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Rainbow Dominator Coloring of Graphs

S. MADHUMITHA1 AND SUDEV NADUVATH2

ABSTRACT. Coloring and domination in graphs are two well explored areas of research in graph theory.
Blending these notions, the dominator coloring of graphs was introduced in the literature; following which
several variants of domination related coloring patterns have been defined and studied, based on different
types of coloring and domination in graphs. A vertex coloring of a graph that demands the existence of a path
in which every internal vertex between two vertices has a unique color is called a rainbow vertex coloring of the
graph. In this article, we investigate the rainbow dominator coloring of graphs; a vertex coloring that combines
the concepts of rainbow vertex coloring and dominator coloring of graphs. We discuss some properties of
the rainbow dominator coloring of graphs and determine the rainbow dominator chromatic number of certain
classes of graphs and their complements.

1. INTRODUCTION

For basic terminology in graph theory, refer to [16], and for concepts pertaining to
coloring and theory of domination in graphs, see [1] and [6], respectively.

By G, we always mean a simple, undirected and a finite graph with its vertex set V (G)
and edge set E(G). A vertex v ∈ V (G) in a graph G of order n having degree n − 1 is
called a universal vertex of G and a vertex v ∈ V (G) having degree 0 is called an isolated
vertex of G. A vertex v ∈ V (G) with degree 1 is called a leaf or a pendant vertex in G and the
vertex u such that uv ∈ E(G), where v is a leaf, is called its support or a support vertex in G.
A subset S ⊆ V (G) is called an independent set of G if for every pair u, v ∈ S, uv /∈ E(G).

Graph coloring is the assignment of colors (labels) to the entities of a graph such as its
vertices or edges, according to certain rules and the set of all entities assigned the same
color in a coloring c of the graph is called a color class with respect to c. A proper vertex
coloring of a graph G is the assignment of colors to the vertices of G such that each color
class with respect to the coloring is an independent set and the minimum number of colors
required in a proper vertex coloring of G is called the chromatic number of G, denoted by
χ(G). Any chromatic coloring of V (G) with χ(G) colors is called a χ-coloring or a chromatic
coloring of G.

Beginning with the four color problem that has been modelled in terms of proper vertex
coloring of graphs, many variants of graph coloring schemes have been emerging in the
literature, in order to meet the modelling requirements of various real-life problems (ref.
[1,9,12,15]). One such problem, called the information transfer path problem in networks,
has been modelled in terms of rainbow connections of graphs (see [2]), based on which the
vertex-rainbow coloring of graphs has been defined in [8], as follows.

A vertex coloring of a non-trivial connected graph G in which every pair of its vertices
are connected by a path whose internal vertices have distinct colors is called a vertex-
rainbow coloring of G, and the rainbow vertex-connection number rvc(G) of G is the minimum
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number of colors that are required to obtain a vertex-rainbow coloring of G. Note that a
vertex-rainbow coloring of G need not be proper.

Domination in graphs can be seen as the process of selecting the graph entities; usually
vertices, such that an entity of the graph is either selected or is related to the selected
entities. In a graph G, if a vertex v ∈ V (G) is adjacent to all vertices u ∈ A, for some
A ⊆ V (G) or A = {v}, we say that v dominates A and A is dominated by v. By convention,
a vertex v always dominates itself (ref. [11]).

Graph coloring and domination in graphs are two well-known research areas in graph
theory, owing to their applications. As the applications of these areas are similar in nature
and coincide in many aspects, the notion of dominator coloring of graphs was introduced
in [5], by blending the concepts of coloring and domination in graphs as a proper vertex
coloring of G in which every vertex v ∈ V (G) dominates at least one color class. The min-
imum number of colors used to obtain a dominator coloring of G is called the dominator
chromatic number of G and it is denoted by χd(G).

Following this, several variants of dominator coloring of graphs have been defined and
studied, based on different types of coloring and domination in graphs (ref. [3, 4, 10, 11])
and combining the concepts of vertex-rainbow coloring of graphs with the dominator
coloring of graphs, the rainbow dominator coloring of a graph G has been introduced in [7],
as follows.

Definition 1.1. [7] A rainbow dominator coloring of a graph G is a proper vertex coloring
of G in which every vertex v ∈ V (G) dominates at least one color class and every pair
of its vertices are connected by a path whose internal vertices have distinct colors. The
rainbow dominator chromatic number of G, denoted by χrd(G), is the minimum number of
color classes in a rainbow dominator coloring of G.

