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On the Strong Gelfand pairs of hypergroups and
admissible vectors related to representations

KOUAKOU GERMAIN BROU

ABSTRACT. In this paper, we study the strong Gelfand pairs of hypergroups and we give a characterization
of admissible vectors related to the left regular representation of these Gelfand pairs.

1. INTRODUCTION

The shift invaraiant subspace of L2(G) where G is a locally compact abelian group
has been investigated by many authors, specifically by Kamyabi and Toubi in [9]. They
have shown that evey shift invariant space can be decomposed as an orthogonal sum
of spaces each of which is generated by a single function whose shifts form a Parseval
frame. In the case of hypergroups, Tabatabaie and Jokar in [13] have extended the result
by giving a characterization of admissible vectors related to the left regular representation
of a commutative hypergroup.

Hypergroups generalize locally compact groups where the convolution of two Dirac
measures is a Dirac measure. A hypergroup is a locally compact Hausdor space equipped
with a convolution product which maps two Dirac measures to a probability measure
with compact support.

The goal of this paper is to give a characterization of admissible vectors related to the
left regular representation when the hypergroup G has a compact subhypergroup K such
that (G,K) is a Gelfand pair. The notion of Gelfand pairs for hypergroups is well-known
(see [6, 12, 15]). In the next section, we give background for hypergroups. In section 3,
after studying trong Gelfand pairs, we establish a necessary and suffucient condition to a
vector in L2(G) to be Parseval- admissible related to the left regular representation.

2. NOTATIONS AND PRELIMINARIES

Let G be a locally compact Hausdorff space. We keep most of the notations which we
used in our previous works :
- C(G) (resp. M(G)) the space of continuous complex valued functions (resp. the space of
Radon measures) on G,
- Cb(G) (resp. Mb(G)) the space of bounded continuous functions (resp. the space of
bounded Radon measures) on G,
- K(G) (resp. Mc(G)) the space of continuous functions (resp. the space of Radon mea-
sures) with compact support on G,
- C0(G) the space of elements in C(G) which are zero at infinity,
- δx the point measure at x ∈ G,
- supp(f) the support of the function f ,
- supp(µ) the support of the measure µ.
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Let us recall the definition of a hypergroup. It is that has been given by Jewet in [8].

Definition 2.1. [6] Let G be a locally compact Hausdorff space. G is said to be a hypergroup if
the following assumptions are satisfied.

(H1) There is a binary operator ∗ named convolution on Mb(G) under which Mb(G) is an
associative algebra such that:
i) the mapping (µ, ν) 7−→ µ ∗ ν is continuous from Mb(G)×Mb(G) in Mb(G).
ii) ∀x, y ∈ G, δx ∗ δy is a measure of probability with compact support.
iii) the mapping: (x, y) 7−→ supp(δx ∗ δy) is continuous from G×G in C(G).

(H2) There is a unique element e (called neutral element) in G such that δx ∗ δe = δe ∗ δx =
δx,∀x ∈ G.

(H3) There is an involutive homeomorphism: x 7−→ x from G in G, named involution, such
that:
i) (δx∗δy)− = δy∗δx,∀x, y ∈ G with µ−(f) = µ(f−), where f−(x) = f(x),∀f ∈ C(G)
and µ ∈ M(G).
ii) ∀x, y, z ∈ G, z ∈ supp(δx ∗ δy) if and only if x ∈ supp(δz ∗ δy).

The hypergroup G is commutative if δx ∗ δy = δy ∗ δx fot all x, y ∈ G.

Let us provide background and references for hypergroups and harmonic analysis on
hypergroups as they relate to our study. This will be useful for those who are just getting
into hypergroups.

2.1. Convolution in Mb(G).
Let x, y ∈ G and for f ∈ C(G), (δx ∗ δy)(f) will be denoted by f(x ∗ y). Thus,

f(x ∗ y) = (δx ∗ δy)(f) =
∫
G

f(z)d(δx ∗ δy)(z).

