JYJPg(t) = JPJ%(t), JO = —1 2

2.2. Derivative caputo fractional [15]. According to Caputo, the fractional derivative of
f(x) is expressed as follows:
DS f(x)=J""D"f(z) =

1 ’ T — n—a—1 £(n)
e | e 0

flz)eChp>-1,0,8>0,y> -1,n—1<a<n,n€ N, properties of operator D3

Dy DJf(x) = Dg*P f(x) = DJDS f(x),
L(1+7)

Doy = —— 1
T 149 -a)

277 x>0

2.3. Fractional Power Series [16, 33, 11]. Power series is an essential tool in the analy-
sis of elementary functions. They are commonly used in scientific computation to obtain
function approximations conveniently. They have made it possible for scientists to exam-
ine various differential equations approximately in thermal physics and numerous other
fields. A power series is represented as follows:

(2.2) Z Cn(@ —20)™ = co + c1(x — 20)* + o — 20)%Y + ...
n=0
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where z is the initial point, 0 <m -1 < a <m, m € N and x > z is called a fractional
power series (FPS) about z, where x is a variable and c¢,, are the coefficients of the series.

3. PROPOSED METHODOLOGY FOR SOLVING FDESs

The objective of this work is to illustrate a novel approach to approximately solve a
variety of FDEs by using the DE or PSO technique. A variety of fundamental concepts
from various disciplines of mathematics, including variational calculus, series expansion,
and nature inspired optimization algorithms, are incorporated into the formulation of the
suggested method. To implement an efficient problem-solving technique, each of these
components would be briefly evaluated before being appropriately merged.

3.1. Fractional differential equations. The main goal of the strategy is to solve a variety
of fractional differential equations by using the DE or PSO method with fractional power
series having unknown coefficients. Instead of providing discrete numerical values at
different places in the solution interval, this method gives the solution function.

The general equation for a fractional-order initial value problem can be represented as:

(3.3) D%u(z) = g(z,u(x)),
with initial conditions
(3.4) uF(0)=by, n—1<a<n

where k£ =0,1,...,n — 1, D® represents the fractional derivative of order «, «x is the inde-
pendent variable, u(x) is the unknown function, g(z, u(z)) is a given function and by, is
the value of k" derivative of u at + = 0. The equation describes a fractional differential
equation with initial conditions, where the fractional derivative captures the non-integer
order behavior of the system. Solving this type of problem involves finding the function
u(z) that satisfies the equation and the given initial conditions.

For formulation purpose, the partial sum of the fractional power series (2.2) is consid-
ered to be the approximate solution:

N—1
(35) Ulx) = Un(x) = ) enlx = 20)"

n=0
where « is the order of fractional derivative and ¢,,;n = 0,1,2,..., N — 1 are unknown co-

efficients which needs to be evaluated. This function together with its caputo derivatives
will be used to estimate the solution of Eq.(3.3). The total number of terms of fractional
power series used in approximation is denoted by N.

It has been noted that utilizing the existing evolutionary algorithms to manage a larger
set of unknown variables could potentially lead to improved accuracy. In theoretical
terms, these algorithms have the capacity to handle problems with a wide range of vari-
ables. However, in practice, when confronted with a large number of variables, they often
fail to identify the global optimum, as they get stuck in local optima. A broad search space
need more time and computational resources for thorough analysis.

3.2. Weighted-residual functional as a criterion for convergence [6, 31]. In order to de-
termine whether the approach has obtained the desired amount of accuracy in the ap-
proximate solution, we need an adequate criterion when using the explicit form of the
fractional differential equations. To establish a criterion about the validity of the approx-
imate solution, we require a numerical estimation of errors. If this evaluating factor is
within a suitable range, we may trust the results of the algorithm. Providing an appro-
priate criterion as an objective function for feeding in the DE or PSO algorithm is also
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required. For each of these elements, we find that the concept of weighted-residual func-
tional used in variational calculus would be appropriate. An integral that is optimally
designed to assess the problem’s solution is the weighted residual functional [6]. The
FDE must be satisfied by the approximate solution Uy in the form of its residual-integral,
which is given by

(3.6) WRF = /];)|W(x)| - |R(z)| d

where W (z) is referred to as the weight function and R(x) is the residual [31], which is
obtained in the implicit form of the differential equation (3.3)

(B.7) [, u(@),u(2)) = g(x, u(x)) — D*u(z) =0

by replacing u(z) and u* () with the approximate function U (x) and its fractional deriva-
tives.

(3.8) R(x) = f (2,U(x),U%(x))

WREF will be utilized as the objective function, which is being solved numerically using
the Trapezoidal or Simpson rule. The weight function W(x) is an arbitrary function used
in classical weighted residual methods [31]. But in the proposed method, W(x) is consid-
ered to be 1.