An illustration of rainbow dominator coloring of a graphG is given in Figure 1, where
it can be observed that G has χ(G) = 2, rvc(G) = 6, χd(G) = 7, and χrd(G) = 8.
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FIGURE 1 An example of a graph G with χ(G) < rvc(G) < χd(G) < χrd(G).
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On introducing the notion of rainbow dominator coloring of graphs in [7], the rain-
bow dominator coloring of certain graphs were discussed in [7, 13] and [14], in which we
observed that the values of the rainbow dominator chromatic numbers determined for
some of these graphs are inaccurate, and not many general results based on the structure
of graphs have been obtained, for the coloring. These research gaps in the literature mo-
tivate us to study the rainbow dominator coloring of graphs and hence in this article, we
obtain certain properties of the the rainbow dominator coloring of graphs, and analyse the
coloring pattern of the rainbow dominator coloring of graphs for certain standard graph
classes, and their complements.

2. RAINBOW DOMINATOR COLORING OF GRAPHS

By Definition 1.1, it can be seen that only connected graphs admit rainbow dominator
coloring. Though, the vertex-rainbow coloring of graphs was introduced to model prob-
lems in a connected network, dominator coloring plays an important role in modelling
problems that arise in disconnected networks (see [5]). Therefore, we modify the defini-
tion of the rainbow dominator coloring of graphs as follows, to ensure that disconnected
graphs also admit rainbow dominator coloring.

Definition 2.2. A rainbow dominator coloring of a graph G is a proper vertex coloring of G
in which every vertex v ∈ V (G) dominates at least one color class and every pair of its
vertices are connected by a path whose internal vertices have distinct colors, if such a path
exists. The rainbow dominator chromatic number of G, denoted by χrd(G), is the minimum
number of color classes in a rainbow dominator coloring of G.

Based on Definition 2.2, it is immediate that if G is a graph with r components G1, G2, . . . , Gr,
for any r ≥ 1; that is, G ∼= G1 ∪G2 ∪ . . . ∪Gr, then

(i) max {diam(Gi) : 1 ≤ i ≤ r} − 1 ≤ max{vrc(Gi) : 1 ≤ i ≤ r} ≤ χrd(G).
(ii) max {χ(Gi) : 1 ≤ i ≤ r} ≤ max {χd(Gi) : 1 ≤ i ≤ r} ≤ χrd(G).

(iii) max {χ(Gi) : 1 ≤ i ≤ r}+ (r − 1) ≤ χrd(G) ≤
r∑

i=1

χrd(Gi).

As a geodesic between two vertices u, v of any graph G with diameter 2 or 3 has at most
two internal vertices, which are colored with two different colors in any proper coloring
of G, there exists a rainbow path between any two vertices of G, in any of its χ-coloring.
However, as such a χ-coloring of G need not necessarily be its dominator coloring, we
obtain the following results.

Proposition 2.1. For any graph G with diam(G) ≤ 3, χd(G) = χrd(G).

Corollary 2.1. If G is a graph having a set S of r universal vertices, then χ(G) = χd(G) =
χrd(G) = r + χ(G[V (G)− S]).

The converse of Proposition 2.1 is not true, as the path P6 has diameter 5, and χd(P6) =
χrd(P6) = 4. The converse of Corollary 2.1 is also not true, owing to the fact for the join
G1 +G2 of any two graphs G1 and G2, χ(G1 +G2) = χd(G1 +G2) = χrd(G1 +G2). This
is because, as every vertex of G1 (resp. G2) is made adjacent to every vertex of G2 (resp.
G1) in G1 +G2, every vertex of G1 (resp. G2) dominates at least χ(G2) (resp. χ(G1)) color
classes, in any χ-coloring of G1 +G2. Also, as G1 +G2 becomes a graph with diameter 2,
irrespective of the values of diam(G1) and diam(G2), the following result is obtained, as
a consequence of Proposition 2.1, and the fact that χ(G1 +G2) = χ(G1) + χ(G2).

Proposition 2.2. For any two graphs G1 and G2, χ(G1+G2) = χd(G1+G2) = χrd(G1+G2) =
χ(G1) + χ(G2).
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In any dominator coloring of a graph G with l pendant vertices, either the pendant
vertices or the support vertices of G must be given a unique color. Also, in any rainbow
coloring of G, all pendant vertices can be assigned the same color, owing to the fact that
they are not internal vertices of any path in G. Hence, we have the following result.

Proposition 2.3. For a graph G of order n with l leaves and s support vertices, s+1 ≤ χrd(G) ≤
n− l + 1.