The convolution of two measures µ, ν in Mb(G) is defined by:

(µ ∗ ν)(f) =
∫
G

∫
G

(δx ∗ δy)(f)dµ(x)dν(y) =
∫
G

∫
G

f(x ∗ y)dµ(x)dν(y), f ∈ C(G).

For µ in Mb(G), µ∗ = (µ)−. So Mb(G) is a Banach *-algebra.
For f in C(G), f∗ = f−.

2.2. Double coset hypergroup and Gelfand pair.
Let us now consider a hypergroup G provided with a left Haar measure µG and K a

compact subhypergroup of G with a normalized Haar measure ωK .

A function f ∈ C(G) is said to be K-biinvariant if (δk1
∗ δx ∗ δk2

)(f) = f(k1 ∗ x ∗ k2) =
f(x) = δx(f) for all x ∈ G and all k1, k2 ∈ K. We denote by CK(G), (resp. KK(G)) the
space of continuous functions (resp. continuous functions with compact support) which
are K-biinvariant. For f ∈ C(G), one defines the function fK by

fK(x) =

∫
K

∫
K

f(k1 ∗ x ∗ k2)dωK(k1)dωK(k2),∀x ∈ G.

fK ∈ CK(G) and if f ∈ K(G), then fK ∈ KK(G).

For a measure µ ∈ M(G), one defines µK by

µK(f) = µ(fK) for f ∈ K(G).
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µ is said to be K-biinvariant if µ
K

= µ and we denote by MK (G) the set of all those
measures.

The double coset of x (∈ G) with respect to K is K∗{x}∗K = {k1 ∗ x ∗ k2; k1, k2 ∈ K} =⋃
k1,k2∈K

supp(δk1
∗ δx ∗ δk2

). We write simply KxK for a double coset.

The double cosets space G//K is a locally compact topologycal space ([1], page 53). The
mapping pK : G −→ G//K defined by:

pK(x) = KxK, x ∈ G

is an open surjective continuous mapping. The following operation

δKxK ∗ δKyK =

∫
K

δx ∗ δk ∗ δydωK(k) (see [12] and [1])

defines a hypergoup structure on G//K where the involution is defined by: KxK =

KxK, the neutral element is K and m =

∫
G

δKxKdµG(x) is a left Haar measure on G//K.

(G,K) is a Gelfand pair if the hypergroup G//K is commutative, that is MK
c (G) is a

commutative subalgebra of Mc(G). Thus, (G,K) is a Gelfand pair if and only if KK(G)
provided with the convolution is a commutative algebra ([6], theorem 3.2.2). For details
on the notion of Gelfand pairs for hypergroups see [6, 12, 15].

In the sequel, the pair (G,K) is assumed to be a Gelfand pair.

2.3. Fourier and inverse Fourier transforms.
Let ĜK be the set of continuous, bounded and K- biinvariant function ϕ on G such that:
(i) ϕ is K- multiplicative (i. e.

∫
K
ϕ(x ∗ k ∗ y)ydωK(k) = ϕ(x)ϕ(y); ∀x, y ∈ G).

(ii) ϕ(e) = 1,
(iii) ϕ(x) = ϕ(x) ∀x ∈ G.
ĜK is called the dual space of G with repect to K. ĜK is a locally compact Hausdorff space
when equipped with the topology of uniform convergence on compact spaces. Note that
the function 1 : x 7−→ 1 belongs to ĜK .

When G is commutative, by taking K = {e}, Ĝ = Ĝ{e} is the dual space of G.
For µ belongs to Mb(G), the Fourier transform of µ, is the mapping

µ̂ : ĜK −→ C defined by : µ̂(ϕ) =

∫
G

ϕ(x)dµ(x).

µ̂ ∈ Cb(ĜK).
The Fourier transform of f ∈ K(G) is defined by

f̂(ϕ) = f̂µG(ϕ) =

∫
G

ϕ(x)f(x)dµG(x).

