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Variations on Pascal’s Hexagon Theorem

NORBERT HUNGERBÜHLER1 AND MARCEL PIRRON2

ABSTRACT. Pascal’s hexagon theorem and its dual, Brianchon’s theorem, are anchor points in projective
geometry. We consider a hexagon circumscribed around a conic C and the points of contact of its sides, which
in turn form a hexagon inscribed in C. This configuration carries nice incidences between sides, diagonals and
off-diagonals of the two hexagons. We show that in general there are exactly 19 points where three of these lines
meet. These 19 points lie in threes on a total of 11 new straight lines, 3 of which are again concurrent. The proofs
are based on the theorems of Pascal, Brianchon, and Kirkman. We explore some additional nice features of this
geometric configuration. In addition we propose a flexible and systematic algebraic method which allows to
detect and prove such incidence results.

1. INTRODUCTION

Pascal’s hexagon theorem is one of the most beautiful and important theorems in pro-
jective geometry. Also known as the hexagrammum mysticum theorem, it triggered a whole
chain of incidence results, like its dual formulation, the theorem of Brianchon, or the fa-
mous results by Steiner and Kirkman, see [1] for a most elegant presentation of the corre-
sponding results. In the present article we want to explore some variations in the neigh-
bourhood of Pascal’s theorem and establish incidence results in conic hexagons. More
precisely, we consider a hexagon P1 . . . P6 circumscribed around a conic C with points of
tangency A1, . . . , A6. The set of twelve points P := {P1, . . . , P6, A1, . . . , A6} determines a
set L of 54 different lines passing through pairs of those points. We present an approach
which allows to detect systematically all concurrent triples among these 54 lines. Apart
from the points in P we identify 19 such points of concurrency. These 19 points lie in
threes on a total of 11 new straight lines, 3 of which are again concurrent. The proofs
are based on the theorems of Pascal, Brianchon, and Kirkman. In addition we propose a
flexible and systematic algebraic method which allows to detect and prove such incidence
results.

The article is organized as follows. In Section 2 we consider an algebraic formulation
of the geometric setting that yields a discrete model using integer projective coordinates.
This discrete model allows to detect all triples of concurrent lines in the set L. This part
makes sure that we dot miss any concurrencies and thus obtain a complete list. In ad-
dition, the approach yields also a method to systematically prove the incidence results
algebraically. Section 3 is dedicated to the geometric proofs of the incidence results. In
Section 4 we present some additional geometric features of the given configuration.

2. AN ALGEBRAIC MODEL

We will work in the standard model of the real projective plane. The set of points P is
given by RP2 = R3 \ {0}/∼, where X ∼ Y ∈ R3 \ {0} are equivalent if X = λY for some
λ ∈ R. Similarly, the set of lines B is also R3 \ {0}/∼, where again g ∼ h ∈ R3 \ {0} are
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equivalent, if g = λh for some λ ∈ R. A point [X] and a line [g] are incident if ⟨X, g⟩ = 0,
where we denoted equivalence classes by square brackets and the standard inner product
inR3 by ⟨·, ·⟩. Since we mostly work with representatives we will omit the square brackets
in the notation of equivalence classes. We consider the Euclidean plane R2 as embedded
in RP2 by

(x1, x2) 7→ (x1, x2, 1).

A non-degenerate conic in RP2 is given by the equation ⟨X,CX⟩ = 0 where C is a
regular, real, symmetric 3 × 3 matrix which has eigenvalues of both signs. By abuse of
notation we will denote both, the conic and the matrix, with the same letter C. The tangent
in a point P of C is given by CP . Vice versa, the contact point of a tangent p at C is given
by C−1p. The intersection of two lines g and h can be computed by g × h, where × is the
cross product in R3. Similarly, the line passing through the points X and Y is X × Y .
Hence, three lines f, g, h are concurrent iff ⟨f × g, h⟩ = det(f, g, h) = 0, and three points
X,Y, Z are collinear iff ⟨X × Y, Z⟩ = det(X,Y, Z) = 0. See, e.g., [6] for more information
or a general introduction to projective geometry.

