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On the Eigenvalues of Hamming Matrix and Hamming
Energy of a Graph

HARISHCHANDRA S. RAMANE, T. SHIVAPRASAD, AND SHEENA Y. CHOWRI

ABSTRACT. Let G be a graph with n vertices and m edges. Let V (G) = {v1, v2, . . . , vn} be the vertex set of
G. The string s(vi) is the row in the incidence matrix of G corresponding to the vertex vi, which is an m-tuple in
Zm
2 . The Hamming matrix H(G) = [hij ] of a graph G is an n× n matrix, whose (i, j)-th entry is the Hamming

distance between the strings s(vi) and s(vj). The Hamming energy HE(G) of a graph G is the sum of the
absolute values of the eigenvalues of H(G). Recently the Hamming energy is introduced and obtained bounds
for it in terms of the Hamming index and observed its predictive potentiality by correlating the physicochemical
properties of molecules. In this paper we give the better bound for Hamming energy in terms of number of
vertices and edges. Also obtain the largest eigenvalue of the Hamming matrix of a regular graph. Further
obtain explicitly the eigenvalues of the Hamming matrix and Hamming energy of a complete bipartite graph.

1. INTRODUCTION

Let G be a simple undirected graph with n vertices and m edges. Let the vertex set of G
be V (G) = {v1, v2, . . . , vn} and edge set be E(G) = {e1, e2, . . . , em}. If the vertices vi and
vj are adjacent then we write vi ∼ vj and if they are not adjacent then we write vi ≁ vj .
The degree of a vertex vi, denoted by degG(vi), is the number of edges incident to it. If all
the vertices have same degree equal to r then the graph is called a regular graph of degree
r.

The graph energy E(G), introduced in 1978 [3], is defined as sum of the absolute values
of the eigenvalues of the adjacency matrix A(G) of a graph G. That is if µ1, µ2, . . . , µn are
the eigenvalues of A(G), then

(1.1) E(G) =

n∑
i=1

|µi|.

Graph energy has significant applications in chemistry [4, 11]. Several results related
to graph energy can be seen in [3, 4, 5, 11, 13, 15].

In literature, several other energies of graphs, particularly, the distance energy [8],
Laplacian energy [6], Harary energy [2], Zagreb energy [14], skew energy [1, 10], Seidel
energy [7], degree sum energy [17] and minimum second neighborhood degree energy
[12] were studied.

Recently, Vučićević, Redžepović and Stojanović [21] introduced the Hamming matrix
and Hamming energy of a graph based on the incidence matrix of a graph. They have
obtained upper bound for Hamming energy in terms of Hamming index. Also obtained
Hamming energy of a complete graph Kn and gave the bound for Hamming energy of
cycle. Further they gave bound for the largest eigenvalue of the Hamming matrix of a star.
Also they observed that the better predictive potentiality of the Hamming energy with
the entropy, heat of vaporization and heat of formulation of octane molecules. In [19], the
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sensitivity of Hamming energy on isomers was checked and found that Hamming energy
of chemical trees and chemical unicyclic graphs shows high sensitivity compared to graph
energy and other eigenvalue-based quantities.

In this paper we give the upper bound for Hamming energy of a graph in terms of
number of vertices and edges and lower bound in terms of the determinant of Hamming
matrix. Also obtain the largest eigenvalue of the Hamming matrix of a regular graph.
Further we give explicitly the eigenvalues of the Hamming matrix and Hamming energy
of a complete bipartite graph.

2. PRELIMINARIES

The set Z2 = {0, 1} is a group under binary operation + with addition modulo 2.
Therefore for any positive integer m, Zm

2 = Z2 × Z2 × · · · × Z2 (m factors) is a group
under the operation + defined by

(x1, x2, . . . , xm) + (y1, y2, . . . , ym) = (x1 + y1, x2 + y2, . . . , xm + ym),

with addition modulo 2.
Element of Zm

2 is an m-tuple (x1, x2, . . . , xm) written as x = x1x2 . . . xm where every
xi is either 0 or 1 and is called a string. The number of 1 in x = x1x2 . . . xm is called the
weight of x and is denoted by wt(x).