For any f belongs to K(G), f̂ ∈ C0(ĜK) and f̂ = f̂K . If f ∈ K(G) and g ∈ KK(G) then
f̂ ∗ g = f̂ ĝ.
The Fourier transform is extended to L2(G,µG) and L1(G,µG). There exsits a unique
non-negative measure (the Plancherel measure, see [7]) π on ĜK such that∫

G

|f(x)|2 dµG(x) =

∫
ĜK

∣∣∣f̂(ϕ)∣∣∣2 dπ(ϕ), for all f ∈ LK
2 (G,µG) ∩ L1(G).



332 K. G. Brou

Let σ ∈ Mb(ĜK), the inverse Fourier transform of σ is the mapping

∨
σ : G −→ C defined by :

∨
σ(x) =

∫
ĜK

ϕ(x)dσ(ϕ).

The inverse Fourier transform of φ ∈ L1(ĜK , π) is defined by

∨
φ(x) = (φπ)∨(x) =

∫
ĜK

ϕ(x)φ(ϕ)dπ(ϕ),

For σ ∈ Mb(ĜK),
∨
σ is K-biinvariant and belongs to Cb(G). It is known that (see [2]):

a)
{
f̂ : f ∈ K(G)

}
is a sup-norm dense space of C0(ĜK).

b) (K(ĜK))∨ is a sup-norm dense subspace of C0(G).
c) If f ∈ LK

1 (G,µG) with f̂ ∈ L1(ĜK , π), then f̂∨ = f and reciprocally if

φ ∈ L1(Ĝ, π) with
∨
φ ∈ L1(G,µG), then (̂

∨
φ) = φ.

Thanks to the Plancherel theorem and knowing that L1(G,µG)∩ L2(G,µG) is dense in
L2(G,µG), one can extend the Fourier transform to the whole L2(G,µG) and establish
that it is an isometric bijection from LK

2 (G,µG) onto L2(ĜK , π) (See, [3]). So if φ belongs

to L2(ĜK , π), then
∨
φ belongs to LK

2 (G,µG) and
∨̂
φ = φ.

3. ADMISSIBLE VECTORS RELATED TO REPRESENTATIONS ON HYPERGROUPS

3.1. Strong Gelfand pair.

Definition 3.2. The pair (G,K) is called a strong Gelfand pair if
(i) ϕ 7−→ ϕ is as involution and
(ii) the pointwise product:

(3.1) ϕ.η : x 7−→ ϕ(x)η(x) =

∫
ĜK

χ(x)d (δϕ ∗ δη) (χ)

as convolution defines a hypergroup structure on ĜK with the function 1 as the neutral element.

When the hypergroup G is commutative, G is called a strong hypergroup if Ĝ = Ĝ{e}

is a hypergroup with respect to pointwise multiplication.

Let us give some characterizations of a stromg Gelfand pair.

Proposition 3.1. Let (G,K) be a strong Gelfaid pair. Then
(i) (β1 ∗ β2)

∨
= β∨

1 .β
∨
2 for β1, β2 ∈ Mb(ĜK).

(ii) ĜK is a commutative hypergroup.

Proof. Let us note that

(3.2)
∫
ĜK

χ(x)d (δϕ ∗ δη) (χ) = (δϕ ∗ δη) (δ̂x) for ϕ, η ∈ ĜK and x ∈ G.
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(i) Let β1, β2 ∈ Mb(ĜK) and x ∈ G. We have

(β1 ∗ β2)
∨
(x) =

∫
ĜK

χ(x)d (β1 ∗ β2) (χ)

=

∫
ĜK

δ̂x(χ)d (β1 ∗ β2) (χ)

=

∫
ĜK

∫
ĜK

(∫
ĜK

δ̂x(χ)d (δϕ ∗ δη) (χ)
)
dβ1(ϕ)dβ2(η)

=

∫
ĜK

∫
ĜK

(∫
ĜK

χ(x)d (δϕ ∗ δη) (χ)
)
dβ1(ϕ)dβ2(η)

=

∫
ĜK

∫
ĜK

ϕ(x)η(x)dβ1(ϕ)dβ2(η)