Throughout this text we consider a hexagon P1 . . . P6 in the projective plane circum-
scribed around a conic C. The points of contact A1, . . . , A6 of its sides form a hexagon
which is inscribed in C (see Figure 1). Let P := {P1, . . . , P6, A1, . . . , A6}. The

(
12
2

)
= 66

pairs of points in P define 66 − 12 = 54 different lines (observe that the 6 sides of the
hexagon P1 . . . P6 are counted three times). The goal is to find all triples of concurrent
lines among these 54 lines.

2.1. Algebraic proofs. By a suitable projective transformation, we may assume that C is
given by the matrix

C =

1 0 0
0 1 0
0 0 −1

 .

We parametrize C \ {(−1, 0, 1)} by

φ : R→ RP3, ξ 7→ (1− ξ2, 2ξ, 1 + ξ2)

and set Ai = φ(ξi). The group of projective transformations of the plane which leaves
the conic C invariant acts three times transitively on C. This means we can prescribe the
position of three points, say A4, A5 and A6, on C (see, e.g., [4, Lemma 2.11]). In particular
we may assume that

(2.1) ξ4 = 1, ξ5 = 0, ξ6 = −1,

without loss of generality. This helps to reduce the size of expressions. The point is that
every incidence that we will encounter can then be expressed by a polynomial in the
variables ξ1, ξ2, ξ3, which must be shown to vanish identically. This is done by simply ex-
panding the polynomial (either by hand or by computer) and verifying that all coefficients
are zero. This algebraic approach has the advantage that it is an algorithm that works in
every case. As an example we give an algebraic proof of Theorem 3.1 using this method
(see Section 3.1 below). However, algebraic proofs usually fail to give a deeper geometric
insight. For this reason we will give geometric proofs for all other incidence result that
we encounter. A similar technique to prove and detect such incidence results have been
used in [5].
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2.2. Incidence detection. Before we can start proving incidence results, we now describe
how to find systematically all triples of concurrent lines in our setup. We first consider
a sufficiently general special case which indicates the possible candidates of concurrent
triples among the 54 lines. This is done in the following way. Choose six different integers,
e.g.,

(2.2) (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) = (3, 7, 11, 17, 23, 29).

Then compute the points Ai = φ(ξi), thereby the points Pi = CAi × CAi+1, and finally,
again using the cross product, the 54 straight lines which the points define. The projective
coordinates of these points and lines are integer numbers. Therefore one can see if three
of these lines, say f, g, h, are concurrent by checking if det(f, g, h) = 0. It is easy to write a
program on a computer algebra system which calculates exactly with integers and which
does this test for all

(
54
3

)
possible triples of lines. The program returns (apart from the 12

points in P ) exactly 19 new points where three of the 54 lines intersect. Of course, the
incidences found in this way can have come about by chance due to the special choice
of points Ai. However in the next section we prove that these incidence results hold in
general. But notice that in general there are certainly not more than 19 points where triples
of the straight lines meet.

3. INCIDENCE RESULTS

In Section 3.1 we will prove that there are exactly 19 triples of concurrent lines among
the 54 lines determined by the points in P = {P1, . . . , P6, A1, . . . , A6}. We denote the set
of the 19 points where the triples meet by Q. In Section 3.2 we will show that the 19 points
in Q lie in threes on a total of 11 new lines, and that 3 of these lines are again concurrent.

3.1. Triples of concurrent lines. A first incidence point which is detected in the discrete
case in Section 2.2 is Brianchon’s point.

Theorem 3.1. Let P1 . . . P6 be a hexagon circumscribed around a conic C. Then the diagonals
di := PiPi+3 for i = 1, 2, 3 are concurrent (see Figure 1).
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FIGURE 1. Brianchon’s Theorem.

Proof. The points A1, . . . , A6 lie on C. The tangent ti in Ai is given by

ti = CAi = (1− ξ2i , 2ξi,−ξ2i − 1).
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The intersection Pi of the tangents ti and ti+1 (indices are read cyclically) is

Pi = ti × ti+1 =
(
(ξ2i + 1)ξi+1 − (ξ2i+1 + 1)ξi, ξ

2
i+1 − ξ2i , (ξ

2
i+1 − 1)ξi + (1− ξ2i )ξi+1

)
.

