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A Study on Sums and Quotients of c-spaces with Special
Reference to Graphical and Non-Graphical c-spaces

P. K. SANTHOSH 1 , K. P. PRIYADARSHAN 2, AND R. BIJUMON 3

ABSTRACT. In this article, we delved into the concept of sums of c-spaces and explored the relationships be-
tween product, quotient, and sum operations on these spaces. Utilizing categorical concepts, we demonstrated
that the product of quotients of c-spaces need not be the quotient of their product. For finite graphical c-spaces,
we introduced a method for identifying their quotient spaces. Additionally, we investigated a non-graphical
attribute known as the C1 property within this framework.

INTRODUCTION

The paper [18] authored by R. L. Wilder provides a comprehensive exploration of the
evolution of the concept of topological connectedness. Connectedness is fundamental in
disciplines such as Topology, Digital Topology, and Graph Theory. It is a well-established
fact that continuous functions preserve connected sets, but there exist numerous examples
in literature where discontinuous functions also map connected sets to connected sets.
Some notable examples are

(1) Consider the identity function I on an infinite set X, where the domain has the
indiscrete topology and the codomain has the cofinite topology. This function
preserves connectedness but is not continuous.

(2) Any discontinuous function defined on a totally disconnected space X preserves
connectedness bacause the only connected sets in X are one point sets.

(3) Another example illustrating this phenomenon is the real-valued function f(x) ={
sin( 1x ) ; if x ̸= 0
0 ; if x = 0

on R.

In Digital Topology, the focus shifts from continuous functions to functions that main-
tain connectedness of sets. This distinction is crucial in fields like image processing, where
continuous images are analyzed using topological connectivity, while discrete images are
better suited to graph theoretical concepts of connectedness. Interestingly, there exist
graphs whose connectedness cannot be deduced from topology [1], and conversely, there
are topological spaces whose connectedness cannot be inducted from any graphs [11].
Recognizing that continuous images can be seen as a limit of discrete images underscores
the necessity of reconciling graph theoretical and topological notions of connectivity.

In 1983, Reinhard Börger [10] successfully axiomatized connectedness with his theory
of connectivity classes. This axiomatization has since been pivotal in applied mathemat-
ics, particularly in Image Analysis, Signal Processing, and Pattern Recognition [3, 5, 11,
15, 16]. Many studies in these areas are predominantly applied rather than theoretical.
This paper continues our previous work [12, 13, 14], which focuses on the foundational
structural properties of these spaces.
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Figure 1: Connected subset of R
2

Figure 2: Disconnected subset of R
2

1. PRELIMINARIES

Unless otherwise specified, all terminologies used in this section are derived from [2,
7, 10, 12, 13, 16]. For a nonempty set X , a connective space is a pair (X, C) where C is a
family of subsets of X satisfying the axioms,

(i) Both ϕ and {y} for each y ∈ X are members of C.
(ii) If ∩

i∈I
Ci ̸= ϕ for a collection {Ci : i ∈ I} from C, then ∪

i∈I
Ci ∈ C.

(iii) For nonempty sets C1, C2 ∈ C with C1 ∪C2 ∈ C, there exists z ∈ C1 ∪C2 such that
{z} ∪ C1 ∈ C and {z} ∪ C2 ∈ C.

(iv) If A, B, Ci(i ∈ I) are disjoint members of C and if A∪B ∪
⋃
i∈I

Fi ∈ F , then ∃ J ⊆ I

such that A ∪
⋃
j∈J

Cj ∈ C and B ∪
⋃

i∈I−J

Ci ∈ C.

It is proved that finite connective spaces are precisely simple graphs[7]. If the space (X, C)
satisfies the first two axioms only, it is called a c-space and C is called a c-structure on X .
Elements of C are called connected sets. Usually, the space (X, C) is represented by X .

It can be noted that for any set X, the power set P(X) and DX = {ϕ} ∪ {{y} : y ∈ X}
are c-structures on X and the corresponding c-spaces are called indiscrete and discrete c-
spaces in order. For a topological space X, F = {C ⊆ X : C is connected in X} forms a
c-structure on X and the corresponding c-space (X,F) is called the associated c-space of
X. Similar terminology “graphical” can be defined for a graph.

