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Rainbow Dominator Coloring of Some Cycle Related
Graphs

S. MADHUMITHA1 AND SUDEV NADUVATH2

ABSTRACT. The concept of dominator coloring of graphs emerged as a combination of the two prominent
structural aspects of graphs, namely coloring and domination in graphs. The vertex coloring that demands the
existence of a rainbow path between any two vertices of a graph; that is, a path in which every internal vertex
has a unique color, is called a rainbow vertex coloring of a graph. Melding the concepts of rainbow vertex
coloring and dominator coloring of graphs, the rainbow dominator coloring of graphs has been studied, in the
literature. In this article, we investigate the rainbow dominator coloring of some cycle related graphs, and their
complements.

1. INTRODUCTION

For basic terminology in graph theory, refer to [17], and for concepts pertaining to
coloring and theory of domination in graphs, see [1] and [6], respectively.

By G, we always mean a simple, undirected and a finite graph with its vertex set V (G)
and edge set E(G). A vertex v ∈ V (G) in a graph G of order n degree 1 is called a pendant
vertex in G, and the vertex u such that uv ∈ E(G) is called its support or a support vertex
in G. A subset S ⊆ V (G) is called an independent set of G if for every pair u, v ∈ S,
uv /∈ E(G).

Graph coloring is the assignment of colors (labels) to the entities of a graph such as its
vertices or edges, according to certain rules and the set of all entities assigned the same
color in a coloring c of the graph is called a color class with respect to c. A proper vertex
coloring of a graph G is the assignment of colors to the vertices of G such that each color
class with respect to the coloring is an independent set of G, and the minimum number
of colors required in a proper vertex coloring of G is called the chromatic number of G,
denoted by χ(G). Any proper coloring of V (G) with χ(G) colors is called a χ-coloring of
G.

Beginning with the proper vertex coloring of graphs, several variants of graph coloring
schemes are emerging in the literature, in order to meet the modelling requirements of
various real-life problems (ref. [1, 9, 12, 16]). The vertex-rainbow coloring of graphs, which
is defined in [8], as given below, is one such coloring that has been used to model the
information transfer path problem in networks (see [2]).

A vertex coloring of a non-trivial connected graph G in which every pair of its vertices
are connected by a path whose internal vertices have distinct colors is called a vertex-
rainbow coloring of G, and the rainbow vertex-connection number rvc(G) of G is the minimum
number of colors used to obtain such a coloring of G. Note that a vertex-rainbow coloring
of G need not be proper (see [8]).

Domination in graphs can be seen as the process of selecting the graph entities; usually
vertices, such that an entity of the graph is either selected or is related to the selected
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entities. In a graph G, if a vertex v ∈ V (G) is adjacent to all vertices u ∈ A, for some
A ⊆ V (G) or A = {v}, we say that v dominates A and A is dominated by v. By convention,
a vertex v always dominates itself (ref. [11]).

Graph coloring and domination in graphs are two well-known research areas in graph
theory, and as the applications of these areas similar in nature and coincide in many as-
pects, the notion of dominator coloring of graphs was introduced in [5], by blending the
concepts of coloring and domination in graphs as a proper vertex coloring of a graph G
in which every vertex v ∈ V (G) dominates at least one color class. The minimum number
of colors used to obtain a dominator coloring of G is called the dominator chromatic number
of G, denoted by χd(G).

Following this, several variants of dominator coloring of graphs have been defined and
studied, based on different types of coloring and domination in graphs (ref. [3, 4, 10, 11]).
Combining the concepts of vertex-rainbow coloring and dominator coloring of graphs, the
rainbow dominator coloring of a graph G was introduced in [7]. However, as that definition
was not suitable to model problems in a disconnected network, the rainbow dominator
coloring of graphs was modified in [13], as follows.

Definition 1.1. [13] A rainbow dominator coloring of a graph G is a proper vertex coloring
of G in which every vertex v ∈ V (G) dominates at least one color class and every pair of its
vertices are connected by a path whose internal vertices have distinct colors, if such a path
exists. The rainbow dominator chromatic number of G, denoted by χrd(G), is the minimum
number of color classes in a rainbow dominator coloring of G.

An illustration of rainbow dominator coloring of a graph G is given in Figure 1, where it
can be seen that G has χ(G) = 2, rvc(G) = 6, χd(G) = 7, and χrd(G) = 8.
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FIGURE 1 An example of a graph G with χ(G) < rvc(G) < χd(G) < χrd(G).

On re-defining the notion of rainbow dominator coloring of graphs in [13], the rainbow
dominator coloring of certain standard graphs, and their complements were discussed in
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[13]. In this article, we investigate the rainbow dominator coloring of certain cycle related
graphs and their complements, by analysing their coloring patterns and determining their
rainbow dominator chromatic numbers.

2. RESULTS AND DISCUSSIONS

In this section, we determine the rainbow dominator chromatic number of certain cy-
cle related graphs, such as gear graph, sunflower graph, closed sunflower graph, prism
graphs, etc., and their complements, by analysing their structures and obtaining their
rainbow dominator chromatic numbers.