The bounds given in Proposition 2.3 are tight, as it can be observed that for a star K1,s

of order s+1, for any s ≥ 1, χrd(K1,s) = 2, and for a comb graph Cbt of order 2t, obtained
by attaching a pendant vertex to each vertex of a path Pt has diam(Cbt) = t + 1, and
χrd(Cbt) = t, for all t ≥ 2.
As we know that χ(Kn) = χrd(Kn) = n, we characterise graphs for which a trivial color-
ing is its optimal rainbow dominator coloring.

Theorem 2.1. A graph G of order n has χrd(G) = n if and only if G ∼= rK1 ∪Kn−r.

Proof. If G ∼= rK1 ∪ Kn−r, for some r ≥ 0, it is clear that χrd(G) = n, as each of the
isolated vertices must be assigned a unique color for them to dominate their own color
classes, and all vertices of Kn−r are assigned distinct colors in any of its proper coloring.
Now, assume that χrd(G) = n, for some graph G of order n such that G ̸∼= rK1 ∪Kn−r.
Case 1 : If G is connected, and χrd(G) = n, then χd(G) < n, by our assumption.
Hence, G must be a graph with diameter 4 or more, having a unique path between every
two vertices, whose colors cannot be repeated; implying that G is a tree. However, by
Proposition 2.3, if χrd(G) = n, then G must have exactly one leaf; which is not possible,
or G ∼= K2; yielding a contradiction. Hence, G ∼= Kn, for some n ≥ 1.
Case 2 : Let G be disconnected. If G contains s isolated vertices, and if S ⊆ V (G) is
the set of these s isolated vertices in G, then χrd(G

′) = n − s, where G′ = G[V (G) − S].
As the result follows from Case 1 when G′ is connected, G′ must be a disconnected graph
without isolated vertices. By Case 1, each component of G here can be a complete graph;
that is, G ∼= Kt1 ∪ Kt2 ∪ . . . ∪ Ktk , for some integer ti > 1; 1 ≤ i ≤ k. However, in this
case, min{ti : 1 ≤ i ≤ k} − 1 colors can be given to at least two vertices of G, in any of its
optimal rainbow dominator coloring; yielding a contradiction. Hence the result. □

Following this, we discuss the rainbow dominator coloring of certain standard graph
classes and determine their rainbow dominator chromatic numbers.

Proposition 2.4. For n ≥ 5, χrd(Pn) = n− 2.

Proof. Let c : V (Pn) → {c1, c2, . . . , cn−2} be a vertex coloring such that

c(vi) =


c1, i = 1, 3, n;

c2, i = 2;

ci−1, 4 ≤ i ≤ n− 1.

The coloring c is a rainbow dominator coloring of Pn using n−2 colors, as every internal
vertex of Pn has a distinct color, and as the vertices v1, v2, v3 dominate the color class {v2},
vn dominates the color class {vn−1}, and all the remaining vertices vi; 4 ≤ i ≤ n − 1,
dominate their own color class, in c. As the diameter of a path Pn is n− 1, it follows that
χrd(Pn) = n− 2. □

Based on rainbow dominator coloring of paths and complete graphs obtained above,
the following results on the existence of graphs with a given difference between the rain-
bow dominator chromatic number, and its lower bounds such as the diameter of the
graph, chromatic number and dominator chromatic number of the graph are determined.
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Theorem 2.2. For any integer r ≥ 0, there exists a graph G such that
(i) χrd(G)− χ(G) = r,

(ii) χrd(G)− χd(G) = r,
(iii) χrd(G)− diam(G) = r.

Proof. It is immediate that there exists a graph G such that χrd(G)−χ(G) = r, Proposition
2.4, it can be seen that for χrd(Pr+4)− χ(Pr+4) = r, for all r ≥ 1.

For a path Pn; n ≥ 8, it has been proven that χd(Pn) = ⌈n
3 ⌉+ 2 (see [5]). Therefore, the

graph P3(⌊ r
3 ⌋+2)−i, for r ≡ i (mod 2), has χrd(P3(⌊ r

3 ⌋+2)−i) − χd(P3(⌊n
r ⌋+2)−i) = r, for all

r ≥ 0, thereby, yielding the required graph.
Construct a graph Gs with V (Gs) = {ui : 1 ≤ i ≤ s}∪{vi : 1 ≤ i ≤ s}∪{w1, w2, w3, w4},

and E(Gs) = {vivj : 1 ≤ i ̸= j ≤ s}∪{uiuj : 1 ≤ i ̸= j ≤ s}∪{u1w1, w1w2, w2w3, w3w4, w4v1},
for s ≥ 5 (see Figure 2, for illustration). Consider a coloring c : V (Gs) → {c1, c2, . . . , cs+2}
defined as follows. For a vertex v ∈ V (Gs),

c(v) =



c1, v = u1;

cs+1, v = v1;

ci, v ∈ {ui, vi : 2 ≤ i ≤ s};
cs+2, v = w2;

ci+1, v = wi, i = 1, 3, 4.