A function h : X → Y is c-continuous if h(A) is connected for each connected set A in
X. If {Xi = (Xi, CXi) : i ∈ I} be a family of c-spaces and X a set, F = {fi : X → Xi : i ∈ I}
a family of functions, then S = {D ⊂ X : fi(D) ∈ CXi

for each i ∈ I} is the strong or
largest c-structure[13] on X generated by F. Let X =

∏
i∈I

Xi and for each i, let πi : X → Xi

be a projection funtion on X. Then X is said to be the product space of {Xi : i ∈ I} if
c-structure on X is the largest c-structure generated by {πi : i ∈ I}.

To visualize connectedness in the product space, some examples from R2 is given be-
low.

Cosndier a family K of subsets of a set X. Then the c-structure generated by K, repre-
sented by ⟨K⟩, is the smallest c-structure on X containg K. It is proved in [7] that, for any
K ∈ ⟨K⟩, any two distinct points in K can be joined by a finite chain of connected sets
in K that are contained in K. A c-space (X, C) is said to be 2-generated if C = ⟨K⟩ where
K ⊆ {K ∈ C : |K| ≤ 2}. Note that these are graphical c-spaces and have a crusial part in
the study of finite c-spaces[9].

Consider a class of functions {gi : Xi → Z : i ∈ J} where Z is any set. Then ⟨{gi : i ∈
J}⟩

W
denotes the weakest(smallest) c-structure on Z that make each gi c-continuous. In
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particular, an onto map h : X → Z is called a quotient map if CZ = ⟨{h}⟩
W

. Equivalently,
Z is a quotient space of X.

A characterization of a connected set in a generated c-structure is given below.

Theorem 1.1. [13] Let (X, C) be a c-space with C = ⟨K⟩, where K ⊂ P(X). A subset B of X is
connected if and only if B = ∪

x∈B
Ex0x, where x0 ∈ B and Ex0x =

nx∪
i=1

Bxi
such that x0 ∈ Bx1

,

x ∈ Bxnx
, Bxi

∈ K for each i such that Bxi
⊂ B and Bxi

∩Bxi+1
̸= ϕ for 1 ≤ i ≤ nx − 1.

The Tensor Product [2] X1⊠X2 of two c-spaces Xi, (i = 1, 2) is the set X1×X2 with the
generated c-structure ⟨{C1 × C2 : C1 ∈ CX1 , C2 ∈ CX2}⟩ on it. We note that this structure
is smaller than the cartesian structure on X1 ×X2.

Let A,B ⊂ X . The element x ∈ X is defined to touch A if we can find a nonempty
subset K of A such that K ∪ {x} is connected in X. Moreover A and B is said to touch if
we can find y in A ∪B that touches both A and B. Furthermore, points y and z of X said
to touch if z touches {y}. Let t(A) = {y ∈ X : y touch A}. Then, A is said to be t-closed
if t(A) = A. The t-closure of a set B, represented by B, is defined as the smallest t-closed
set containing B.

2. SOME PROPERTIES OF SUM OR COPRODUCT OF C-SPACES

Let (X1, CX1) and (X2, CX2) be two disjoint c-spaces. Then its sum space [2] is defined
to be the c-space (X, C), where X = X1 ∪X2 and C = CX1

∪ CX2
. We can extend the above

definition to arbitrary class of c-spaces.

Definition 2.1. Let F = {(Xi, CXi) : i ∈ I} be a family of c-spaces and X =
∑
i∈I

Xi be the set

theoretical sum of the sets {Xi : i ∈ I}. For each i ∈ I , define λi : Xi → X by λi(x) = (x, i).
Let C = ⟨{λi : i ∈ I}⟩

W
. Then the c-space (X, C) is defined as the Sum or co-product and is

represented by
∑
i∈I

Xi.

Proposition 2.1. Let (X, C) be the sum of the c-spaces {(Xi, CXi
) : i ∈ I}. Then C =

⋃
i∈I

{C ×

{i} : C ∈ CXi
}.