A gear graph G1,t,t; t ≥ 2, of order n = 2t + 1 is obtained by making a vertex, say v,
adjacent to the vertices vi; i ≡ 0 (mod 2), of the cycle C2t.

Theorem 2.1. For t ≥ 2, χrd(G1,t,t) =

{
⌈ 2t

3 ⌉+ 2, 2 ≤ t ≤ 4;

⌈ 2t
3 ⌉+ 3, t ≥ 5.

Proof. Let G1,t,t; t ≥ 2, be a gear graph with V (G1,t,t) = {v} ∪ {vi : 1 ≤ i ≤ 2t} and
E(G1,t,t) = {vivi+1, : 1 ≤ i ≤ 2t} ∪ {vvj : j ≡ 1 (mod 2), 1 ≤ j ≤ 2t}, where the suffixes
are taken modulo 2t.

When t = 2, a χ-coloring c′ of G1,2,2 such that c′(v1) = c′(v3) = c1 and c′(v) = c′(v2) =
c′(v4) = c2, is also its rainbow dominator coloring. When t = 3, consider a coloring c∗ of
G1,3,3 such that c∗(v) = c2, c∗(v1) = c∗(v3) = c1, c∗(v4) = c∗(v6) = c2, c∗(vi) = c2+⌈ i

3 ⌉
,

otherwise, and when t = 4, extend the coloring c∗ of G1,3,3 to G1,4,4 by assigning c∗(v7) =
c1.

The coloring c∗ is a dominator coloring of G1,3,3 and G1,4,4, as the vertex v dominates
the color class {v5}, the vertices vi−1, vi, vi+1, for 1 ≡ 2 (mod 3), and 1 ≤ i ≤ 2t, dominate
the color class {vi}, where t + 1 = 1. It can be verified that there exists a rainbow path
of length 3 (resp. length 4) between any two vertices at a distance of diam(G1,3,3) (resp.
diam(G1,4,4)), in the coloring c∗. Hence, χrd(G1,t,t) ≤ ⌈ 2t

3 ⌉+ 2.
For the vertex vi; i ≡ 2 mod 6, in G1,t,t, t = 3, 4, to dominate a color class in any of its

dominator coloring, either it must be assigned a unique color or only the vertices vi, vi+1

must be assigned a specific color. Therefore, as χd(C2t) = ⌈ 2t
3 ⌉ + 2, the optimality of c∗

follows.
When t ≥ 5, consider a coloring c of G1,t,t such that c(v) = c3, and

c∗(vi) =



c1, i ≡ 1 (mod 3), 1 ≤ i ≤ 2t− 1;

c2, i ≡ 3 (mod 6), 1 ≤ i ≤ 2t;

c3, i ≡ 0 (mod 6), 1 ≤ i ≤ 2t;

c⌈ i
3 ⌉+3, i ≡ 2 (mod 3), 1 ≤ i ≤ 2t;

c⌈ 2t
3 ⌉+3, i = 2t, 2t ≡ 1 (mod 3).

This coloring c of G1,t,t; t ≥ 5, is its dominator coloring, as the vertex v dominates the
color class {v5}, the vertices vi−1, vi, vi+1, for 1 ≤ i ≤ 2t, and i ≡ 2 (mod 3), dominate
the color class {vi}, when 2t ≡ 0, 2 (mod 3), and when 2t ≡ 1 (mod 3), vi−1, vi, vi+1, for
1 ≤ i ≤ 2t− 1, and i ≡ 2 (mod 3), dominate the color class {vi}, and v2t dominates itself.

In G1,t,t, as d(v, vi) ≤ 2, for all 1 ≤ i ≤ 2t, d(vi, vj) = 2, when i, j ≡ 1 (mod 2), and
d(vi, vj) = 3, when i ≡ 1 (mod 2), and j ≡ 1 (mod 2), for any 1 ≤ i ̸= j ≤ 2t, the
path between them is always colored using distinct colors. Hence, to prove that c is a
rainbow dominator coloring of G1,t,t, we must obtain a rainbow path with respect to c
only between the vertices vi, vj such that i, j ≡ 0 (mod 2), for any 1 ≤ i ̸= j ≤ 2t, as
d(vi, vj) = 4, in this case.
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If i, j ≡ 2 (mod 6), then the path vi − vi−1 − v − vj+1 − vj is a rainbow path between
them, as c(vi−1) = c1 and c(vj+1) = c2. If either i ≡ 0 (mod 6), or j ≡ 0 (mod 6), then
vi − vi−1 − v − vj−1 − vj is a (vi, vj)-rainbow path as c(vi−1) ̸= c(vj−1), in this case owing
to the fact that c(vi) is unique for all i ≡ 2 (mod 3). Similarly, if either i ≡ 4 (mod 6), or
j ≡ 4 (mod 6), then vi− vi+1− v− vj+1− vj is a (vi, vj)-rainbow path as c(vi+1) ̸= c(vj+1),
in this case, owing to the same reason. Hence, χrd(G1,t,t) ≤ ⌈ 2t