=

∫
ĜK

ϕ(x)dβ1(ϕ)

∫
ĜK

η(x)dβ2(η)

= β∨
1 (ϕ).β

∨
2 (ϕ)

(ii) Let ϕ, η ∈ ĜK . δϕ ∗ δη and δη ∗ δϕ are belong to Mb(ĜK). Since (δϕ ∗ δη)∨ = (δη ∗ δϕ)∨,
then δϕ ∗ δη = δη ∗ δϕ ( see [2] th. 3.5 (ii)). Thus, the hypergroup ĜK is commutative. □

It is known that, ϕ̃ ∈ Ĝ//K if and only if ϕ = ϕ̃◦pK belongs to ĜK , more φ̃ ∈ Cb(Ĝ//K)

if and only if ∃!φ ∈ Cb(ĜK) such that φ̃(ϕ̃) = φ(ϕ) for ϕ̃ ∈ Ĝ//K. Specifically φ ∈
K(ĜK) ⇔ φ̃ ∈ K(Ĝ//K). For β ∈ Mb(ĜK), let us define β̃ in Mb(Ĝ//K) by β̃(φ̃) = β(φ)

,∀φ̃ ∈ K(Ĝ//K). The mapping:

Mb(ĜK) −→ Mb(Ĝ//K)

β 7−→ β̃

is a linear bijection.
Let (G,K) be a strong Gelfand pair. For any β̃ and γ̃ in Mb(Ĝ//K), let us put β̃ ∗

γ̃ = β̃ ∗ γ. This operation defines a convolution on Mb(Ĝ//K) such as G//K is a strong
hypergroup. In this case, the Plancherel measure π̃ is a Haar measure supported on the
whole dual space Ĝ//K (see [4] p.7, [8] th.12.4A) and the neutral element is the function

Ĝ//K −→ C
ϕ̃ 7−→ 1

Reciprocally, let us suppose that the double coset hypergroup G//K is a strong hyper-
group. Then the operation

β̃ ∗ γ = β̃ ∗ γ̃ for β, γ in Mb(ĜK)

defines a convolution on Mb(ĜK) such as ĜK is a hypergroup with respect to pointwise
multiplication.

We have also the following characterization.
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Proposition 3.2. Let (G,K) be a strong Gelfand pair. Then the Plancherel measure π is supported
on the whole ĜK and π is a invariant Haar measure on ĜK .

Proof. π(φ) = π̃(φ̃) for any φ belongs to K(Ĝ//K) (see [7], proof of th.3.1). Since π̃ is
a Haar measure supported on the whole dual space Ĝ//K, then π is a Haar measure
supported on the whole ĜK . Moreover, since ĜK is commutative, then π is invariant. □

Proposition 3.3. Let (G,K) be a strong Gelfand pair, then

δϕ ∗ δη(φ) =
∫
G

ϕ(x)η(x)
∨
φ(x)dµG(x); for ϕ, η ∈ ĜK and φ ∈ K(ĜK).

Proof. Since δϕ ∗ δη =
∨̂
δϕ

∨
δηπ, we have

δϕ ∗ δη(φ) =

∫
ĜK

φ(θ)
∨̂
δϕ

∨
δη(θ)dπ(θ)

=

∫
ĜK

φ(θ)

(∫
G

θ(x)
∨
δϕ(x)

∨
δη(x)dµG(x)

)
dπ(θ)

=

∫
ĜK

φ(θ)

(∫
G

θ(x)ϕ(x)η(x)dµG(x)

)
dπ(θ)

=

∫
G

ϕ(x)η(x)

(∫
ĜK

θ(x)φ(θ)dπ(θ)

)
dµG(x)

=

∫
G

ϕ(x)η(x)
∨
φ(x)dµG(x),∀φ ∈ K(ĜK).

□

Definition 3.3. The hypergroup G is called a Pontryagin hypergroup if (G,K) is strong and
̂̂
GK

is a hypergroup with respect to pointwise multiplication ( i.e. ĜK is a strong hypergroup).