Proof. Let K ∈ C. Fix an element x0 ∈ K. As C = ⟨B⟩
W

, where B = {λi(C) : C ∈ CXi , i ∈
I}, we have B = {K × {i} : K ∈ CXi , i ∈ I}. By Theorem 1.1, we can write K = ∪

x∈K
Ex0x,

where Ex0x =
nx∪
i=1

Bxi
such that x0 ∈ Bx1

, x ∈ Bxnx
, Bxi

∈ B for each i with Bxi
⊂ K and

Bxi
∩Bxi+1

̸= ϕ for 1 ≤ i ≤ nx − 1.
Since Bxi

∈ B for each i and since Bxi
∩ Bxi+1

̸= ϕ for 1 ≤ i ≤ nx − 1, each Bxi
,

1 ≤ i ≤ nx, must be of the form C × {k} for some C ∈ CXk
and for a fixed k ∈ I . Let

Bx1 = C1 × {k} and Bx2 = C2 × {k} for some C1, C2 ∈ CXk
. As Bx1 ∩ Bx2 ̸= ϕ, we have

C1 ∩ C2 ̸= ϕ. Thus C1 ∪ C2 ∈ CXk
, so that (C1 ∪ C2)× {k} ∈ B and hence Bx1

∪ Bx2
∈ B.

Arguing like this, being a finite union, Ex0x =
nx∪
i=1

Bxi ∈ B.

As Ex0x ∈ B for each x ∈ K and since Ex0x ∩ Ex0y ̸= ϕ for each x, y ∈ K, arguing as
above, we have ∪

x∈K
Ex0x ∈ B. Thus K ∈ B, so that C ⊆ B. As C = ⟨B⟩

W
, we have B ⊆ C.

Hence our result follows. □

Remark 2.1. If {(Xi, CXi
) : i ∈ I} is a pairwise disjoint class of c-spaces, then its sum can be

identified with the c-space (X, C), with X =
⋃
i∈I

Xi and C =
⋃
i∈I

CXi .
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Since any connected set in X belongs to exactly one component in X[7], any c-space X
is same as its sum of components. That is, X =

∑
x∈X

Cx, where Cx is the unique component

of X containing x.
We can note that the above observation is not true in the category of topological spaces

TOP. For example, consider Q as a subspace of R. Here components are singleton sets,
so that its topology is discrete. If we write Q as its sum of its components, topology of Q
becomes discrete, a contradiction.

Proposition 2.2. The sum of quotients of c-spaces is the quotient of its sums.

Proof. For each i ∈ I , let Yi be a quotient space of Xi and the corresponding quotient map
be fi : Xi → Yi. We will prove that Y =

∑
i∈I

Yi is a quotient space of X =
∑
i∈I

Xi. For x ∈ Xi,

define f : X → Y by f(x) = fi(x). Clearly f is c-continuous.
We will prove that CY = ⟨{fi : i ∈ I}⟩

W
. Let DY = ⟨{fi : i ∈ I}⟩

W
. Since each fi is c-

continuous, we have DY ⊆ CY . Further, let C be any connected set in Y . Then C ∈ CYi for
some i ∈ I . Since Yi is a quotient space of Xi, we have CYi

= ⟨{fi}⟩
W

, so that C ∈ ⟨{fi}⟩
W

and hence C ∈ ⟨{fi : i ∈ I}⟩
W

. That is, C ∈ DY and hence CY ⊆ DY . Consequently, we
have CY = DY . That is, CY = ⟨{fi : i ∈ I}⟩

W
.

Thus f : X → Y is quotient map and hence sum of quotients of c-spaces is the quotient
of its sums. □

We note that, a family C of sets is said to be a cover [4] of a set C if C ⊆
⋃

K∈C K.

Theorem 2.2. Let {Xi : i ∈ I} be a family of c-spaces and Y be any nonempty set. Let {fi :
Xi → Y : i ∈ I} be a family of functions. Then Y is a quotient space of the sum space

∑
i∈I

Xi if

CY = ⟨{fi : i ∈ I}⟩
W

, provided {fi(Xi) : i ∈ I} covers Y .

Proof. Without loss of generality, assume that the collection {Xi : i ∈ I} is pairwise dis-
joint. Let X =

∑
i∈I

Xi. Define g : X → Y by g(x) = fi(x) if x ∈ Xi. Since each fi is

c-continuous, g is c-continuous. We claim that g is onto. Let y ∈ Y . Since Y ⊆
⋃
i∈I

fi(Xi),

let y ∈ fi(Xi) for some i. Obviously there is an x ∈ Xi such that fi(x) = y. Thus g(x) = y
for some x ∈ X and hence g is onto.