3 ⌉+ 3.
As every vi; i ≡ 0 (mod 2), in the cycle C2t of G1,t,t is adjacent only to the vertices

vi−1, and vi+1, it can dominate a color class with respect to any of its proper coloring
if and only if the color class is either {vi} or a subset of vi−1, vi+1. As this domination
property of the vertices vi; i ≡ 1 (mod 2), of G1,t,t are same as the ones exhibited by the
vertices of any cycle, we require at least χd(C2t) colors to obtain a dominator coloring of
G1,t,t. However, in any dominator coloring c̄ of C2t, c̄(vi−1) = c̄(vi+1), for all the vertices
vi; i ≡ 2 (mod 3), or c̄(vi−1) = c̄(vj−1) and c̄(vi+1) = c̄(vj+1), for vi, vj ; 1 ≤ i ̸= j ≤ 2t,
such that i, j ≡ 2 (mod 3).

In the first case, we cannot obtain a rainbow path between two vertices vi and vj such
that i, j ≡ 2 (mod 6), and in the second case, the vertex v cannot be assigned any of the
two colors that are assigned to more than one vertex of C2t. Hence, in both the cases,
we require at least one color in addition to the number of colors used in any minimum
dominator coloring of G1,t,t to obtain its minimum rainbow dominator coloring. As it has
been proved in [5] χd(C2t) = ⌈ 2t

3 ⌉+ 2, for all t ≥ 3, the result follows. □

Proposition 2.1. For t ≥ 2, χrd(G1,t,t) = t+ 1.

Proof. In the complement G1,t,t of a gear graph G1,t,t as described in Theorem 2.1, any
vi; 1 ≤ i ≤ 2t, is adjacent to all the vertices of G1,t,t, except vi−1, vi, vi+1, where the
suffixes are taken modulo 2t and the vertex v is adjacent to all the vertices vi; 1 ≤ i ≤ 2t,
for i ≡ 0 (mod 2). Hence, the vertices v, vi; 1 ≤ i ≤ 2t, for i ≡ 0 (mod 2), induce a clique
of order t+ 1 in G1,t,t, yielding χrd(G1,t,t) ≥ t+ 1.

The coloring c : V (G1,t,t) → {c1, c2, . . . , ct+1} such that c(vi) = c(vi+1) = c⌈ i
2 ⌉

, for
1 ≤ i ≤ 2t, when i ≡ 0 (mod 2), and c(v) = ct+1 is a dominator coloring of G1,t,t, as each
vi; i ≡ 0 (mod 2), and v dominate the color class {v}, and vi; i ≡ 1 (mod 2), dominate
the color class {vi+2, vi+3}, for 1 ≤ i ≤ 2t, where the suffixes are taken modulo 2t, with
respect to c.

For any two vertices vi, vj ∈ V (G1,t,t), 1 ≤ i ̸= j ≤ 2t, d(vi, vj) = 1, when both i and
j are of the same parity; otherwise, d(vi, vj) = 2, as there exists a path vi − vi+2 − vj or
vi − vi+2 − vj of length 2. Also, as d(v, vj) = 1, when j is even and d(v, vj) = 2, when j

is odd, there exists a rainbow path between any two non-adjacent vertices of G1,t,t in c.
Therefore, χrd(G1,t,t) = t+ 1. □

A sunflower graph SF1,t,t of order 2t + 1 is a graph obtained by replacing every edge
vivi+1; 1 ≤ i ≤ t, by a triangle vi − ui − vi+1 − vi, in a wheel graph W1,t = Ct + K1,
where the vertices vi; 1 ≤ i ≤ t, are vertices of degree 3 in W1,t, and the suffixes are taken
modulo t.

Theorem 2.2. For t ≥ 4, χrd(SF1,t,t) = ⌈ t
2⌉+ 2.

Proof. Let SF1,t,t; t ≥ 4, be a sunflower graph with V (SF1,t,t) = {v} ∪ {vi : 1 ≤ i ≤
t} ∪ {ui : 1 ≤ i ≤ t} and E(SF1,t,t) = {vvi : 1 ≤ i ≤ t} ∪ {vivi+1 : 1 ≤ i ≤ t} ∪ {viui : 1 ≤
i ≤ t} ∪ {uivi+1 : 1 ≤ i ≤ t}, where the suffixes are taken modulo t. Consider a coloring
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FIGURE 2 χrd-coloring of gear graph and its complement.

c : V (SF1,t,t) → {cr : 1 ≤ r ≤ ⌈ t
2⌉+ 2} such that for any vertex w ∈ V (SF1,t,t),

c(w) =


c⌈ i

2 ⌉
, w ∈ {vi : 1 ≤ i ≤ t, i ≡ 1 (mod 2)};

c⌈ t
2 ⌉+1, w ∈ {vi : 1 ≤ i ≤ t, i ≡ 0 (mod 2)};

c⌈ t
2 ⌉+2, w ∈ {v} ∪ {ui : 1 ≤ i ≤ t}.

With respect to c, every ui, vi; i ≡ 1 (mod 2), dominate the color class {vi}, and when
i ≡ 0 (mod 2), the vertices ui dominate the color class {vi+1} and vi dominate the color
classes {vi−1} and {vi+1}, for all 1 ≤ i ≤ t. Also, as the vertex v dominates the color class
{vi}, for all i ≡ 1 (mod 2), in c, it is a dominator coloring of SF1,t,t.