The coloring c is a dominator coloring of Gs using s + 2 colors, as vi; 2 ≤ i ≤ s, and
w1 dominate the color class {v1}, the vertices ui; 2 ≤ i ≤ s and w1 dominate the color
class {u1}, and the vertices w2 and w3, dominate the color class {w2}. It is also a rainbow
dominator coloring of Gs as any 2 non-adjacent vertices ui, vj ∈ V (Gs), for 2 ≤ i, j ≤ s
has a path ui − u1 − w1 − w2 − w3 − w4 − v1 − vj , which are all colored using six unique
colors. Also, as χ(Gs) = s, χrd(Gs) ≥ s + 1, as there are two vertex disjoint complete
graphs in Gs. If χrd(Gs) = s + 1, then we cannot obtain a dominator coloring of the P4

induced by the vertices w1, w2, w3, w4 of Gs. Hence, χrd(Gs) = s+ 2.
Here, diam(Gs) = 7, for any s ≥ 5, as the longest path is ui − u1 −w1 −w2 −w3 −w4 −

v1 − vj , for some ui, vj ∈ V (G), where 2 ≤ i, j ≤ s. Therefore, for any integer r ≥ 0, we
have χrd(Gr+5)− diam(Gr+5) = r; completing the proof. □
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FIGURE 2 Graph G8 given in Theorem 2.2.

Theorem 2.3. For n ≥ 3, χrd(Cn) =


χ(Cn), n ≤ 5;

⌊n
2 ⌋+ ⌈n

6 ⌉, n ≥ 6, and n ≡ 1 (mod 6);

⌈n
2 ⌉+ ⌈n

6 ⌉, otherwise.

Proof. As diam(Cn) = ⌊n
2 ⌋, for a cycle Cn := v1−v2−v3− . . .−vn−v1; n ≥ 5, any ⌊n

2 ⌋−1
consecutive vertices of Cn, say v1, v2, . . . , v⌊n

2 ⌋−1, must be colored using ⌊n
2 ⌋ − 1 distinct
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colors, in any vertex-rainbow coloring c′ of Cn. If such a coloring has to be a dominator
coloring of Cn, the colors assigned to the vertices vi; i ≡ 2 (mod 3), for 1 ≤ i ≤ ⌊n

2 ⌋ − 1,
cannot be used to color the remaining ⌈n

2 ⌉+ 1 vertices v⌊n
2 ⌋, v⌊n

2 ⌋+1, . . . , vn of Cn.
However, as the subgraph of Cn induced by the vertices v⌊n

2 ⌋, v⌊n
2 ⌋+1, . . . vn is a path

P⌈n
2 ⌉+1, we need

⌈
⌈n

2 ⌉+1

3

⌉
unique colors to obtain a dominator coloring of this subgraph.

Hence, we require at least ⌊n
2 ⌋−1+

⌈
⌈n

2 ⌉+1

3

⌉
colors to obtain a rainbow dominator coloring

of Cn.
Consider a coloring c : V (Cn) → {c1, c2, . . .} such that for 1 ≤ i ≤ ⌊n

2 ⌋, c(vi) = ci,

c(v⌊n
2 ⌋+i) =

{
ci, i ≡ 0, 1 (mod 3);

c⌊n
2 ⌋+⌈ i

3 ⌉
, i ≡ 2 (mod 3).

This coloring of Cn assigns a color to all n vertices, when n is even, and when n ≡
2 (mod 6), the vertex vn does not dominate any color class in this coloring. Also, when
n is odd, the vertex vn is left uncolored here. Therefore, we re-define c(vn), when n ≡
2 (mod 6), and define c(vn), when n is odd, as follows.

c(vn) =

{
c⌊n

2 ⌋+⌈n
6 ⌉, when n ≡ 1, 3 (mod 6);

c⌈n
2 ⌉+⌈n

6 ⌉, when n ≡ 2, 5 (mod 6).

The above mentioned coloring is a dominator coloring of Cn as the vertices vi−1, vi,
and vi+1 dominate the color class {vi}, for all i ≡ 2 (mod 3), and 1 ≤ i ≤ n− 1. The vertex
vn dominates the color class vn−1, when n ≡ 0 (mod 6), and it dominates its own color
class, in all the other cases.