To prove our claim, it is enough to show that CY = ⟨{g}⟩
W

.
Let C ∈ ⟨{g}⟩

W
. For c1, c2 in C, we can find [7] a finite chain of connected sets

D1, D2, ...., Dn in X such that c1 ∈ g(D1), c2 ∈ g(Dn), g(Di) ∩ g(Di+1) ̸= ϕ for i = 1
to n − 1 and g(Di) ⊂ C for i = 1 to n. Clearly for j = 1 to n, Dj ⊂ Xi for some i ∈ I .
Rename Xis so that Di ⊂ Xi for i = 1 to n, so that g(Di) = fi(Di) for i = 1 to n. Clearly
C ∈ ⟨{fi(K) : K ∈ CXi , i ∈ I}⟩ and hence C ∈ ⟨{fi : i ∈ I}⟩

W
. Thus C ∈ CY , so that

⟨{g}⟩
W

⊆ CY .
Conversely let C ∈ CY . Let c1,c2 be any two elements of C. Then as above, we can

find a finite chain of connected sets K1, K2, K3,. . .Km in X such that c1 ∈ fj(K1) and
c2 ∈ fk(Km), j, k ∈ I such that fq(Ki) ∩ fr(Ki+1) ̸= ϕ, q, r ∈ I , 1 ≤ i ≤ m − 1 and
fs(Ki) ⊂ C, for every 1 ≤ i ≤ m and s ∈ I . Since fi = g for every i, we have c1 ∈
g(K1), c2 ∈ g(K2), g(Ki) ∩ g(Ki+1) ̸= ϕ for i = 1 to m and g(Ki) ⊂ C for every i. Thus
C ∈ ⟨{g(K) : K ∈ CX}⟩ and hence C ∈ ⟨{g}⟩

W
, so that CY ⊆ ⟨{g}⟩

W
. Consequently,

CY = ⟨{g}⟩
W

. Hence the theorem is proved. □

2.1. Sum and Product Spaces. In this section, we investigate whether the product of quo-
tients of c-spaces is equivalent to the quotient of their product. It’s important to note that
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in any cartesian closed topological category, this result is established [8]. Here, we demon-
strate that the same result holds for the category of c-spaces, despite it not being cartesian
closed [2].

Proposition 2.3. For nonempy c-spaces {Xi : i ∈ I} and a c-space X, X×
∑
i∈I

Xi is c-isomorphic

to the sum space
∑
i∈I

(X ×Xi).

Proof. For conveience, assume that members of the family of c-spaces {Xi : i ∈ I} are
pairwise disjoint. Define f : X ×

∑
i∈I

Xi →
∑
i∈I

(X ×Xi) by f(x, y) = (x, y), where x ∈ X ,

y ∈ Xi for some i ∈ I . Clearly f is bijective.
Let C be connected in X×

∑
i∈I

Xi. Then π1(C) is connected in X and π2(C) is connected

in
∑
i∈I

Xi, so that π2(C) is connected in Xi for some i. Thus C is connected in X × Xi for

some i and hence it is connected in
∑
i∈I

(X ×Xi). As f(C) = C, f is c-continuous.

Similar arguments shows that f−1 is also continuous. Thus f is a c-isomorphism. □

Theorem 2.3. [17] In a topological construct T , below stated results are equivalent.
(1) T is cartesian closed.
(2) For any object T in T , and for any collection of objects (Ki)i∈I from T , below stated

results are satisfied.
i. T ×

∑
i∈I

Ki
∼=

∑
i∈I

(T ×Ki).

ii. If f is a quotient map, then so is IT × f , where IT is the identity morphism on T .
(3) For an object T in T , and for any collection of objects (Ki)i∈I from T , they satisfy the

following conditions.
i. T ×

∑
i∈I

Ki
∼=

∑
i∈I

(T ×Ki).

ii. In T , for the quotient maps g and h, the product g × h is again a quotient map.

From this theorem, we can make the following observation.

Remark 2.2. (1) Finite product of quotients of c-spaces need not be the quotients of its prod-
uct.

(2) For a quotient map f : X → Y , the map IX×f : X×X → X×Y need not be a quotient
map.

Proof. From [10], it can be noted that the category of c-spaces is not a cartesian closed
topological category.

(1) By Proposition 2.3, we have A×
∑
i∈I

Bi
∼=

∑
i∈I

(A×Bi). Considering the equivalence

of the statements (1) and (2) in the Theorem 2.3, it follows that finite product of
quotients of c-spaces need not be the quotient of its products.