For the diagonal di joining Pi and Pi+3 we find

(3.3) di = Pi × Pi+3 =

(ξi+3ξi+4 + 1)(ξi + ξi+1)− (ξiξi+1 + 1)(ξi+3 + ξi+4)

2(ξiξi+1 − ξi+3ξi+4)

(ξi+3ξi+4 − 1)(ξi + ξi+1)− (ξiξi+1 − 1)(ξi+3 + ξi+4)

 .

We need to show that the diagonals d1, d2, d3 in the hexagon P1 . . . P6 are concurrent. This
can be verified by checking that det(d1, d2, d2) = 0. Indeed, under the assumption (2.1)
this can even be computed by hand, because the matrix (d1, d2, d3) turns out to be quite
simple:

(d1, d2, d2) =

(1− ξ1)(ξ2 − 1) 2ξ1ξ2 ξ2 + ξ1(ξ2 + 1)− 1
(ξ2 + 1)(ξ3 + 1) 2ξ2ξ3 ξ3 + ξ2(1− ξ3) + 1
(1− ξ1)(ξ3 + 1) ξ1 + ξ3 ξ1ξ3 + 1

 .

□

Before we come to the discussion of the remaining 18 incidence points, we recall the
following result for quadrangles which are circumscribed around a conic.

Lemma 3.1. Let Q1Q2Q3Q4 be a quadrangle circumscribed around a conic C with points of
tangency B1, B2, B3, B4 (see Figure 2). Let U, V,W denote the diagonal points in the complete
quadrangle Q1Q2Q3Q4, i.e., U is the intersection of the lines Q1 × Q2 and Q3 × Q4, V is the
intersection of the lines Q2 × Q3 and Q4 × Q1, and W is the intersection of the lines Q1 × Q3

and Q2×Q4. Let X,Y, Z be the diagonal points of the complete quadrangle B1B2B3B4, i.e., X is
the intersection of the lines B1 ×B2 and B3 ×B4, Y is the intersection of the lines B2 ×B3 and
B4 × B1, and Z is the intersection of the lines B1 × B3 and B2 × B4. Then, the diagonal points
W and Z agree, the points Q1, Q3, Y, Z are collinear, the points Q2, Q4, X, Z are collinear, and
the points X,Y, U, V are collinear.

Proof. The projective maps operate four times transitively on the projective plane. In par-
ticular, there is a projective map φ with maps the quadrangle B1B2B3B3 to a rectangle
B′

1B
′
2B

′
3B

′
3. The image C ′ = φ(C) is a conic which lies symmetrical to the symmetry axes

of this rectangle. To see this recall that five points in general position define a unique
conic. Then, by symmetry, the images of the points A1, A2, A3, A4 lie on the symmetry
axes of the rectangle. It follows that the image of the points W and Z are the symmetry
center of the rectangle, and hence W = Z. Similarly, the lines B1×B2 and B3×B4, and the
lines B2 × B3 and B4 × B1 are parallel to the symmetry axes through Q2, Q4 and Q1, Q3,
respectively. This implies that the lines B1 ×B2, B3 ×B4 and Q2 ×Q4 meet in X , and the
lines B2 ×B3, B4 ×B1 and Q1 ×Q3 meet in Y . Also by symmetry, we have that the lines
Q1 ×Q2 and Q3 ×Q4 are parallel, as well as the images of the lines Q2 ×Q3 and Q4 ×Q1.
Hence the images of the points Y,X,U, V lie on the ideal line. □

As a side remark, notice that the above proof also reveals that the polar line of the
point X is the line through the points Q2, Q4, X, Z, the polar line of the point Y is the line
through the points Q1, Q3, Y, Z, and the polar line of the point Z is the line through the
points X,Y, U, V .

Now we come to a first result, detected in the discrete case in Section 2.2, which con-
nects the diagonals of the circumscribed hexagon P1 . . . P6 with the diagonals of the in-
scribed hexagon A1 . . . A6.



Variations on Pascal’s Hexagon Theorem 345

C

B1
B2

B3

B4

Q1

Q3

Y

Q2
Q4 W=Z

X

V

U

FIGURE 2. Incidences for a quadrilateral Q1Q2Q3Q4 that is circum-
scribed around a conic C.