In SF1,t,t, d(vi, vj) = 2, d(v, vi) = 1, d(v, ui) = 2, for all 1 ≤ i ̸= j ≤ t, and d(ui, uj) =
4, for all 1 ≤ i ≤ t, and j ≥ i + 4, where the suffixes are taken modulo t. The path
ui−vi−v−vj−uj is a rainbow path between any two vertices ui and uj , with respect to c,
where i ≡ 1 (mod 2), irrespective of the parity of j. Also, the path ui−vi+1−v−vj+1−uj is a
rainbow path between any two vertices ui and uj , with respect to c, where i, j ≡ 0 (mod 2).
Hence, χrd(SF1,t,t) ≤ ⌈ t

2⌉+ 2, for all t ≥ 4.
In SF1,t,t, a vertex ui; 1 ≤ i ≤ t, dominates a color class with respect to any of its

dominator coloring if it is {ui} or {vi+1} or {ui}. If every ui dominates a color class that
contains one distinct vertex, then we need t unique colors, in such a coloring of SF1,t,t. In
c, as every ui, ui+1, for 1 ≤ i ≤ t, and i ≡ 1 (mod 2), dominates the color class vi, it gives
an optimal rainbow dominator coloring of SF1,t,t. If χrd(SF1,t,t) < ⌈ t

2⌉ + 2, then at least
one singleton color class has been removed from c, which leads to the vertex ui, for some
1 ≤ i ≤ t, not dominating any color class, proving the result. □

Proposition 2.2. . For t ≥ 4, χrd(SF 1,t,t) = t+ 1.

Proof. For the complement SF 1,t,t of a sunflower graph SF 1,t,t constructed as given in
Theorem 2.2, the coloring c : V (SF 1,t,t) → {c1, c2, . . . , ct+1} such that c(vi) = c(ui) = ci,
for 1 ≤ i ≤ t, and c(v) = ct+1 is its rainbow dominator coloring using t + 1 colors. This
is because the vertices v, ui; 1 ≤ i ≤ t, dominate the color class {v}, and the vertices
vi; 1 ≤ i ≤ t, dominate the color class {vi+3, ui+3}, where t+ j = j, for any 1 ≤ j ≤ t, and
d(v, vi) = 2, d(vi, ui) = 2, and d(vi, vj) = 2, for all 1 ≤ i ̸= j ≤ t; enusring the existence
rainbow paths v − ui+2 − vi, vi − uj−2 − uj , and vi − ui+2 − vj , between the respective
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pairs of non-adjacent vertices, with respect to c. As the vertices v, ui; 1 ≤ i ≤ t, induce a
clique of order t+ 1 in SF 1,t,t, for any t ≥ 4, the result follows. □

A closed sunflower graph CSF1,t,t; t ≥ 3, is obtained from the sunflower graph SF1,t,t by
making each ui; 1 ≤ i ≤ t, adjacent to ui+1 and ui−1, where the suffixes are taken modulo
t.

Theorem 2.3. For t ≥ 4, χrd(CSF1,t,t) = ⌈ t
2⌉+ 3.

Proof. Let CSF1,t,t; t ≥ 4, be a closed sunflower graph with V (CSF1,t,t) = {v} ∪ {vi :
1 ≤ i ≤ t} ∪ {ui : 1 ≤ i ≤ t} and E(CSF1,t,t) = {vvi : 1 ≤ i ≤ t} ∪ {vivi+1 : 1 ≤ i ≤
t} ∪ {viui : 1 ≤ i ≤ t} ∪ {uivi+1 : 1 ≤ i ≤ t} ∪ {uiui+1 : 1 ≤ i ≤ t}, where the suffixes are
taken modulo t. Consider a coloring c : V (CSF1,t,t) → {cr : 1 ≤ r ≤ ⌈ t

2⌉ + 3} such that
c(v) = c2,

c(vi) =


c⌈ i

2 ⌉+3, i ≡ 1 (mod 2), 1 ≤ i ≤ t− 1;

c3, i = t, when t ≡ 1 (mod 2);

c1, i ≡ 0 (mod 2), 1 ≤ i ≤ t.

and

c(ui) =



c2, i ≡ 1 (mod 2), 1 ≤ i ≤ t− 1;

c3, i ≡ 0 (mod 2), 1 ≤ i ≤ t− 2;

c⌈ t
2 ⌉+3, i = t− 1, when t ≡ 1 (mod 2);

c2, i = t− 1, when t ≡ 0 (mod 2);

c1, i = t, when t ≡ 1 (mod 2);

c3, i = t, when t ≡ 0 (mod 2).

When t is even, every vi, vi+1, ui; i ≡ 1 (mod 2), dominate the color class {vi}, and the
vertices ui; i ≡ 0 (mod 2), dominate the color class {vi+1}, for all 1 ≤ i ≤ t, where we take
t+ j = j, with respect to c. When t is odd, every vi, vi+1, and ui; i ≡ 1 (mod 2), dominate
the color class {vi}, for all 1 ≤ i ≤ t− 2. The vertices vi, ui; i = t− 1, t, dominate the color
class {ut−1}, with respect to c.