Remark 3.1. It is clear that, G is a Pontryagin hypergroup iff the commutative hypergroup G//K
is a Pontryagin hypergroup.

Proposition 3.4. Let (G,K) be a strong Gelfand pair. Then the following statements hold.

(i) δ̂x ∈ ̂̂
GK ,∀x ∈ G.

(ii) If G is Pontryagin, then
{
δ̂x : x ∈ G

}
=

̂̂
GK .

Proof. Let us note that δ̂x ∈ Cb(ĜK) and δ̂x(ϕ) = ϕ(x) for x ∈ G and ϕ ∈ ĜK .
(i) Let x ∈ G and ϕ, η ∈ ĜK . We have

δ̂x(ϕ ∗ η) =
∫
ĜK δ̂x(θ)d(δϕ ∗ δη)(θ)

=
∫
ĜK θ(x)(δϕ ∗ δη)(θ)

= ϕ(x)η(x)

= δ̂x(ϕ)δ̂x(η),
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and also

δ̂x(ϕ) = ϕ(x) = δ̂x(ϕ).

Since δ̂x(1) = 1, we conclude that δ̂x ∈ ̂̂
GK .

(ii) Since
̂̂
GK is a hypergroup, then

̂̂
G//K is a hypergroup and

̂̂
G//K is isomorphic to

G//K via the mapping KxK 7−→ δ̂KxK (see [1], Theorem 2.4.3). Let ς ∈ ̂̂
GK and ς̃ ∈ ̂̂

G//K

such that ς̃(ϕ̃) = ς(ϕ̃ ◦ pK),∀ϕ̃ ∈ Ĝ//K. Then there exists x ∈ G such that δ̂KxK = ς̃ and
for any ϕ̃ ∈ Ĝ//K, we have

ς(ϕ̃ ◦ pK) = δ̂KxK(ϕ̃)

= ϕ̃(KxK)

= ϕ̃ ◦ pK(x)

= δ̂x(ϕ̃ ◦ pK).

Thus, ς(ϕ) = δ̂x(ϕ) for any ϕ ∈ ĜK , anf ς = δ̂x. □

3.2. Admissible vectors.
Let us remind some definitions.

Definition 3.4. ([13]). Let (U,HU ) be a representation of a hypergroup G in the Hilbert space
HU , H be a subhypergroup of G, and V ⊆ HU . A vector h0 ∈ HU is called a (U, V )-admissible
vector with respect to H if there are constant numbers A,B > 0 such that for every h ∈ V ,

A ∥h∥2HU ≤
∫
H

|⟨Ux(h0), h⟩|2 dmH(x) ≤ B ∥h∥2HU ,

where mH is a left Haar measure on H and Ux = U(δx).
If A = B = 1, h0 is called a Parseval (U, V )- admissible vector.

Let L : Mb(G) −→ B(L2(G,µG)) be the left regular representation of G.

(3.3) Lµ(f) = µ ∗ f for µ ∈ Mb(G) and f ∈ L2(G,µG).

Proposition 3.5. Let (G,K) be a Gelfand pair and φ ∈ LK
2 (G,µG). Then the following sate-

ments hold.
(i) For any x ∈ G, L̂x(φ) = δ̂xφ̂.
(ii) ⟨Lx(φ), f⟩ =

〈
(Lx(φ))

K
, f

〉
for any f ∈ LK

2 (G,µG).
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Proof. (i) Let x ∈ G. Then L̂x(φ) = δ̂x ∗ φ = δ̂xφ̂ since φ ∈ LK
2 (G,µG).