As any consecutive ⌊n
2 ⌋ vertices of Cn are colored using ⌊n

2 ⌋ distinct colors in c, there
exists a rainbow path of length ⌊n

2 ⌋ from every vi to vi+⌊n
2 ⌋. Hence, c is a rainbow dom-

inator coloring of Cn, yielding χrd(Cn) ≤ ⌊n
2 ⌋ + ⌈n

6 ⌉, when n ≡ 0, 2, 4, 5 (mod 6), and
χrd(Cn) ≤ ⌊n

2 ⌋+ ⌈n
6 ⌉, when n ≡ 1, 3 (mod 6).

When n ≡ 0 (mod 6), as ⌊n
2 ⌋ + ⌈n

6 ⌉ = ⌊n
2 ⌋ − 1 +

⌈
⌈n

2 ⌉+1

3

⌉
, c is an optimal dominator

coloring of Cn. In all the other cases, as ⌊n
2 ⌋+ ⌈n

6 ⌉ = ⌊n
2 ⌋+

⌈
⌈n

2 ⌉+1

3

⌉
.

If χrd(Cn) = ⌊n
2 ⌋−1+

⌈
⌈n

2 ⌉+1

3

⌉
, when n ̸≡ 0 (mod 6), a color ci, for some i ≡ 0, 1 (mod 3),

will be repeated to two vertices vj , vj′ such that d(vj , vj′) ≤ ⌊n
2 ⌋−1, prohibiting a rainbow

path between a vertex vj∗ and some vi∗ , where 1 ≤ j < j∗ < j′ ≤ n, and 1 ≤ i∗ ≤ n;
thereby proving the result. □

A crown graph, denoted by Crt, is a graph obtained by removing the edges viui, for all
1 ≤ i ≤ t, from the complete bipartite graph Kt,t, where V (Kt,t) = {vi : 1 ≤ i ≤ t} ∪ {ui :
1 ≤ i ≤ t}.

Proposition 2.5. For t ≥ 2, χrd(Crt) = 4.

Proof. For a crown graph Crt with V (Crt) = {vi : 1 ≤ i ≤ t} ∪ {ui : 1 ≤ i ≤ t}, and
E(Crt) = {viuj : 1 ≤ i ̸= j ≤ t}, consider a coloring c : V (Ct) → {c1, c2, c3, c4} such
that c(v1) = c1, c(u1) = c2, c(vi) = c3 and c(ui) = c4, for 2 ≤ i ≤ t. The coloring c is a
dominator coloring of Crt, as the vertices u1 and vi; 2 ≤ i ≤ t, dominate the color class
{u1}, and the vertices v1 and ui; 2 ≤ i ≤ t, dominate the color class {v1}. Also, as there
exists a path of length 2 between any two ui’s and vi’s, it can be seen that c is a dominator
coloring of Crt, yielding χrd(Crt) ≤ 4.

As any ui (resp. vi), is not adjacent to the corresponding vi (resp. ui), all ui’s (resp. vi’s)
cannot be assigned the same color in any dominator coloring of Crt. Hence, as at least
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four colors are required to obtain a dominator, as well as a rainbow dominator coloring of
Crt, yielding χrd(Crt) = 4, for any t ≥ 2. □

For t ≥ 3, a wheel graph, denoted by W1,t, is a graph obtained by making a vertex, say
v, adjacent to all the vertices of Ct. For ai ≥ 1; 1 ≤ i ≤ r, a multi-star Sa1,a2,...,ar

is a graph
obtained by making the universal vertices of the stars K1,a1 ,K1,a2 , . . . ,K1,ar mutually
adjacent.

By the above mentioned definition, it can be observed that a wheel graph W1,t has a
universal vertex, a multi-star Sa1,a2,...,ar

, for r ≥ 1, and ai ≥ 1; 1 ≤ i ≤ r, contains a Kr.
Also, as every vertex in a complete multi-partite graph Ka1,a2,...,ar

dominates r−1 among
the r color classes, in any of its χ-coloring, we have the following result.

Proposition 2.6. For ai ≥ 1; 1 ≤ i ≤ r, any χ-coloring of the graphs Ka1,a2,...,ar
, Sa1,a2,...,ar

and W1,t; t ≥ 3, is their rainbow dominator coloring.

Corollary 2.2. For r ≥ 1, ai ≥ 1; 1 ≤ i ≤ r, and t ≥ 3,
(i) χ(Ka1,a2,...,ar

) = χd(Ka1,a2,...,ar
) = χrd(Ka1,a2,...,ar

) = r.
(ii) χ(Sa1,a2,...,ar

) = χd(Sa1,a2,...,ar
) = χrd(Sa1,a2,...,ar

) = r + 1.