Theorem 3.2. Let P1 . . . P6 be a hexagon circumscribed around a conic C, and A1, . . . , A6 the
contact points (see Figure 3). Let di be the diagonals joining Pi and Pi+3, and ei the diagonals of
the inscribed hexagon joining the points Ai and Ai+3. Then the lines ei, ei+1 and di for i = 1, 2, 3
are concurrent.
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FIGURE 3. Illustration for Theorem 3.2.
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Proof. We apply Lemma 3.1 separately to the quadrangle built from the tangents in the
points A1, A2, A4, A5, then the quadrangle built from the tangents in A3, A4, A6, A1, and
finally the quadrangle built from the tangents in A5A6A2A3. The point where the lines
ei, ei+1 and di meet corresponds to the point W = Z in the lemma. □

The next theorem involves the off-diagonals of the circumscribed hexagon P1 . . . P6 and
the off-diagonals of the inscribed hexagon A1 . . . A6.

Theorem 3.3. Let P1 . . . P6 be a hexagon circumscribed around a conic C, and A1, . . . , A6 the
contact points (see Figure 4). Consider the off-diagonals gi joining the vertices Pi and Pi+2 in the
circumscribed hexagon, and the off-diagonals fi of the inscribed hexagon joining the points Ai and
Ai+2, i = 1, . . . , 6. Then the lines gi, fi, fi+1 are concurrent.
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FIGURE 4. Illustration for Theorems 3.3, 4.10 and 4.11.

Proof. We apply Lemma 3.1 separately to the six quadrangles built from the tangents in
the points Ai, Ai+1, Ai+2, Ai+3, for i = 1, 2, . . . , 6. The point where the lines gi, fi and fi+1

meet corresponds to the point W = Z in the lemma. □

Figure 4 shows some further interesting incidences, which we will discuss in Section 4.
But we first continue with the systematic list of concurrent triples of lines.

Theorem 3.4. The main diagonals di of the hexagon P1 . . . P6 and the off-diagonals fi+1 and fi+4

of the hexagon A1 . . . A6 are concurrent (see Figure 5).

Proof. This time, we apply Lemma 3.1 separately to the quadrangle built from the tangents
in the points A1, A2, A4, A5, then the quadrangle built from the tangents in A3, A4, A6, A1,
and finally the quadrangle built from the tangents in A5A6A2A3. The point where the
lines ei, ei+1 and di meet corresponds to the point Y in the lemma. □
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FIGURE 5. Illustration for Theorem 3.4.
Theorem 3.5. Let P1, . . . , P6 be a hexagon circumscribed around a conic C, and A1, . . . , A6 the
contact points. Let si be the side AiAi+1 of the polygon A1, . . . , A6. Then, for i = 1, . . . , 6,
the diagonal ei of the polygon A1, . . . , A6, its side si+4 and the off-diagonal gi+3 of the polygon
P1, . . . , P6 are concurrent.

Proof. Here, we apply Lemma 3.1 separately to the quadrangles which are built from the
tangents in the points Ai, Ai+3, Ai+4, Ai+5 for i = 1, 2, . . . , 6. The point where the lines
ei, si+4 and gi+3 meet corresponds to the point Y in the lemma. □
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FIGURE 6. Illustration for Theorem 3.5. The diagonal ei of the poly-
gon A1, . . . , A6, its side si+4 and the off-diagonal gi+3 of the polygon
P1, . . . , P6 are concurrent. Only the situation for i = 1 is shown.

This finishes the list of concurrent lines. To summarize, we have 1 point of concur-
rency from Theorem 3.1, 3 points from Theorem 3.2, 6 points from Theorem 3.3, and 6
points from Theorem 3.5. Hence, together with the consideration of the discrete case in
Section 2.2, we obtain the following.

Corollary 3.1. Among the 54 lines which connect pairs of points from the set {P1, . . . , P6,
A1, . . . , A6} there are in general exactly 19 triples of concurrent lines.
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3.2. Triples of collinear points in the set Q. Again with the set in (2.2) we can explicitly
compute the integer projective coordinates of the 19 points in the set Q where triples
of lines meet. To see if three of these points Qi, Qj , Qk are collinear one has to check if
det(Qi, Qj , Qk) = 0. A computer program which tests all triples of points in Q returns 11
triples of collinear points. We now show that this holds not only by chance for the special
choice (2.2), but in general.