(i) Let f ∈ LK
2 (G,µG). We have〈
(Lx(φ))

K
, f

〉
=

〈
(δx ∗ φ)K , f

〉
= ⟨ωK ∗ δx ∗ φ ∗ ωK , f⟩

= ⟨ωK ∗ δx ∗ φ, f⟩

=
∫
G
(ωK ∗ δx) ∗ φ(y)f(y)dµG(y)

=
∫
G

∫
G
φ(z ∗ y)d(ωK ∗ δx)(z)f(y)dµG(y)

=
∫
G

∫
K
φ−(y ∗ k ∗ x)dωK(k)f(y)dµG(y)

=
∫
K

∫
G
φ(x ∗ y)f(k ∗ y)dµG(y)dωK(k)

=
∫
G
φ(x ∗ y)f(y)dµG(y), since f ∈ LK

2 (G,µG)

= ⟨δx ∗ φ, f⟩ = ⟨Lx(φ), f⟩ .

□

Definition 3.5. For any φ ∈ L2(G,µG) and H a subhypergroup of G, let us set

Aφ,H = linear span {Lx(φ) : x ∈ H}

Vφ,H = Aφ,H
L2(G,µG)

AK
φ,H = linear span

{
(Lx(φ))

K
: x ∈ H

}
V K
φ,H = AK

φ,H

L2(G,µG)
.


If H = G, we write simply Aφ (resp. Vφ) for Aφ,G ( resp. Vφ,G).

Definition 3.6. Let (G,K) be a Gelfand pair. A complex-valued function of G is called trigono-
metric polynomial if for some a1, ..., an ∈ C and ϕ1, ..., ϕn ∈ ĜK , we have

f =

n∑
i=1

aiϕi.

The set of all trigonometrics polynomial on G is denoted by Trig(G).

We have the following theorems wchich are our main results.

Theorem 3.1. Let G be a Pontryagin hypergroup and φ ∈ LK
2 (G). Then f ∈ V K

φ if and only if

f ∈ LK
2 (G) and for some t ∈ Trig(ĜK), f̂ = φ̂t.

Proof. Let f =
n∑

1=1
a

i
(Lxi(φ))

K where ai ∈ C and xi ∈ G for i ∈ {1, 2, ..., n} ⊂ N. Then

f =
n∑

1=1
a

i
δKxi

∗φ ∈ LK
2 (G) and f̂ =

(
n∑

1=1
a

i
δ̂xi

)
φ̂. By Proposition 3.4 (i), t =

n∑
1=1

a
i
δ̂xi

∈ ̂̂
GK .
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Reciprocally, let f ∈ LK
2 (G) and f̂ = φ̂t where t ∈ Trig(ĜK). Then t =

n∑
i=1

aiφi for some

a1, ..., an ∈ C and φ1, ..., φn ∈ ̂̂
GK . By Proposition 3.4 (ii), there exists xi ∈ G such that

φi = δ̂xi
for any i ∈ {1, 2, ..., n}. Thus, f̂ =

n∑
1=1

a
i
δ̂xi

φ̂ =
n∑

1=1
a

i
̂(δxi

∗ φ). Since f ∈ LK
2 (G)

and δxi ∗ φ ∈ LK
2 (G) for any i ∈ {1, 2, ..., n}, then

f = fK =
n∑

1=1
a

i
(δxi

∗ φ)K ∈ V K
φ , and the proof is complete. □

Theorem 3.2. Let G be a Pontryagin hypergroup and φ ∈ LK
2 (G) ∩ L1(G). φ is a Parseval

(L, V K
φ )- admissible if and only if |φ̂| = χsup pφ̂.

Proof. Let φ ∈ LK
2 (G) ∩ L1(G) and f ∈ V K

φ . Then by Theorem 3.1, f̂ = φ̂t where t =
n∑

i=1

aiφi with ai ∈ C and φi ∈
̂̂
GK for i ∈ {1, 2, ..., n}. For x ∈ G, we have

⟨Lx(φ), f⟩ =
〈
(Lx(φ))

K
, f

〉
=

∫
G
(Lx(φ))

K
(y)f(y)dµG(y)

=
∫
ĜK

̂
(Lx(φ))

K
(ϕ)f̂(ϕ)dπ(ϕ)

=
∫
ĜK

̂(Lx(φ))(ϕ)f̂(ϕ)dπ(ϕ)