(iii) χ(W1,t) = χd(W1,t) = χrd(W1,t) =

{
3; when n is even;
4; when n is odd.

A helm graph of order n = 2t + 1, denoted by H1,t,t, is obtained by attaching a leaf to
each vertex of degree 3 in a wheel graph W1,t and a closed helm graph CH1,t,t is obtained by
making the each leaf of the helm H1,t,t adjacent to the preceding and succeeding pendant
vertices in it.

Proposition 2.7. For t ≥ 3, χrd(H1,t,t) = t+ 1.

Proof. Let vi; 1 ≤ i ≤ t, be the vertices of degree 4 in the helm H1,t,t; t ≥ 3, ui; 1 ≤ i ≤ t,
be the pendant vertices of H1,t,t which are adjacent to the corresponding vi’s, and v be its
central vertex of degree t+ 1. By the definition of a helm H1,t,t; t ≥ 3, there are t support
vertices and t leaves, and hence by Theorem 2.3, χrd(H1,t,t) ≥ t+ 1.

A coloring c : V (H1,t,t) → {c1, c2, . . . , ct+1} such that c(vi) = ci, c(v) = c(ui) = ct+1 is a
dominator coloring of H1,t,t, as every ui and vi dominate the color class {vi}, the vertex v
dominates the color classes {vi}, for all 1 ≤ i ≤ t. It is also a rainbow dominator coloring
of H1,t,t, as there exists a path of length 2, between any two non-adjacent vi’s through v
and a path of length at most 3, between any two non-adjacent ui’s though the correspond-
ing vi’s and v, which are all colored with distinct colors in c. Hence, χrd(H1,t,t) = t + 1,
for any t ≥ 3. □

Theorem 2.4. For t ≥ 5, χrd(CH1,t,t) = ⌈ t
3⌉+ 4.

Proof. Let CH1,t,t; t ≥ 5, be a closed helm graph with V (CH1,t,t) = {v} ∪ {vi : 1 ≤ i ≤
t} ∪ {ui : 1 ≤ i ≤ t} and E(CH1,t,t) = {vvi : 1 ≤ i ≤ t} ∪ {vivi+1 : 1 ≤ i ≤ t} ∪ {uiui+1 :
1 ≤ i ≤ t} ∪ {viui : 1 ≤ i ≤ t}, where the suffixes are taken modulo t. Consider a coloring
c : V (CH1,t,t) → {c1, c2, . . . , c4+⌈ t

3 ⌉} such that c(vi) = cj ; i ≡ j (mod 3), for 1 ≤ i ≤ t− 1,
and j = 1, 2, 3, c(vt) = c2, when t ≡ 1, 2 (mod 3), and c(vt) = c3, when t ≡ 0 (mod 3),
c(v) = c4, and for 1 ≤ i ≤ t,

c(ui) =


c4+⌈ i

3 ⌉
, i ≡ 1 (mod 3);

c1, i ≡ 2 (mod 3);

c2, i ≡ 0 (mod 3).
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As every vi; 1 ≤ i ≤ t, and v dominate the color class {v}, and the vertices ui−1, ui, ui+1

dominate the color class {ui}, for i ≡ 1 (mod 3), c is a dominator coloring of CH1,t,t. In
CH1,t,t, any two non-adjacent vi’s are at a distance 2, and d(ui, v) = 2, for any 1 ≤ i ≤
t, and there exists a path of length 2,3,4, between two non-adjacent ui’s. Therefore, to
prove that the above mentioned dominator coloring c of CH1,t,t is its rainbow dominator
coloring, we obtain a rainbow path between the non-adjacent vertices ui, uj such that
d(ui, uj) = 4, with respect to c.

The path ui − vi − v − vj − uj is a ui − uj rainbow path if i (mod 3) ̸= j (mod 3), as
c(vi) = c(vj) if and only if i (mod 3) = j (mod 3), in c. Hence, when i (mod 3) = j (mod 3),
the path ui − vi − v − vj−1 − uj−1 − uj is a rainbow ui − uj rainbow path, because here
c(vi) ̸= c(vj−1) ̸= c(uj−1), for any 1 ≤ i ̸= j ≤ t. Hence, χrd(CH1,t,t) ≤ ⌈ t

3⌉+ 4.
In CH1,t,t, the color assigned to v can be assigned only to some of the ui’s. However, if

this happens, we must obtain a coloring in which some color class contains only the vi’s
for v to dominate that color class. Apart from this, for the vi’s and ui’s to dominate a color
class, we must obtain a coloring of CH1,t,t in which the color classes consists the vj ’s and
uj′ ’s. In such a rainbow dominator coloring of CH1,t,t, we need at least ⌈ t

3⌉+ 5 colors, as
χd(Ct) = ⌈ t

3⌉+ 2. Hence, it follows that χrd(CH1,t,t) = ⌈ t
3⌉+ 4. □
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FIGURE 3 χrd-colorings of the graph CH1,t,t.