Let x = x1x2 . . . xm and y = y1y2 . . . ym be the elements of Zm
2 . Then the sum x + y is

computed by adding the corresponding components of x and y under addition modulo 2.
That is, xi + yi = 0 if xi = yi and xi + yi = 1 if xi ̸= yi, i = 1, 2, . . . ,m.

The Hamming distance Hd(x, y) between the strings x = x1x2 . . . xm and y = y1y2 . . . ym
is the number of is such that xi ̸= yi, 1 ≤ i ≤ m. Thus Hd(x, y) = Number of positions in
which x and y differ = wt(x+ y) [9].

Example 2.1. If x = 01001, y = 11010 and z = 11011 are the strings, then Hd(x, y) = 3 and
Hd(x, z) = 2.

The incidence matrix of a graph G is the matrix B(G) = [bij ] of order n ×m in which
bij = 1 if the vertex vi is incident to the edge ej and bij = 0, otherwise. Denote by s(vi),
the row of the incidence matrix corresponding to the vertex vi. It is a string in the set Zm

2

of all m-tuples over the field of order two.
Sum of Hamming distances between all pairs of strings generated by the incidence

matrix of a graph G is called the Hamming index of G [16, 18], and is denoted by HB(G).

FIGURE 1. Graph

Example 2.2. For a graph G given in Fig. 1, the incidence matrix is

B(G) =


1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 0 1 1 0

 .
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Therefore Hd(s(v1), s(v2)) = 3, Hd(s(v1), s(v3)) = 4, Hd(s(v1), s(v4)) = 3, Hd(s(v2), s(v3)) =
3, Hd(s(v2), s(v4)) = 4 and Hd(s(v3), s(v4)) = 3. Hence HB(G) = 20.

The Hamming matrix of a graph G (with respect to its incidence matrix) is a matrix
H(G) = [hij ] of order n × n in which hij = Hd(s(vi), s(vj)), where s(vi) is the string cor-
responding to the vertex vi in the incidence matrix of G. H(G) is symmetric matrix with
diagonal entries zero. Analogous to graph energy defined in Eq. (1.1), if λ1, λ2, . . . , λn

are the eigenvalues of the Hamming matrix H(G) of G, then the Hamming energy of G is
defined as [21]

(2.2) HE(G) =

n∑
i=1

|λi|.

Example 2.3. For a graph G given in Fig. 1, the Hamming matrix is

H(G) =


0 3 4 3
3 0 3 4
4 3 0 3
3 4 3 0

 .

The eigenvalues of this matrix are λ1 = 10, λ2 = −2, λ3 = −4 and λ4 = −4. Therefore
Hamming energy is HE(G) = 20.

We need following results.

Theorem 2.1. [16] Let u and v be the vertices of G. Then

Hd(s(u), s(v)) =

{
degG(u) + degG(v)− 2 if u ∼ v
degG(u) + degG(v) if u ≁ v.

Theorem 2.2. [20] (Geršgorin Theorem) For any matrix M = [mij ] of order n × n and any
eigenvalue λ of M , there is an integer k ∈ N = {1, 2, . . . , n} such that

|λ−mkk| ≤ rk(M) =
∑

j∈N\{k}

|mkj |.

3. ON THE EIGENVALUES OF HAMMING MATRIX

Theorem 3.3. If G is a regular graph of degree r with n vertices, then the maximum eigenvalue
of the Hamming matrix of G is 2r(n− 2).

Proof. Since G is a regular graph of degree r, by Theorem 2.1

Hd(s(u), s(v)) =

{
2r − 2 if u ∼ v
2r if u ≁ v.

Hence in each row of H(G), we have r times (2r − 2) and n − 1 − r times 2r. Therefore
ri(H(G)) = r(2r − 2) + (n− 1− r)2r = 2r(n− 2) for all i = 1, 2, . . . , n.

Let u = [1, 1, . . . , 1]T be the column vector. Then

H(G)u = 2r(n− 2)u.