One of the following modifications might seem necessary throughout the solution pro-
cess in order to achieve the acceptable level of precision in algorithm execution:

o In order to avoid the evolutionary mechanism from getting stuck in local optima,
increase the total number of terms in fractional power series.

e Approximating the solution part by part by dividing the solution interval of the
problem into small sections.

3.3. Initial conditions formulation. In order to solve problems related to differential
equations, we need to satisfy both the equation and the equation’s initial conditions. Since
the nature inspired optimization process is used in the present approach to solve the dif-
ferential equations, an appropriate method is required to take the I'V's into consideration
as optimization problem constraints. The homogeneous conditions are handled in their
original implicit form as

(3.9a) u(xg) =0 = hy (z0) = | u(zo) |~ | U (20) |
(3.9b) uw (20) =0 = ha (z0) =| v (x0) | = | U’ (20) |
(3.90) ul™V (20) = 0= hpy (w0) = | u ™ (o) |= | U™ (o) |

The constraints of the optimization problem are represented above by hi, ha, ..., hp_1.
Then, all the h;’s are included in the framework of a single penalty function explained in
the next section.

Co o C, C3 CN1

FIGURE 1. The arrangement of the variables in the DE or PSO particles
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3.4. Fitness Function and Penalty Function [29]. The DE and PSO algorithms are well
known techniques for handling the unconstrained optimization problems. Consequently,
in the case of constrained problems, one of the standard techniques for managing con-
straints is required. Therefore, the penalty function concept is used to implement the
constraints discussed in the preceding section. The penalty function is in charge of penal-
izing solutions that violate the specified criteria. Thus, we may compute the problem’s
fitness function by adding together the weighted-residual integral WRF with the penalty
function PF, i.e.,

(3.10) FF = WRF + PF

where the numerical value of the penalty function PF is determined using the penalty
framework suggested by [29].

nivs
(3.11) PF = WRF - ) " Kih;

i=1
where njy, is the number of initial conditions, and h; is the normalised violation of the
ith constraint, which is obtained using equations ‘(3.9) depending on the degree of vio-
lation for that current condition. The significance given to satisfying each of the criteria
determines the penalty multiplier, K;. Since choosing a large value for the constant K;
will put a lot of emphasis on satisfying this criterion, the optimization algorithms look
for this constraint instead of fulfilling the differential equation. In contrast, the associated
criterion will only be partially fulfilled if K; is having a low value. Therefore, selecting
appropriate values for these multipliers and adjusting them while the evolutionary pro-
cess advances has its own importance, which is out of the scope of this work. However,
the multipliers K are all assumed to remain constant throughout all examples considered
here in order to keep things simple.

4. ILLUSTRATIVE EXAMPLES

Up till now, we have discussed the flexibility of a method for determining the approx-
imate solution of FDEs. This approach will be employed to examine several initial value
problems to evaluate its relevance and accuracy. Selected examples are taken from a va-
riety of the most recognized sources [12, 17, 19, 28] in this field. The efficiency of the
algorithm is illustrated through a graphical comparison of the calculated approximations
against the exact values.

To conduct a thorough analysis and comparison of the numerical results, we primarily
focus on the Mean Square Error (MSE) between the exact solutions and the approximate
solutions, as it serves as the key evaluation criterion in this study. The MSE is calculated
using the following expression:

1O 2
(4.12) MSE =~ ; IUN (t:) = Uexact (&)]]

The mean and variance values, which demonstrate the average precision and stability
of these comparing methods, constitute the MSE values.

20 separate runs were performed for each test problem in order to complete the opti-
mization task. The proposed method was performed on an Intel(R) Core(TM) i3 processor
running at 1.70 GHz with 4 GB of RAM using the MATLAB programming software (MAT-
LAB 2021).

The chosen values for parameters of DE algorithm is mentioned in Table 1.
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TABLE 1. Parameters of DE algorithm for DE-FPS method

Parameters Ex. 1 Ex. 2 Ex. 3
Xomin -1 -0.6523527 -10
Xomaz 1 0.6523527 10

maxFE * 100000 100000 100000
M? 50 10 50
CP 0.9 0.9 0.9

S 0.65 0.55 0.65
Ttpas € 500 20 500
K9 10 1000 100000

@ Maximum Function Evaluations
b Population Size
¢ Maximum Iterations
@ Penalty Multipliers

The chosen values for parameters of PSO algorithm is mentioned in Table 2.