=
∫
ĜK ϕ(x)φ̂(ϕ)f̂(ϕ)dπ(ϕ)

=
∫
ĜK ϕ(x)φ̂(ϕ)φ̂(ϕ)t(ϕ)dπ(ϕ)

=
∫
ĜK ϕ(x) |φ̂(ϕ)|2 t(ϕ)dπ(ϕ)

=
∫
ĜK ϕ(x)Λ(ϕ)dπ(ϕ)

with Λ(ϕ) = |φ̂(ϕ)|2 t(ϕ).
Since φ ∈ L1(G), then by [3] (Proposition 3.3), φ̂ ∈ L∞(G). Thus, knowing that t ∈ L∞(G),
we have |Λ(ϕ)| ≤ ∥φ̂∥2∞ ∥t∥∞ for any ϕ ∈ ĜK . That is Λ ∈ L∞(ĜK). Furetheremore,

∫
ĜK |Λ(ϕ)| dπ(ϕ) =

∫
ĜK |φ̂(ϕ)|2 |t(ϕ)| dπ(ϕ)

≤ ∥t∥∞
∫
ĜK |φ̂(ϕ)|2 dπ(ϕ)

= ∥t∥∞ ∥φ∥22 ,

then Λ ∈ L1(ĜK). It follows that Λ ∈ L2(ĜK) and Λ∨ ∈ L1(G)∩L2(G). Thus, we have on
a one hand Λ̂∨ = Λ by [2] (Theorem 3.5) and on the other hand ∥Λ∨∥2 = ∥Λ∥2. Seeing this
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we have ∫
G
|⟨Lx(φ), f⟩|2 dµG(x) =

∫
G

∣∣∣∫
ĜK ϕ(x)Λ(ϕ)dπ(ϕ)

∣∣∣2 dµG(x)

=
∫
G
|Λ∨(x)|2 dµG(x)

=
∫
G
|Λ∨(x)|2 dµG(x)

=
∫
ĜK |Λ(ϕ)|2 dπ(ϕ)

=
∫
ĜK

∣∣∣|φ̂(ϕ)|2 t(ϕ)∣∣∣2 dπ(ϕ)
=

∫
ĜK |φ̂(ϕ)|4 |t(ϕ)|2 dπ(ϕ).

As ∥f∥22 =
∥∥∥f̂∥∥∥2

2
=

∫
ĜK |φ̂(ϕ)|2 |t(ϕ)|2 dπ(ϕ), it follows that φ is a Parseval (L, V K

φ )- admis-
sible vector if and only if∫
ĜK

|φ̂(ϕ)|4 |t(ϕ)|2 dπ(ϕ) =
∫
ĜK

|φ̂(ϕ)|2 |t(ϕ)|2 dπ(ϕ) ⇐⇒
∫
ĜK

|φ̂(ϕ)|2 |t(ϕ)|2 (|φ̂(ϕ)|2−1)dπ(ϕ) = 0.

This holds if |φ̂| = χsup pφ̂. Moreover, let us put E+
φ =

{
ϕ ∈ ĜK : |φ̂(ϕ)|2 > 1

}
and E−

φ ={
ϕ ∈ ĜK : |φ̂(ϕ)|2 < 1

}
. If

∫
ĜK |φ̂(ϕ)|2 |t(ϕ)|2 (|φ̂(ϕ)|2 − 1)dπ(ϕ) = 0, then by taking t =

χE+
φ

or t = χE−
φ

, it follows that E+
φ = ∅ and E−

φ = ∅. So |φ̂| = 1 on suppφ̂, and the proof
is complete. □

4. CONCLUSION

In this paper we have given a characterization of the admissible vectors related to the
left regular representation of a Gelfand pair. This is a generalization of the characteriza-
tion given by Tabatabaie and Jokar in [13] for commutative hypergroups. Indeed, for any
commutative hypergroup G with neutral element e, the pair (G, {e}) is a Gelfand pair and

Ĝ{e} = Ĝ.
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