Hence 2r(n− 2) is the eigenvalue of H(G).
By Theorem 2.2, if λ is the eigenvalue of H(G) then |λ| ≤ ri(H(G)) = 2r(n− 2). Hence

maximum eigenvalue of H(G) is 2r(n− 2). □

In [21], bound for maximum eigenvalue of the Hamming matrix of a star Sn = K1,n−1

is given. Here we obtain the eigenvalues of the Hamming matrix of complete bipartite
graph Kp,q , wher p, q ≥ 1 are the integers.
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Theorem 3.4. If Kp,q is the complete bipartite graph, then the characteristic polynomial of H(Kp,q)
is

(λ+ 2p)q−1(λ+ 2q)p−1[λ2 − (4pq − 2p− 2q)λ− pq(p− q)2].

Proof. Let V1 and V2 be the partite sets of the vertex set of Kp,q , where |V1| = p and |V2| = q.
By Theorem 2.1 the Hamming distance in Kp,q is

Hd(s(u), s(v)) =

 p+ q − 2 if u ∈ V1 and v ∈ V2 or vice versa
2q if u, v ∈ V1

2p if u, v ∈ V2.

Therefore the Hamming matrix of Kp,q is in the form

(3.3)

[
2qJp×p − 2qIp (p+ q − 2)Jp×q

(p+ q − 2)Jq×p 2pJq×q − 2pIq

]
,

where J is a matrix whose all entries are equal to 1 and I is the identity matrix.
Let X = p + q − 2, Y = λ + 2q, Z = λ + 2p, P = 2(p − 1)q and Q = 2(q − 1)p. The

characteristic polynomial of the matrix (3.3) is

(3.4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −2q · · · −2q −X −X · · · −X
−2q λ · · · −2q −X −X · · · −X

...
...

...
−2q −2q · · · λ −X −X · · · −X
−X −X · · · −X λ −2p · · · −2p
−X −X · · · −X −2p λ · · · −2p

...
...

...
−X −X · · · −X −2p −2p · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Substracting first row from rows 2, 3, . . . , p and substracting (p + 1)-th row from rows
p+ 2, p+ 3, . . . , p+ q in (3.4) we get

(3.5)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −2q · · · −2q −X −X · · · −X
−Y Y · · · 0 0 0 · · · 0

...
...

...
−Y 0 · · · Y 0 0 · · · 0
−X −X · · · −X λ −2p · · · −2p
0 0 · · · 0 −Z Z · · · 0
...

...
...

0 0 · · · 0 −Z 0 · · · Z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Adding columns 2, 3, . . . , p to the first column and adding columns p+2, p+3, . . . , p+q
to the (p+ 1)-th column in (3.5) we get
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(3.6)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− P −2q · · · −2q −qX −X · · · −X
0 Y · · · 0 0 0 · · · 0
...

...
...

0 0 · · · Y 0 0 · · · 0
−pX −X · · · −X λ−Q −2p · · · −2p
0 0 · · · 0 0 Z · · · 0
...

...
...

0 0 · · · 0 0 0 · · · Z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It reducess to following in which the determinant is of order (p+ 1).

Zq−1

∣∣∣∣∣∣∣∣∣∣∣

λ− P −2q · · · −2q −qX
0 Y · · · 0 0
...

...
0 0 · · · Y 0

−pX −X · · · −X λ−Q

∣∣∣∣∣∣∣∣∣∣∣
= Zq−1

[
(λ− P )Y p−1(λ−Q)− pqX2Y p−1

]
= Zq−1Y p−1

[
(λ− P )(λ−Q)− pqX2

]
= (λ+ 2p)q−1(λ+ 2q)p−1[λ2 − (4pq − 2p− 2q)λ− pq(p− q)2].

□

Corollary 3.1. The eigenvalues of the Hamming matrix of the complete bipartite graph Kp,q are
−2p (q − 1 times), −2q (p− 1 times) and (2pq − p− q)±

√
(2pq − p− q)2 + pq(p− q)2.