Theorem 3.6. For i = 1, . . . , 6, the three points

(Ai×Ai+2)×(Ai+1×Ai−1), (Ai×Ai+3)×(Ai−2×Ai−1), (Ai+1×Ai+3)×(Ai+2×Ai−2)

from the set Q are collinear.

Proof. This follows directly from Pascal’s theorem applied to the hexagon

AiAi+2Ai−2Ai−1Ai+1Ai+3.

□

Theorem 3.7. For i = 1, . . . , 3, the three points

(Ai×Ai+2)×(Ai+1×Ai−1), (Ai×Ai+3)×(Ai+1×Ai−2), (Ai−1×Ai+3)×(Ai+2×Ai−2)

from the set Q are collinear.

Proof. This follows directly from Pascal’s theorem applied to the hexagon

AiAi+2Ai−2Ai+1Ai−1Ai+3.

□

Theorem 3.8. For i = 1, . . . , 2, the three points

(Ai×Ai+3)×(Ai+1×Ai+2), (Ai×Ai−1)×(Ai+1×Ai−2), (Ai−1×Ai+2)×(Ai+3×Ai−2)

from the set Q are collinear.

Proof. This follows directly from Pascal’s theorem applied to the hexagon

AiAi+3Ai−2Ai+1Ai+2Ai−1.

□

From the Theorems 3.6, 3.7 and 3.8 we have 6 + 3 + 2 = 11 Pascal lines on which the
points from the set Q lie in threes. Three of these 11 Pascal lines are concurrent. Again, by
using the set (2.2) we can check, that only three of the 11 lines can be concurrent.

Theorem 3.9. The three Pascal lines from Theorem 3.7 are concurrent.

Proof. The hexagon A1A4A6A2A5A3 gives one of the three Pascal lines. The other two
come from the hexagon with indices shifted by 2 and 4, i.e., from the hexagon A3A6A2A4

A1A5 and A5A2A4A6A3A1. Therefore the claim follows from Kirkman’s theorem. □

4. ADDITIONAL INCIDENCE RESULTS

We continue to consider the hexagon P1 . . . P6 circumscribed around a conic C with
points of tangency A1, . . . , A6. In this section we explore some additional geometric in-
cidences of this configuration. We start with the following simple observation which has
some nice consequences.
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Proposition 4.1. The six points

(P1 × P2)× (P5 × P6), (P2 × P3)× (P6 × P1), (P3 × P4)× (P1 × P2),
(P4 × P5)× (P2 × P3), (P5 × P6)× (P3 × P4), (P6 × P1)× (P4 × P5)

lie on a conic D.

Proof. This follows immediately from Poncelet’s porism (see, e.g., [2]) applied to the tri-
angles

(P1 × P2)× (P5 × P6), (P3 × P4)× (P1 × P2), (P5 × P6)× (P3 × P4)

and

(P2 × P3)× (P6 × P1), (P4 × P5)× (P2 × P3), (P6 × P1)× (P4 × P5).

Indeed, five of these six points define a conic D, and by Poncelet’s theorem the sixth point
must also lie on D. □

Theorem 4.10. The lines f1, . . . , f6 from Theorem 3.3 form a hexagon which is circumscribed
around a conic E (see the dashed conic in Figure 4).

Proof. Observe that the line f1 = A1 ×A3 is the polar line of the point

(P1 × P6)× (P2 × P3).

By shifting the indices each time by one, we obtain the corresponding result for the lines
f2, . . . , f6. Hence the conic E is simply the conjugate conic of D from Propostion 4.1 with
respect to C (see [3, Theorem 1.5]). □

The configuration described in Theorem 3.3 also contains an inscribed conic.

Theorem 4.11. The lines g1, . . . , g6 from Theorem 3.3 form a hexagon which is inscribed in a
conic (see the dotted conic in Figure 4).

However, this result is buried a little deeper and we need a lemma to prove it.

Lemma 4.2. Let A1 . . . A6 be a hexagon inscribed in a conic C, and Ri the intersection of the
sides Ai × Ai+1 and Ai+2 × Ai+3. Then, the hexagon R1 . . . R6 is cirumscribed around a conic
D (see Figure 7).