(2) Similarly considering the equivalence of the statements (1) and (3) of the Theorem
2.3, we can observe that IX × f : X ×X → X × Y is not a quotient map.

□

Finding a concrete example to prove the above claim is an open problem. In our forth-
coming paper, we will give the condition under which the product of quotients become a
quotient of its product. In the next remark we prove that, the sum of c-spaces where each
summand is same, can be viewed as product space up to c-isomorphism.
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Remark 2.3. If X is any c-space and if Xα = X for every α ∈ I , then the sum space
∑
α∈I

Xα is

c-isomorphic to the product space X × I , where I is considered to be a discrete c-space.

Proof. Let (Z, CZ) =
∑
α∈I

Xα. Then

Z = ∪
i∈I

(Xi × {i}) and CZ = ∪
i∈I

{C × {i} : C ∈ CXi
}

Define f : Z → X × I by f(z, k) = (z, k), z ∈ Xk and k ∈ I . We can verify that f is a c-
isomorphism. □

2.2. Quotient Space of a Graphical c-space. A c-space X is called graphical[9] if con-
nected sets of X are exactly the connected subgraphs of G, for some graph G. Let P be a
partition of a vertex set V (G) of a graph G. Then P is called a connected partition if every
member of P is connected as a subgraph of G. In this section, we generalize the following
theorem.

Theorem 2.4. [13] X be the associated c-space of a finite connected graph G. Let G∗ be a quotient
graph of G corresponding to a connected partition of the vertex set of G. If X∗ is the assocaited
c-space of G∗, then X∗ is a quotient space of X .

Here we claim that the above theorem is valid even if graph is not connected.

Proof. Let G =
∑
i∈I

Ci, where Cis are the components of the given graph G. Consider a

connected partition Pi of the vertices of Ci. Then {Pi : Pi ∈ Pi, i ∈ I} is a partition of the
vertex set of G, which is connected. For each i ∈ I , let Xi be the associated c-space of Ci

and X∗
i be the associated c-space of the graph Gi, which is the quotient graph of Ci with

respect to the partition Pi of Ci.
By the above Theorem 2.4, X∗

i is a quotient space of Xi. Then by Proposition 2.2,
X∗ =

∑
i∈I

X∗
i is a quotient space of

∑
i∈I

Xi. But obviously X =
∑
i∈I

Xi. Hence X∗ is a

quotient space of X . □

2.3. Product and Sum of Topologizable and Graphical c-spaces. A c-space (X, C) is
called topological or topologizable [9], if we can find a topology τ on X such that con-
nected sets of (X, τ) are precisely that of (X, C). That is, (X, C) is the the associated c-space
of (X, τ). This section deals with whether the product and the sum of topologizable(resp.
graphical) c-spaces are topologizable(resp. graphical) or not. A partial settlement of the
problem is given.

Remark 2.4. We note the following:
a. Let Ti, i = 1, 2 be two topological spaces such that Xi, i = 1, 2 is their associated c-spaces

in order. Then X1 ×X2 need not be the associated c-space of T1 × T2. For example, R2 as
a c-space has more connected sets than R2 as a topological space. For clarity, We may refer
to the figure given in the preliminary section. Hence, product of topologizable c-spaces is
not topologizable in the product topology of the corresponding topological spaces.

b. Let Gi, i = 1, 2 be two graphs such that Xi, i = 1, 2 be their associated c-spaces in order.
Then X1×X2 need not be the associated c-space of the graph products (Cartesian Product,
Tensor Product and Lexicographic Product) of G1 and G2. This can be shown by taking
suitable graphs G1 and G2. Readers are requested to exercise the same and can try for
other graph products too.

Proposition 2.4. The sum of topologizable c-spaces are topologizable. The same statement holds
for graphical c-spaces.
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Proof. Let {Xi : i ∈ I} be a family of pairwise disjoint topologizable c-spaces. Then there
exists a family {(Xi, τi) : i ∈ I} of topological spaces such that Xi is the associated c-space
of (Xi, τi) for each i ∈ I .

Then as a c-space, the connected sets of X =
∑
i∈I

Xi are precisely the connected sets of

each Xi. As a topological space, in X =
∑
i∈I

Xi, it can be easily shown that connected sets

of X are precisely the connected sets of each Xi. From the above two facts, it follows that
sum of topologizable c-spaces is topologizable.