Lemma 3.1. If λ1, λ2, . . . , λn are the eigenvalues of the Hamming matrix H(G) of a graph G,
then

n∑
i=1

λi = 0 and
n∑

i=1

λ2
i = 2

∑
1≤i<j≤n

[Hd(s(vi), s(vj))]
2.

Proof. Sum of eigenvalues is the trace of a matrix. Hence
n∑

i=1

λi = Trace(H(G)) = 0.

For second result,
n∑

i=1

λ2
i = Trace(H(G)2) =

n∑
i=1

n∑
j=1

[Hd(s(vi), s(vj))]
2

= 2
∑

1≤i<j≤n

[Hd(s(vi), s(vj))]
2.

□

4. BOUNDS FOR HAMMING ENERGY

In [21] it is proved that for a graph G with n vertices,

(4.7) HE(G) ≤ 2
√
nHB(G).

In the following theorem we give the lower bound for Hamming energy analogous to
the McClelland bound for graph energy [3, 13].
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Theorem 4.5. Let G be a graph with n vertices and V (G) = {v1, v2, . . . , vn} be the vertex set of
G. Then

HE(G) ≥
√
2

∑
1≤i<j≤n

[Hd(s(vi), s(vj))]2 + n(n− 1)|det(H(G))|2/n.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of H(G). Then

(HE(G))2 =

(
n∑

i=1

|λi|

)2

=

n∑
i=1

|λi|2 + 2
∑

1≤i<j≤n

|λi||λj |

= 2
∑

1≤i<j≤n

[Hd(s(vi), s(vj))]
2 +

∑
i ̸=j

|λi||λj |.(4.8)

Since the Arithmetic Mean is not smaller than Geometric Mean, we have

1

n(n− 1)

∑
i ̸=j

|λi||λj | ≥

∏
i ̸=j

|λi||λj |

1/n(n−1)

=

(
n∏

i=1

|λi|2(n−1)

)1/n(n−1)

=

(
n∏

i=1

|λi|

)2/n

= |det(H(G))|2/n.(4.9)

By Eqs. (4.8) and (4.9), the result follows. □

In the following theorem we give improved bound than Eq. (4.7).

Theorem 4.6. Let G be a graph with n vertices and m edges. Then

HE(G) ≤ 4m(n− 2).

Proof. By Theorem 2.1

Hd(s(u), s(v)) =

{
degG(u) + degG(v)− 2 if u ∼ v
degG(u) + degG(v) if u ≁ v.

Let v1, v2, . . . , vn be the vertices of G and let degG(vi) = di, i = 1, 2, . . . , n.
Without loss of generality suppose the vertex v1 is adjacent to the vertices v2, v3, . . . , vd1+1

and it is not adjacent to the vertices vd1+2, vd1+3, . . . , vn. Then the entries in the row of
H(G) corresponding to the vertex v1 are

0, d1 + d2 − 2, d1 + d3 − 2, . . . , d1 + dd1+1 − 2, d1 + dd1+2, d1 + dd1+3, . . . , d1 + dn.
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Therefore

r1(H(G)) =

d1+1∑
i=2

(d1 + di − 2) +

n∑
i=d1+2

(d1 + di)

=

n∑
i=2

d1 +

n∑
i=2

di −
d1+1∑
i=2

2

= (n− 1)d1 + (2m− d1)− 2d1 since
n∑

i=1

di = 2m

= 2m+ (n− 4)d1.

Thus in general ri(H(G)) = 2m+ (n− 4)di for i = 1, 2, . . . , n.
By Theorem 2.2, |λ| ≤ ri(H(G)), i = 1, 2, . . . , n. Hence

HE(G) =

n∑
i=1

|λi|

≤
n∑

i=1

ri(H(G))

=

n∑
i=1

[2m+ (n− 4)di]

= 2mn+ (n− 4)2m since
n∑

i=1

di = 2m

= 4m(n− 2).

□

Corollary 4.2. If G is a regular graph of degree r on n vertices, then

HE(G) ≤ 2nr(n− 2).