Proof. By Brianchon’s theorem, we need to show that the diagonals Ri×Ri+3 for i = 1, 2, 3
are concurrent (see Figure 7). To see this, observe that the Pascal line of the hexagon
R1R2R5R4R3R6 is the line through the points R1 and R4. By shifting the index by 2, we
get the Pascal line R3R4R1R6R5R2 through the points R3 and R6, and by another shift
by 2, we get the Pascal line R5R6R3R2R1R4 through the points R5 and R2. By Kirkman’s
theorem, the three Pascal lines are concurrent and we are done. □

Proof of Theorem 4.11. Theorem 4.11 is just the dual statement of Lemma 4.2. □

Next, we consider the intersections of the off-diagonals gi of the circumscribed hexagon
P1 . . . P6. We find:

Theorem 4.12. Let again gi be the off-diagonals joining the points Pi and Pi+2, and Qi the
intersection of the lines gi and gi+1. In the hexagon Q1 . . . Q6 we consider the diagonals ki joining
the points Qi and Qi+3. Let di still denote the diagonals in the hexagon P1 . . . P6. Then the lines
di, ki+1 and ki+2 for i = 1, 2, 3 are concurrent (see Figure 8).
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FIGURE 7. Proof of Lemma 4.2.
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FIGURE 8. Illustration for Theorem 4.12.

Proof. By Theorem 4.11 we have that the points Q1, . . . , Q6 lie on a conic. Then the line
P1 × P4 is the Pascal line for the conic hexagon Q1Q2Q5Q4Q3Q6. Shifting the indices by
2 we get that P3 × P6 is the Pascal line for the conic hexagon Q3Q4Q1Q6Q5Q2. Another
shift by 2 yields that P5 ×P2 is the Pascal line for the conic hexagon Q5Q6Q3Q2Q1Q4. We
conclude that the lines di, ki+1, ki+2 are concurrent. □

A similar result occurs, if we consider the intersections of the off-diagonals fi of the
inscribed hexagon A1, . . . , A6.

Theorem 4.13. Let again fi be the off-diagonals joining the points Ai and Ai+2, and Ri the
intersection of the lines fi and fi+1. In the hexagon R1 . . . R6 we consider the diagonals hi joining
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the points Ri and Ri+3. Let ei still denote the diagonals in the hexagon A1 . . . A6. Then the lines
hi, ei+1 and ei+2 for i = 1, 2, 3 are concurrent (see Figure 9).
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FIGURE 9. Illustration for Theorem 4.13.

Proof. Observe that the line h1 = R1×R4 is the Pascal line in the hexagon A1A3A6A4A2A5.
Shifting the indices by 2, we see that h3 = R3 × R6 is the Pascal line in the hexagon
A3A5A2A6A4A1. Another shift by 2 yields the Pascal line h2 = R5 × R2 in the hexagon
A5A1A4A2A6A3. In particular, the lines hi, ei+1, ei+2 are concurrent, which proves Theo-
rem 4.13. □

Notice that the argument used above yields an alternative proof of Theorem 4.10. In-
deed, by Kirkman’s Theorem we have that the three Pascal lines h1, h2, h3 are concurrent.
This shows that the diagonals in the hexagon R1 . . . R6 are concurrent, and the inverse of
Brianchon’s theorem implies that the hexagon is circumscribed around a conic, as stated
in Theorem 4.10.

5. CONCLUSIONS

We have considered a hexagon P1 . . . P6 circumscribed around a conic C and the points
of contact of its sides, which in turn form a hexagon A1 . . . A6 inscribed in C. We have
shown that among the 54 lines which connect pairs of the points P1, . . . , P6, A1, . . . , A6

there are in general exactly 19 concurrent triples. The 19 points of concurrency lie in
threes on a total of 11 new straight lines, 3 of which are again concurrent. We have offered
a flexible and systematic algebraic method which allows to detect and to prove such inci-
dence results. In addition we provided purely geometric proofs based on the theorems of
Pascal, Brianchon, and Kirkman. Moreover, we have explored some additional geometric
properties of the two hexagons. This also opens up the door to further research.
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