With respect to c, there exists a rainbow path between any two non-adjacent vertices
vi, vj , v, ui of CSF1,t,t, owing to the fact that d(vi, vj) ≤ 2, d(v, ui) = 2, for all 1 ≤ i ̸= j ≤ t.
As d(ui, uj) = 4, for all j ≥ i+4, and 1 ≤ i ≤ t, where the suffixes are taken modulo t, the
path ui − vi − v− vj − uj , when i ≡ 1 (mod 2), and the path ui − vi+1 − v− vj − uj , when
i ≡ 0 (mod 2), are rainbow paths of length 4 between ui, uj , for any 1 ≤ i ̸= j ≤ t, with
respect to c. Hence, χrd(CSF1,t,t) ≤ ⌈ t

2⌉+ 3, for all t ≥ 4.
In the closed sunflower graph CSF1,t,t, any ui can dominate a color class of cardinality

at most 2; that is, every ui can dominate a color class only when it is one of the following
forms : {ui}, {vi},{vi+1}, {ui−1, ui+1}, {ui−1, vi+1}, or {vi−1, ui+1}. If every ui must dom-
inate a color class of cardinality 2, with respect to some dominator coloring of CSF1,t,t,
we require at least t colors in such a dominator coloring, as such a color class can be either
{ui−1, vi+1}, or {vi−1, ui+1}.

If each ui dominates a color class of cardinality 1; the color class is either {ui}, {vi} or
{vi+1}. However, if each ui dominates a distinct color class of cardinality 1 in a domina-
tor coloring of CSF1,t,t, we use at least t colors in such a coloring. Hence, a dominator
coloring such that ui and ui+1, for each i ≡ 1 (mod 2), dominating the same color class is
an optimal one. However, as these ⌈ t

2⌉ colors cannot be given to any other vi and v, we
need at least two colors in addition to it. However, the ⌈ t

2⌉ + 1 assigned to vi’s cannot
be assigned to ui’s, it can be seen that we need at least ⌈ t

2⌉ + 3 colors in any dominator
coloring of CSF1,t,t, completing the proof. □
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Proposition 2.3. For t ≥ 4, χrd(CSF 1,t,t) = t+ 1.

Proof. Let CSF 1,t,t be the complement of a closed sunflower graph CSF 1,t,t constructed
as given in Theorem 2.3. The coloring c : V (CSF 1,t,t) → {c1, c2, . . . , ct+1} such that
c(vi) = c(ui) = ci, for 1 ≤ i ≤ t, and c(v) = ct+1 is its rainbow dominator coloring using
t+ 1 colors, owing to the same arguments mentioned in Proposition 2.2, and the fact that
any two non-adjacent ui’s have a path of length 2 through v in CSF 1,t,t.

Based on the definition of a closed sunflower graph CSF1,t,t, it can be seen that the
graph CSF 1,t,t contains a clique of order ⌊ t

2⌋ + 1, induced by the vertices v and ui; i ≡
0 (mod 2), 1 ≤ i ≤ t. For every 1 ≤ i ≤ t, as each ui is adjacent to the vertices
vi, vi+1, ui+1, ui−1 in CSF1,t,t, any color assigned to a vertex ui in a proper coloring of
CSF 1,t,t can be assigned only to vi or to vi+1, as vi+1 and ui−1 are adjacent in CSF 1,t,t,
and vi is adjacent to v in CSF 1,t,t.

In addition to this, as the vi’s and ui’s induce a cycle in CSF1,t,t, it can be observed
that any color can be assigned to at most two vertices of CSF 1,t,t, in any of its proper
coloring; thereby proving that the coloring c of CSF 1,t,t given above with t + 1 is the
required optimal rainbow coloring of CSF 1,t,t, for any t ≥ 4. □
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FIGURE 3 χrd-coloring of a closed sunflower graph and its complement.

A prism graph of order 2t, denoted by Yt, is obtained by making every vertex vi of a cycle
Ct = v1 − v2 − . . .− vt − v1 adjacent to the vertex ui of a cycle C ′

t = u1 −u2 − . . .−ut −u1.

Theorem 2.4. For t ≥ 4, χrd(Yt) = t.