Corollary 4.3. [21] For a cycle Cn on n vertices, HE(Cn) ≤ 4n(n− 2).

Following theorem follows from the Corollary 3.1 and Eq. (2.2).

Theorem 4.7. For a complete bipartite graph Kp,q ,

HE(Kp,q) = 4pq − 2p− 2q + 2
√
(2pq − p− q)2 + pq(p− q)2.

Corollary 4.4. For a star Sn = K1,n−1, HE(Sn) = 2(n− 2)(1 +
√
n).

5. CONCLUSION

In this paper we obtained bound for Hamming energy of a graph in terms of number
of vertices and egdes. We also obtained the largest eigenvalue of the Hamming matrix of
regular graph. Also gave explicit formula for the eigenvalues of Hamming matrix and for
Hamming energy of a complete bipartite graph. The obtained results are better than the
existing results.
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[2] Güngör, A. D.; Çevik, A. S. On the Harary energy and Harary Estrada index of a graph. MATCH Commun.
Math. Comput. Chem. 64 (2010), 280–296.

[3] Gutman, I.; The energy of a graph. Ber. Math. Statist. Sekt. Forschungszentrum Graz 103 (1978), 1–22.
[4] Gutman, I.; Polansky, O. E. Mathematical Concepts in Organic Chemistry. Springer-Verlag, Berlin, 1986.
[5] Gutman, I.; Ramane, H. S. Research on graph energies in 2019, MATCH Commun. Math. Comput. Chem. 84

(2020), 277–292.
[6] Gutman, I.; Zhou, B. Laplacian energy of a graph. Linear Algebra Appl. 414 (2006), 29–37.
[7] Haemers, W. H. Seidel switching and graph energy. MATCH Commun. Math. Comput. Chem. 68 (2012), 653—

659.
[8] Indulal, G.; Gutman, I.; Vijayakumar, A. On the distance energy of a graph. MATCH Commun. Math. Comput.

Chem. 60 (2008), 461–472.
[9] Kolman, B.; Busby, R.; Ross, S. C. Discrete Mathematical Structures. Prentice Hall of India, New Delhi, 2002.

[10] Lokesha, V.; Shanthakumari, Y.; Zeba Yasmeen, K. Energy and skew-energy of a modified graph. Creat.
Math. Inform. 30 (2021), 41–48.

[11] Li, X.; Shi, Y.; Gutman, I. Graph Energy. Springer, New York, 2012.
[12] Manilal, K.; Harikrishnan, K. A. On minimum second neighborhood degree energy of graphs. Creat. Math.

Inform. 33 (2024), 217–229.
[13] McClelland, B. J. Properties of the latent roots of a matrix: The estimation of π-electron energies. J. Chem.

Phys. 54 (1971), 640–643.
[14] Rad, N. J.; Jahanbani, A.; Gutman, I. Zagreb energy and Zagreb Estrada index of graphs. MATCH Commun.

Math. Comput. Chem. 79 (2018), 371–386.
[15] Ramane, H. S. Energy of graphs, in: M. Pal, S. Samanta, A. Pal (Eds.) Handbook of Research on Advanced

Applications of Graph Theory in Modern Society. IGI Global, Hershey, 2020, pp. 267–296.
[16] Ramane, H. S.; Baidari, I. B.; Jummannaver, R. B.; Manjalapur, V. V.; Gudodagi, G. A.; Yalnaik, A. S.;

Hanagawadimath, A. S. Hamming index of graphs with respect to its incidence matrix. Indonesian J. Combin.
6 (2022), 120–129.

[17] Ramane, H. S.; Revankar, D. S.; Patil, J. B. Bounds for the degree sum eigenvalues and degree sum energy
of a graph. Int. J. Pure Appl. Math. Sci. 6 (2013), 161–167.

[18] Ramane, H. S.; Yalnaik, A.; Gudodagi, G. A. Hamming index generated by the incidence matrix of some
thorn graphs. Int. J. Math. Arch. 7 (2016), 7–12.
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