In the case of graphical c-spaces, proof is straight forward. □

3. NONGRAPHICAL C-SPACE: C1 C-PROPERTY

The concept of C1 axiom can be found in [7] related to connective sapces. Except the
definition, no further studies were found in the literature. The definition can be carried
over to the class of c-spaces too. Hence the c-space X is said to be C1 if distinct points of
X are disconnected [7].

Proposition 3.5. [7] Let X be a c-space. Then,
(1) If distinct points of X do not touch, then X is C1. That is, for every x ∈ X , {x} = {x}.
(2) X have no 2 element connected sets if and only if X is C1.

Consequently, a 2- generated the c-space is C1 if and only if it is a discrete c-space.
From this it is clear that if a space X is C1, it is nongraphical.

Theorem 3.5. A c-space X is C1 if and only if {x} ≠ {y} for every x, y ∈ X with x ̸= y.

Proof. Let X be a C1 c-space. Then {x} = {x} for every x ∈ X . Let x, y be any two distinct
elements of X . Then

{x} = {x} ≠ {y} = {y}
Conversely let {x} ≠ {y} for any two distinct points x and y in X .
First we claim that x touches {y} implies {x} = {y}.
Suppose x touches {y}. Then x ∈ t({y}). We know that for any subset A of X , A =

tγ(A) where γ is the least ordinal such that tγ(A) = tγ+1(A). Thus let {x} = tγ1({x}) with
tγ({x}) = {x} for every γ ≥ γ1 and {y} = tγ2({y}) with tγ({y}) = {y} for every γ ≥ γ2.

With out loss of generality we let, γ1 ≤ γ2. As x ∈ t({y}), applying t-closure, we have
t({x}) ⊆ t2({y}). By repeating the same process we obtain the expression tγ1({x}) ⊆
tγ1+1({y}). That is, {x} ⊆ tγ1+1({y}). If γ2 ̸= γ1 + 1, further applying t-closure operator
on both sides of the above expression, to the desired stage, we have {x} ⊆ tγ2({y}), so
that {x} ⊆ {y}.

Since x touches {y}, y also touches {x}, so that y ∈ t({x}). Proceeding as above, we
have {y} ⊆ {x}. From the above two subset relations, the required result {x} = {y}
follows.

Let x be any point of X . Let y be a touching point of {x}. If y ̸= x, by our assumption
{x} ̸= {y} . Then by our claim above, x will not touch y . So we have {x} = {x} and it
follows that X is C1. □

Proposition 3.6. The associated c-space of a T1 topological space is C1.

Proof. We know that in a T1 topological space X , finite subsets are closed. Since every
closed set is t-closed in its associated c-space[7], one point sets are t-closed in the associ-
ated c-space of X . That is, {x} = {x} for every x ∈ X . Hence the associated c-space of X
is C1. □
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Before moving to the next proposition, let us recall the deinition of a Čech closure
operator. A function F : P(X) → P(X) is said to be a Čech closure operator ( or a closure
operator) on X if, F (ϕ) = ϕ, B ⊆ F (B) for every B ∈ P(X) and F (B ∪C) = F (B)∪F (C)
for every B,C ∈ P(X). The space (X,F ) is called a closure space. A c-space (X, C) is said
to be induced by a closure operator [9] F on X if the collection of all connected subsets of
(X,F ) is C.

Proposition 3.7. Let X be a non discrete finite C1 space. Then
(1) X cannot be a connective space.
(2) X cannot be induced from a closure operator.

Proof. Assume that X is a non discrete finite C1 space.
(1) We know that finite connective spaces are precisely finite 2-generated c-spaces[9].

By Proposition 3.5, non discrete 2- generated c-spaces are not C1. From these two
facts, Part 1 follows.

(2) We know that finite c-space induced by a closure operator is 2-generated[9]. By
Proposition 3.5, non discrete 2-generated c-spaces are not C1. From these two
facts, Part 2 follows.

□

Remark 3.5. From the Proposition 3.5, it follows that property of being C1 is hereditary and that
sum of a family of C1 c-spaces is C1. We may further note that C1 is not a divisible property.

For example, consider (X, CX) and (Y, CY ) where X = {a, b, c}, CX = DX ∪{X}, Y = {d, e}
and CY = DY ∪ {Y }. Define h : X → Y as h(a) = d, h(b) = d, h(c) = e. Clearly h is
c-continuous since Y is equipped with the weak c-structure. Hence Y is a quotient space of X .
Note that X is C1 and Y is not C1. Thus quotient space of a C1 space need not be C1.