Proof. Let Yt; t ≥ 4, be a prism graph with V (Yt) = {vi, ui : 1 ≤ i ≤ t} and E(Yt) = {viui :
1 ≤ i ≤ t}∪{vivi+1 : 1 ≤ i ≤ t}∪{uiui+1 : 1 ≤ i ≤ t}, where the suffixes are taken modulo
t. As a rainbow path between any two vertices of Yt is same as the rainbow path between
them in a cycle Ct, we need at least χrd(Ct) colors in a rainbow dominator coloring of Yt.
Hence, the vertices of one of the two cycles of order t, say v1−v2− . . .−vt−v1, are colored
with χrd(Ct) colors. Now, to obtain a dominator coloring of the other cycle of order t in
Yt, we need at least ⌈ t

3⌉ colors in addition to the χrd(Ct) colors used to color the vertices
vi; 1 ≤ i ≤ t, of Yt. Hence, χrd(Yt) ≥ χrd(Ct) + ⌈ t

3⌉.
As it has been proved in [13] that χrd(Ct) = χ(Ct), when t ≤ 5, χrd(Ct) = ⌊ t

2⌋ + ⌈ t
6⌉,

when t ≥ 5, t ≡ 1 (mod 6), and χrd(Ct) = ⌈ t
2⌉ + ⌈ t

6⌉, when t ≥ 5, t ≡ 0, 2, 3, 4, 5 (mod 6),
it can be observed that χrd(Yt) ≥ t, for all t ≥ 3.
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To prove the result, we obtain a coloring pattern of Yt in th following cases, based on the
value t.
Case 1: When t ≡ 0 (mod 6), consider the coloring c : V (Yt) → {c1, c2, . . . , ct} such that
for 1 ≤ i ≤ ⌊ t

2⌋, c(vi) = ci,

c(v⌊ t
2 ⌋+i) =

{
ci, i ≡ 0, 1 (mod 3);

c⌊ t
2 ⌋+⌈ i

3 ⌉
, i ≡ 2 (mod 3).

and for 1 ≤ i ≤ t,

c(ui) =


c(vi+2), i ≡ 1 (mod 3);

c(vi+1), i ≡ 0 (mod 3);

c⌈ t
2 ⌉+⌈ t

6 ⌉+⌈ i
3 ⌉
, i ≡ 2 (mod 3).

This is a dominator coloring of Yt; t ≡ 0 (mod 6), as the vertices ui−1, ui, ui+1 and vi−1, vi,
vi+1, for 1 ≤ i ≤ t, when i ≡ 2 (mod 3), dominate the color class {ui} and {vi}, respec-
tively.
Case 2: When t ≡ 1 (mod 6), let c′ : V (Yt) → {c1, c2, . . . , ct} be a coloring such that
c′(vi) = c(vi), for all 1 ≤ i ≤ t − 1, c′(vt) = c⌊ t

2 ⌋+⌈ t
3 ⌉, and for 1 ≤ i ≤ t − 2, c′(ui) = c(ui),

c′(ut−1) = c1, and c′(ut) = c4, where c is a dominator coloring of Yt; t ≡ 0 (mod 6), as
defined in Case 1.

The coloring c′ is a dominator coloring of Yt; t ≡ 1 (mod 6), as c is a dominator coloring
of Yt; t ≡ 0 (mod 6), where the vertices ui−1, ui, ui+1 and vi−1, vi, vi+1, for 1 ≤ i ≤ t − 2,
when i ≡ 2 (mod 3), dominate the color class {ui} and {vi}, respectively, and the vertices
ut, vt dominate the color class {vt}.
Case 3: When t ≡ 2 (mod 6), consider the coloring c∗ : V (Yt) → {c1, c2, . . . , ct} such that
c∗(vt) = c⌈ t

2 ⌉+⌈ t
3 ⌉, for 1 ≤ i ≤ ⌊ t

2⌋, c∗(vi) = ci,

c∗(v⌊ t
2 ⌋+i) =

{
ci, i ≡ 0, 1 (mod 3);

c⌊ t
2 ⌋+⌈ i

3 ⌉
, i ≡ 2 (mod 3).

for 1 ≤ i ≤ ⌊ t
2⌋ − 2,

c∗(ui) =


c(vi+1), i ≡ 0 (mod 3);

c(vi+2), i ≡ 1 (mod 3);

c⌈ t
2 ⌉+⌈ t

6 ⌉+⌈ i
3 ⌉
, i ≡ 2 (mod 3).

for j = ⌊ t
2⌋+ i, when 1 ≤ i ≤ ⌊ t

2⌋ − 2,

c∗(uj) =


c(vj+1), i ≡ 0 (mod 3);

c(vj+2), i ≡ 1 (mod 3);

c⌈ t
2 ⌉+⌈ t

6 ⌉+⌈ j
3 ⌉
, j ≡ 2 (mod 3).

and c∗(ut) = c∗(u⌊ t
2 ⌋) = c4, and c∗(ut−1) = c∗(u⌊ t

2 ⌋−1) = c1.
This is a dominator coloring of Yt, as the vertices ui−1, ui, ui+1 and vi−1, vi, vi+1, for