TABLE 2. Parameters of PSO algorithm for PSO-FPS method

Parameters Ex. 1 Ex. 2 Ex. 3
Xmaz 2 0.6523527 2
maxFE® 100000 100000 100000
M? 50 10 50
$1 0.5 0.5 0.5
S 15 1.5 1.5
Winin 04 0.4 0.3
Winaz 0.9 0.9 0.8

Itaz © 500 20 200
K¢ 100 1000 100000

@ Maximum Function Evaluations
b Population Size
¢ Maximum Iterations
4 Penalty Multipliers

4.1. Example 1 [19]. Consider the following fractional differential equation

2 1.5
(4.13) D%u(z) + u(x) = 2 + P(x?.5)’ 0<z<1l,0<a<l
(4.14) u(0) =0
The exact solution for (4.13) and (4.14) is
(4.15) Uexact () = 2% when o = 0.5

The best approximate solution to this problem using Differential Evolution method and
Fractional power series (DE-FPS) is obtained for N = 10. Thus, we get the approximate
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solution as

u(z) =~ 7.687 x 107° 29% — 1.896 x 1073 2 + 2.054 x 1072 z'* 4+ 0.8905 2>
40.3183 22° — 0.531 2% + 0.5088 2>° — 0.2604 z* + 5.517 x 1072 z*5

The best approximate solution to this problem using Particle Swarm Optimization method
and Fractional power series (PSO-FPS) is obtained for N = 10. Thus, we get the approxi-
mate solution as
u(z) ~ —8.618 x 107% +7.36 x 1072 2°° — 0.6623 = + 2 x*° — 1.4039 2*
+0.8882 2% +0.2293 2° — 0.6848 2> 4 1.2677 2 — 0.7093 z*°

D8 =

0.8 r

——— Exact solution
0.1 r DE-FPS .

PSO-FPS
DO D—-—fe_f I i i I I I I i

0 0.1 02 03 04 05 06 07 0.8 0.9 1

FIGURE 2. Comparison of the exact and approximate solutions of Exam-
ple 1 using DE-FPS and PSO-FPS methods

The graphical comparison between the exact and approximate solutions of Example 1
using the DE-FPS and PSO-FPS methods is depicted in Fig. 2. It is clear from the graph
that both the DE-FPS and PSO-FPS methods detected the exact solution with adequate
precision.

4.2. Example 2 [28]. Consider the nonlinear Riccati differential equation
(4.16) Du(z) +u*(r) =1,0<2<1,0<a<1

(4.17) u(0) =0
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TABLE 3. Comparison table for MSE of the solution of Example 1 ob-
tained by the proposed DE-FPS and PSO-FPS methods with that of other
techniques [17]

Technique (MSE)

DE-FPS 3.8093 x 10~12

PSO-FPS 4.4541 x 1077

VIM [17] 2.6283
GWO-VIM [17]  2.600 x 1073

The exact solution for (4.16) and (4.17) is
e?® —1
(4.18) Uexact(T) = poraneT when o = 0.75
The best approximate solution to this problem using Differential Evolution method and
Fractional power series (DE-FPS) is obtained for N = 20. Thus, we get the approximate
solution as

u(z) ~ 0.3824 207 +0.6524 215 + 0.6524 2225 — 0.6524 2> — 0.4151 2>
+0.2936 2*° — 0.4861 %25 — 0.6524 2° + 0.3836 257 — 0.2059 z7-°

+0.6524 28%° 4+ 3.869 x 1072 2 — 0.1973 2° ™ + 0.4689 z'°° + 0.5561 z'12°

—0.2579 212 + 0.5636 £'27° — 0.6524 2135 — 0.3836 2'*2°

The best approximate solution to this problem using Particle Swarm Optimization
method and Fractional power series (PSO-FPS) is obtained for N = 20. Thus, we get
the approximate solution as

u(z) = 0.6524 %7 4 2.587 x 1072 215 4+ 0.6298 x22° — 4.614 x 1072 2°
—0.6524 %7 — 8.007 x 1072 %25 4+ 9.838 x 1072 257 + 0.6524 2°
—0.6524 125 — 0.6524 x'2 — 4.151 x 1072 227 + 0.6524 z'3°

+0.2397 2420

The graphical comparison between the exact and approximate solutions of Example 2
using the DE-FPS and PSO-FPS methods is depicted in Fig. 3. It is seen from the graph
that both the DE-FPS and PSO-FPS methods detected the exact solution with adequate
precision, but the approximate solution obtained by DE-FPS method in this case is better
than that obtained by PSO-FPS method as far as accuracy is concerned.