3. RAINBOW DOMINATOR COLORING OF GRAPH COMPLEMENTS

In this section, the rainbow dominator coloring of the complements of the graphs, for
which the rainbow dominator coloring was discussed in Section 2, is investigated. As
it is immediate that χrd(nK1) = n, we examine the rainbow dominator coloring of the
complements of paths and cycles, as follows. Note that as P3

∼= K1,2, C3
∼= K3, P 4

∼= P4,
and C4

∼= 2K2, we consider the graphs Pn, and Cn, for n ≥ 5, in the following result.

Theorem 3.5. For n ≥ 5, χrd(Pn) = χrd(Cn) = ⌈n
2 ⌉.

Proof. Let c be a proper vertex coloring of Pn; n ≥ 5, where a path Pn := v1−v2− . . .−vn,
such that c(vi) = c(vi+1) = ci, for all 1 ≤ i ≤ n, and i ≡ 1 (mod 2). As any vi; 2 ≤ i ≤ n−1,
is adjacent to all the vertices of Pn, except vi−1, vi, vi+1, and v1 (resp. vn) is adjacent to all
the vertices of Pn, except v2 (resp. vn−1), any color can be assigned to at most two vertices
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of Pn, in any of its proper coloring. Owing to this, c is a dominator coloring of Pn. Also,
as v1 or vn is a common neighbour of any two non-adjacent vertices of Pn, there exists a
rainbow path between them in c, yielding χrd(Pn) = ⌈n

2 ⌉, for all n ≥ 5.
As Cn

∼= Pn − v1vn, for a cycle Cn := v1 − v2 − . . .− vn − v1, it can be observed that the
above defined rainbow dominator coloring c of Pn, is also a rainbow dominator coloring
of Cn; yielding the result. □

As a consequence of the fact that W 1,t
∼= K1 ∪ Ct; t ≥ 3, and W 1,3

∼= 4K1, the following
corollary is immediate.

Corollary 3.3. For t ≥ 4, χrd(W 1,t) = ⌈ t
2⌉+ 1.

Following this, the rainbow dominator chromatic number of the complement of helm and
closed helm are determined in the following results.

Theorem 3.6. For t ≥ 4, χrd(H1,t,t) = t+ 1.

Proof. All the t pendant vertices and the vertex of degree t in the helm graph H1,t,t forms
a clique of order t+ 1. Hence, χrd(H1,t,t) ≥ t+ 1.

Define a coloring c : V (H1,t,t) → {c1, c2, . . . , ct+1} of the helm graph H1,t,t with V (H1,t,t) =
{ui : 1 ≤ i ≤ t}∪{vi : 1 ≤ i ≤ t}∪{v}, as described in Proposition 2.7, as c(ui) = c(vi) = ci,
c(v) = ct+1.

The coloring c of H1,t,t is its dominator coloring as the vertices ui; 1 ≤ i ≤ t, and v
dominate the color class {v}, and for each 1 ≤ i ≤ t, the vertex vi dominates the color
class {vi+3, ui+3}, owing to the fact that every vi ∈ V (H1,t,t) is adjacent to all the ver-
tices in V (H1,t,t)− {v, ui, vi−1, vi+1, vi}, where the suffixes are taken modulo t, and every
ui ∈ V (H1,t,t) is adjacent to v. It is also a rainbow dominator coloring of H1,t,t, as there
exists a path of length 2 between any two non-adjacent vertices in the graph. Therefore,
χrd(H1,t,t) ≥ t+ 1, for all n ≥ 4. □

Theorem 3.7. For t ≥ 4, χrd(CH1,t,t) = t.

Proof. Let CH1,t,t be the complement pf the helm graph H1,t,t with V (CH1,t,t) = {ui : 1 ≤
i ≤ t} ∪ {vi : 1 ≤ i ≤ t} ∪ {v}, and E(CH1,t,t), as described in Theorem 2.4. As the graph
CH1,t,t has a clique of order t, induced by the vertices vi, ui+1, for i ≡ 1 (mod 2), 1 ≤ i ≤ t,
χrd(CH1,t,t) = t.