1 ≤ i ≤ ⌊ t
2⌋ − 2, when i ≡ 2 (mod 3), dominate the color class {ui} and {vi}, respectively,

with respect to c. Also, the vertices uj−1, uj , uj+1 and vj−1, vj , vj+1, where j = ⌊ t
2⌋ + i,

for 1 ≤ i ≤ ⌊ t
2⌋ − 2, and when i ≡ 2 (mod 3), dominate the color class {uj} and {vj},

respectively, in c. The vertices vt, ut dominate {vt} and v⌊ t
2 ⌋, u⌊ t

2 ⌋ dominate {v⌊ t
2 ⌋}, in this

coloring.
Case 4: For t ≡ 3 (mod 6), let c′′ : V (Yt) → {c1, c2, . . . , ct} be a coloring such that for all
1 ≤ i ≤ t−1, c′′(vi) = c∗(vi), and c′′(ui) = c∗(ui), c′′(ut) = c∗(vt−1) and c′′(vt) = ct, where
c∗ is a dominator coloring of Yt; t ≡ 2 (mod 6), as defined in Case 3.
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This is a dominator coloring of Yt; t ≡ 3 (mod 6), as all vertices except vt and ut,
dominate the color classes, as explained in Case 3, and the vertices vt and ut dominate the
color class {vt}.
Case 5: When t ≡ 4 (mod 6), c̄ : V (Yt) → {c1, c2, . . . , ct} such that for 1 ≤ i ≤ ⌊ t

2⌋,
c̄(vi) = ci,

c̄(v⌊ t
2 ⌋+i) =

{
ci, i ≡ 0, 1 (mod 3);

c⌊ t
2 ⌋+⌈ i

3 ⌉
, i ≡ 2 (mod 3).

for 1 ≤ i ≤ ⌊ t
2⌋ − 1,

c̄(ui) =


c(vi+1), i ≡ 0 (mod 3);

c(vi+2), i ≡ 1 (mod 3);

c⌈ t
2 ⌉+⌈ t

6 ⌉+⌈ i
3 ⌉
, i ≡ 2 (mod 3),

for j = ⌊ t
2⌋+ i, when 1 ≤ i ≤ ⌊ t

2⌋ − 1,

c̄(uj) =


c(vj+1), i ≡ 0 (mod 3);

c(vj+2), i ≡ 1 (mod 3);

c⌈ t
2 ⌉+⌈ t

6 ⌉+⌈ j
3 ⌉
, j ≡ 2 (mod 3),

where t+ 1 = 1, and c̄(u⌊ t
2 ⌋) = c4, c̄(ut) = ct.

Based on the domination properties of the vertices mentioned in Case 3, it follows that
c̄ is a dominator coloring of Yt, when t ≡ 4 (mod 6).
Case 6: For t ≡ 5 (mod 6), let c′′′ : V (Yt) → {c1, c2, . . . , ct} be a coloring such that for all
1 ≤ i ≤ t− 1, c′′′(vi) = c̄(vi), and c′′′(ui) = c̄(ui), c′′′(ut) = c4 and c′′′(vt) = ct, where c̄ is a
dominator coloring of Yt; t ≡ 4 (mod 6), as defined in Case 5.

This is a dominator coloring of Yt; t ≡ 5 (mod 6), as all vertices except vt and ut,
dominate the color classes, as explained in Case 5, and the vertices vt and ut dominate the
color class {vt}.

In all the cases, the coloring c of Yt, there exists a rainbow path between the vertices
vi, vj , as the vertices of the cycle vi − v2 − . . . − vt − v1 are given the rainbow dominator
coloring of Ct. Also, this guarantees the existence of a rainbow path between the vertices
ui, uj , and ui, vj , for any 1 ≤ i ̸= j ≤ t, as the vertices of the vi − vj path are internal
vertices of the ui, uj , and ui, vj , path in Yt. This completes the proof. □

Proposition 2.4. For t ≥ 3, χrd(Y t) = t.

Proof. In the complement Y t of a prism graph Yt described in Theorem 2.4, each vi is
adjacent to all the vertices of Y t, except ui, vi+1, vi−1, for all 1 ≤ i ≤ t, where t + j = j,
for any 1 ≤ j ≤ t − 1. Hence, any color can be assigned to at most two vertices, either
vi, vi+1, or ui, ui+1, or vi, ui, for 1 ≤ i ≤ t, in any proper coloring of Y t, where the suffixes
are taken modulo t. Therefore, χrd(Y t) ≥ t.

The coloring c of Y t such that c(vi) = c(ui) = ci, for 1 ≤ i ≤ t, is its rainbow dominator
coloring, as there exists a path of length 2 between any pair of non-adjacent vertices, vi, ui

or vi, vi+1 or ui, ui+1 of Y t through the vertices ui+2, ui+3 and vi+3, respectively; proving
the result. □

Let Ct = v1−v2− . . .−vt−v1 and C ′
t = u1−u2− . . .−ut−u1 be two cycles. A web graph

of order 3t, denoted by Wbt, is a graph obtained by making ui ∈ V (C ′
t) and vi ∈ V (Ct)

adjacent, and adjoining a vertex wi to each vi.

Proposition 2.5. For t ≥ 3, χrd(Wbt)

{
t+ 2, when t is even;
t+ 3, when t is odd.



362 S. Madhumitha, and S. Naduvath

Proof. In a web graph Wbt; t ≥ 3, with V (Wbt) = {ui : 1 ≤ i ≤ t} ∪ {vi : 1 ≤ i ≤ t} ∪ {wi :
1 ≤ i ≤ t}, let wi be the pendant vertex adjacent to vi’s, for all 1 ≤ i ≤ t, that form a cycle
of order t, and let ui’s be the vertices of a cycle of order t such that each ui is adjacent to
the corresponding vi’s. Here, as there are t support vertices vi; 1 ≤ i ≤ t, we require at
least t colors in any dominator coloring of Wbt. As these t colors cannot be assigned to
any other vertex other than the support vertices of Wbt, to color the ui’s and wi’s we need
at least χ(Ct) colors; yielding χrd(Wbt) ≥ t+ χ(Ct).