Proposition 3.8. For each i ∈ I , let Xi be a nonempty c-space and X =
∏
i∈I

Xi be their product

c-space. Then X is C1 if and only if each Xi is C1.

Proof. For each i ∈ I , let Xi be C1. If possible let X is not C1. Then we can find x = (xi)i∈I

and y = (yi)i∈I in X with x ̸= y such that B = {x, y} is connected in X. Since x ̸= y, there
exists i ∈ I such that xi ̸= yi. Consider the projection function πi : X → Xi. As πi is
c-continuous, πi(B) = {xi, yi} is connected in Xi, a contradiction. Hence X is C1.

For the converse, let, X =
∏
i∈I

Xi be C1. Embedd each Xi in X . C1 being hereditary, it

follows that each Xi is C1. □

Proof of the following proposition follows from the above proposition using the fact
that each πi : ⊠

i∈I
Xi → Xi is c-continuous.

Proposition 3.9. Let X = ⊠
i∈I

Xi. Then X is C1 if and only if each Xi is C1.

Theorem 3.6. Let hi : X → Xi, i ∈ I be a collection of functions from a set X to a family Xi

of C1 c-spaces for each i in I such that least one of them is injective. Then the strong c-structure
generated by {hi : i ∈ I} on X is C1.

Proof. Without loss of generality, let hk : X → Xk, k ∈ I be an injective function.
Let C be the strong c-structure on X generated by {hi : i ∈ I}. Then A ∈ C if and only

if hi(A) ∈ CXi
for every i ∈ I . Assume for contrary that A = {x, y} is connected in X.

Then for each i ∈ I , hi(A) is connected in Xi. Since hk is injective, |hk(A)| = 2, which is
not possible as Xk is C1. Hence X cannot contain a two element connected set. Then by
Proposition 3.5, X is C1. □
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3.1. Function Spaces and C1 c-spaces. For the c-spaces X and Y , let C(X,Y ) denotes the
set of all c-continuous functions from X to Y . In [2], a subset M of C(X,Y ) is said to be
connected if for every K ∈ CX , ⟨M,K⟩ ∈ CY , where ⟨M,K⟩ =

⋃
f∈M

f(K). The collection

of this connected sets constitute the standard c-structure on C(X,Y ). Unless otherwise
specified, from here onwards, C(X,Y ) is considered as a c-space with the standard c-
structure.

In [2], it is also proved that, M is connected in C(X,Y ) if and only if for all x ∈ X ,
⟨M, {x}⟩ ∈ CY . Let us discuss how the function space of c-continuous functions and C1

c-spaces are related.

Theorem 3.7. For the c-spaces X and Y , Y is C1 if and only if C(X,Y ) is C1.

Proof. Let Y be C1. Assume for contrary that C(X,Y ) is not C1. Then by Proposition 3.5,
C(X,Y ) has a connected set C = {f1, f2}, where f1 ̸= f2. Then for every x ∈ X ,

⟨C, {x}⟩ is connected in Y
⇐⇒ {f1(x), f2(x)} is connected in Y
⇐⇒ f1(x) = f2(x), since Y is C1

⇐⇒ f1 = f2, a contradiction.

Hence C(X,Y ) is C1.
Conversely, let C(X,Y ) be C1. If possible, let {b, c} ∈ CY .
Let ≤ be a well-order on X . Fix an element k ∈ X . Let g and h be two functions from

X to Y defined by

h(y) =

{
b ; y ≤ k
c ; y ≥ k

and

g(y) =

{
c ; y ≤ k
b ; y ≥ k

Obviously g and h are c-continuous and hence g, h ∈ C(X,Y ).
Let M = {g, h}. For each x in X ,

⟨M, {x}⟩ = {g(x), h(x)}
= {b, c}, a connected set in Y.

Hence M ∈ C(X,Y ), a contradiction. By Proposition 3.5, Y is C1. □

4. CONCLUSION

In this paper, our aim was to shed light on certain structural properties of c-spaces,
including their sum, product, and quotient. We also introduced and examined an addi-
tional non-graphical property known as the C1 property. Additionally, we studied func-
tion spaces of c-continuous functions within this framework. We also presented an open
problem concerning the product of quotient spaces (see the Remark 2.2).
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