Define a coloring c : V (CH1,t,t) → {c1, c2, . . . , ct} such that c(v) = c(v1) = c(v2) = c1,
c(u1) = c(u2) = c2, and c(ui) = c(vi) = ci, for all 3 ≤ i ≤ t. This is a dominator coloring
of CH1,t,t, as each ui and vi dominate the color classes {ui+2, vi+2} and {ui−2, vi−2}, for
all 1 ≤ i ≤ t, and v dominates the color class {u1, u2}. This is also a rainbow dominator
coloring of CH1,t,t, as any two non-adjacent ui’s are adjacent to v, and any two non-
adjacent vi’s, say vi1 and vi2 are adjacent to ui3 , 1 ≤ i1 ̸= i2 ̸= i3 ≤ t. Also, there exists a
path from v to any vi through uj , for some 1 ≤ i ̸= j ≤ t. Hence, χrd(CH1,t,t) = t, for any
t ≥ 4. □

Proposition 3.8. For t ≥ 2, χrd(Crt) = t.

Proof. Let V (Crt) = {ui : 1 ≤ i ≤ t} ∪ {vi : 1 ≤ i ≤ t} and E(Crt) = {uiuj : 1 ≤ i ̸=
j ≤ t} ∪ {vivj : 1 ≤ i ≤ j ≤ t} ∪ {uivi : 1 ≤ i ≤ t}. The coloring c(vi) = c(ui+1) = ci,
for 1 ≤ i ≤ t, is a dominator coloring of Crt, as every vi and ui dominates the color class
{vi−1, ui−1}, with suffixes taken modulo n.

As the graph Crt contains two vertex disjoint complete graphs Kt induced by the ver-
tices v1, v2, . . . , vt and u1, u2, . . . , ut, connected by the edges viui, for 1 ≤ i ≤ t, the result
follows. □
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Theorem 3.8. For r ≥ 1, and ai ≥ 1; 1 ≤ i ≤ r,
(i) χ(Ka1,a2,...,ar

) = χd(Ka1,a2,...,ar
) = max{ai : 1 ≤ i ≤ r}+ (r − 1).

(ii) χ(Sa1,a2,...,ar
) = χd(Sa1,a2,...,ar

) = χrd(Sa1,a2,...,ar
) =

r∑
i=1

ai.

Proof. For any r ≥ 1, let 1 ≤ ai ≤ aj , for 1 ≤ i < j ≤ r. As Ka1,a2,...,ar
∼= Ka1

∪ Ka2
∪

. . .∪Kar
, each Kai

is colored with ai colors ca1
, ca2

, . . . cai
, in the χ-coloring of Ka1,a2,...,ar

.
However, in this coloring no color is exclusive to a Kai

; 1 ≤ i ≤ r, for the vertices of each
Kai to dominate. Hence, the color cr+i is assigned to a vertex of Kai , for each 1 ≤ i ≤ r−1;
thereby yielding the required rainbow dominator coloring of Ka1,a2,...,ar

.
Let V (Sa1,a2,...,ar ) = {vi : 1 ≤ i ≤ r} ∪ {u(i)

j : a1 ≤ j ≤ ar; 1 ≤ i ≤ r}, where the vi’s

are the universal vertices of the stars K1,ai
, and u

(i)
j ’s are the pendant vertices of K1,ai

,

for each 1 ≤ i ≤ r. The graph Sa1,a2,...,ar
contains a clique of order

r∑
i=1

ai induced by

the u
(i)
j ’s pendant vertices of Sa1,a2,...,ar , and hence, χrd(Sa1,a2,...,ar ) ≥

r∑
i=1

ai. As every

vi; 1 ≤ i ≤ r, is adjacent to all the vertices in V (Sa1,a2,...,ar
), except itself and u

(i)
j , for

the corresponding i values, there exists a path of length 2 between any two non-adjacent
vertices of Sa1,a2,...,ar

. Hence, the coloring c of Sa1,a2,...,ar
such that c(u(i)

j ) = c
j+

i−1∑
t=1

ai

and

c(vi) = c(u
(i)
1 ), for 1 ≤ t ≤ ar, is the required rainbow dominator coloring of Sa1,a2,...,ar ,

as every vertex vi and u
(i)
j dominates the color class {vi′ , u(i′)

1 }, for some 1 ≤ i ̸= i′ ≤ r, in
c. □

4. CONCLUSION

In this article, we initiated an investigation on the rainbow dominator coloring of
graphs, specifically focusing on obtaining the rainbow dominator coloring of certain stan-
dard classes of graphs and their complements. As this is just a beginning of the study on
this topic, it offers wide avenues for future explorations that includes obtaining tighter
bounds for the rainbow dominator chromatic number of the graphs, and determining
the rainbow dominator coloring of several classes of graphs and its derived graphs, and
addressing several realisation problems.
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