The coloring c : V (Wbt) → {c1, c2, . . . , ct+χ(Ct)} such that c(vi) = ci; 1 ≤ i ≤ t, c(wi) =
c(ui) = c1; 1 ≤ i ≤ t − 1, i ≡ 1 (mod 2), c(wt) = c(ut) = c3; t ≡ 1 (mod 2), and c(wi) =
c(ui) = c2; 1 ≤ i ≤ t, i ≡ 0 (mod 2), is a rainbow dominator coloring of Wbt with t+χ(Ct)
colors, as the vertices ui, vi, wi dominate the color class {vi}, for all 1 ≤ i ≤ t, in c, and
between any wi and wj , or ui and uj , or wi and uj , or vi and vj , there exists a rainbow path
vi − vi+1 − . . .− vj−1 − vj , which are all given unique colors in c. Hence the result. □

Proposition 2.6. For t ≥ 3, χrd(Wbt) = t+ ⌈ t
2⌉.

Proof. For t ≥ 3, let Wbt be a web graph with V (Wbt) = {ui : 1 ≤ i ≤ t} ∪ {vi : 1 ≤
i ≤ t} ∪ {wi : 1 ≤ i ≤ t} as described in Proposition 2.5. Define a coloring c : V (Wbt) →
{c1, c2, . . . , ct+⌈ i

2 ⌉
} such that c(wi) = c(vi) = ci, for 1 ≤ i ≤ t, and c(ui) = c(ui+1) = ct+⌈ i

2 ⌉
,

for 1 ≤ i ≤ t, when i ≡ 1 (mod 2).
This is a rainbow coloring of Wbt, as any two non-adjacent ui’s have a path of length

2 through some wj , and there exists a ui − wi+1 − vi path between any ui and vi. Also,
between two non-adjacent vi, vj , there exists a path vi−wi∗ −vj , where 1 ≤ i ̸= j ̸= i∗ ≤ t.
In addition to it, each ui; 1 ≤ i ̸= j ≤ t, dominates the color class {vj , wj}, every wi

dominates the color class {uj , uj+1}, and every vi dominates the color class {wi, wj+2},
with respect to c. Hence, c is a rainbow coloring of Wbt with t+⌈ t

2⌉ colors. As the vertices
wi; 1 ≤ i ≤ t, and uj ; j ≡ 0 (mod 2), for 1 ≤ j ≤ t, form a clique of order t+ ⌊ t

2⌋ in Wbt, it
follows that χrd(Wbt) ≥ t+ ⌊ t

2⌋.
If t is even, we are done. If t is odd, the vertex ut in any dominator coloring of Wbt

must be assigned a unique color, as it can either be assigned the color assigned to the
vertices u1, ut−1, or vt. However, as the colors assigned to these vertices are assigned to
one more vertex, to which ut is adjacent to, such an assignment of colors is not possible.
Hence, χrd(Wbt) = t+ ⌈ t

2⌉, when t is odd. □

Based on Proposition 2.5, and Proposition 2.6, the rainbow dominator chromatic num-
ber of a sunlet graph, and its complement is given in the following result, where a sunlet
graph of order 2t, denoted by Slt, is obtained by adjoining a vertex to every vertex of a
cycle Ct.

Proposition 2.7. For t ≥ 3, χrd(Slt) = t+ 1, and χrd(Slt) = t.

Proof. As every vertex of a cycle Ct in a sunlet graph Slt is a support vertex, it has to have
a unique color in any of its dominator coloring. Therefore, any path between two vertices
of this cycle Ct in Slt is a rainbow path in this coloring. Also, as any path between two
pendant vertices of Slt is also through the vertices of Ct in Slt, it can be observed that
χrd(Slt) = t+ 1.

All pendant vertices of Slt induce a clique in Slt, and every pendant vertex of Slt is
not adjacent to only its support vertex of Slt in the graph Slt. Hence, any color can be
assigned only to at most two vertices of Slt, in any of its proper coloring.

A proper coloring of Slt that assigns a color ci for every pendant vertex and its corre-
sponding support vertex in Slt, as given in the coloring c of Wbt in Proposition 2.6 is an
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optimal rainbow dominator coloring of Slt, owing to Proposition 2.6. Hence, χrd(Slt) =

t+ 1, and χrd(Slt) = t, for all t ≥ 3. □

3. CONCLUSION

In this article, we investigated the rainbow dominator coloring of some cycle related
graphs, and their complements, by obtaining their rainbow dominator coloring pattern
and the corresponding chromatic number. As this is just a beginning of the study on this
topic, it offers wide avenues for future explorations that includes obtaining bounds for
the rainbow dominator chromatic number of graphs, determining the rainbow domina-
tor coloring of several classes of graphs and its derived graphs, and addressing several
realisation problems.
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