TABLE 4. Comparison table for MSE of the solution of Example 2 ob-
tained by the proposed DE-FPS and PSO-FPS methods with that of other
techniques [17]

Technique (MSE)

DE-FPS 1.6778 x 10~4
PSO-FPS 3.8067 x 104
VIM [17] 4.3000 x 103
GWO-VIM [17] 1.3000 x 103
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DT
0.6 1
/

0.5 ' 2
R 04T ]
=

0.3 r 1

0.2} _ 1

01k —<— Exact solution | |

' DE-FPS
PSO-FPS
DC’ I I I I 1 I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 i

X

FIGURE 3. Comparison of the exact and approximate solutions of Exam-
ple 2 using DE-FPS and PSO-FPS methods

4.3. Example 3 [12]. Consider the example of nonlinear fractional differential equation
which is used to solve an initial value problem describing the process of cooling of a
semi-infinite body by radiation

(4.19) D%u(x) —y(po —u(x)*=1,0<z<1,0<a<1
(4.20) u(0) =0
The exact solution for (4.19) and (4.20) is
3
™
(4.21) Uexact (T) = Do — (6\;%)\—1(\/7?)1/3 when a = 0.5

For v =1 and py = 1, the best approximate solution to this problem using Differential
Evolution method and Fractional power series (DE-FPS) is obtained for N = 10. Thus, we
get the approximate solution as

u(z) ~ 1.1261 2°° — 3.1629 = + 6.8434 215 — 8.999 22 + 5.8534 x>
—0.2693 2® — 1.7134 2*5 + 0.5794 * + 5.587 x 1072 25

For v = 1 and py = 1, the best approximate solution to this problem using Particle
Swarm Optimization method and Fractional power series (PSO-FPS) is obtained for N
= 10. Thus, we get the approximate solution as
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u(z) = 1.1785 2%° — 2 2 + 0.242 25 4 1.8636 22 + 1.0491 22°
—1.7924 23 — 2 25 4+ 1.3669 2 + 0.416 25

0.35

0.3

0.25

0.1

! —&— Exact solution
0.05 H —#—— MNumerical solution given by [26] | |
———-DE-FP&
—+—PSO-FPS

0 d 1 1 1 1
0 0.1 02 03 04 05 06 07 038 0.9 1

X

FIGURE 4. Comparison of the exact and approximate solutions of Exam-
ple 3 using DE-FPS and PSO-FPS methods

The graphical comparison between the exact and approximate solutions of Example 3
using the DE-FPS and PSO-FPS methods is depicted in Fig. 4. It is seen that both the DE-
FPS and PSO-FPS methods outperformed the other method in terms of accuracy. Also,
the approximate solution obtained by PSO-FPS method in this case is better than that
obtained by DE-FPS method as far as accuracy is concerned.

TABLE 5. Comparison table for MSE of the solution of Example 3 ob-

tained by the proposed DE-FPS and PSO-FPS methods with that of other
numerical technique [26]

Technique (MSE)
DE-FPS 3.4715 x 1073
PSO-FPS 3.3338 x 1073

Numerical method mentioned
by [26] for h = 0.05 1.0827 x 1072
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TABLE 6. Mean Function Evaluations (Mean FE) for the solutions to all
the three examples obtained by the proposed DE-FPS and PSO-FPS meth-
ods

Mean FE Ex.1 Ex.2 Ex. 3

DE-FPS 13375 82 141725
PSO-FPS 6102.5 103.5 17817.5

5. CONCLUSION

In this paper, fractional differential equations are solved numerically to get their ap-
proximate solutions. For this, fractional power series with unknown coefficients are taken
as base approximation function and then these coefficients are evaluated using meta-
heuristic optimization techniques such as Differential Evolution (DE) and Particle Swarm
Optimization (PSO) in order to achieve desired precision. Three problems are considered
as examples to illustrate our proposed method. The MSE of the approximate solutions for
Ex. 1 derived from both DE-FPS and PSO-FPS methods w.r.t. exact solutions are superior
to that of VIM and GWO-VIM methods which were developed by Entesar and Qasim [17]
(See Fig. 2 and Table 3). Further, it may be noted that our DE-FPS method for this example
is even better than that of our PSO-FPS method.

It is further noted that the MSE of the approximate solutions for Ex. 2 obtained by
both DE-FPS and PSO-FPS methods w.r.t. exact solutions are better than the MSE of the
solutions derived from VIM and GWO-VIM methods which were suggested by Entesar
and Qasim [17] (See Fig. 3 and Table 4). Here, it may be noted that the DE-FPS method
for this example is still better than the PSO-FPS method.

The MSE for the approximate solutions for Ex. 3 obtained by both DE-FPS and PSO-
FPS methods w.r.t. exact solutions are better than that of the MSE of the solution obtained
by the numerical method as suggested in Podlubny [26] (See Fig. 4 and Table 5). Further,
it is noted that the PSO-FPS method in this case is even better than the DE-FPS method.

Itis seen from Table 6 that the mean function evaluations (Mean FE) for DE-FPS method
is less than that of PSO-FPS method in case of all the three examples 1, 2 and 3 considered
in this paper. It can be concluded here that the DE-FPS method is more efficient than
PSO-FPS method as far as mean FE is concerned.

After observing the outcomes of the proposed method in this paper, we may conclude
that the performance of both the DE-FPS and PSO-FPS methods are much better than the
methods suggested earlier by Entesar and Qasim [17] and Podlubny [26].
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