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On Strictly Convex Linear Metric Spaces

HARPREET K. GROVER!, SHELLY GARG?, AND T.D.NARANG?3

ABSTRACT. Ahuja, Narang and Trehan extended the concept of strict convexity from normed linear spaces to
linear metric spaces [G. C. Ahuja, T. D Narang, and S. Trehan. Best approximation on convex sets in metric linear
spaces. Math. Nachr. 78 (1977), no.1, 125-130] and since then, various other forms of strict convexity in linear
metric spaces have emerged in the literature. In this article, we provide a brief overview of the existing literature
on various forms of strict convexity in linear metric spaces, introduce some new forms of strict convexity in
linear metric spaces, and examine their connections. The article also contains some results on the uniqueness of
best approximation, the convexity of Chebyshev sets in strictly convex linear metric spaces, characterizations of
strictly convex linear metric spaces in terms of best approximation and some other properties. We also mention
some related open problems in the article.

1. INTRODUCTION

A normed linear space (X, ||.||) is called strictly convex [9] if its unit sphere does not
contain nontrivial line segments. Strict convexity in normed linear spaces is known to be
equivalent to the following [15]:

(i) A normed linear space (X, ||.||) is strictly convex if and only if = # y, ||z|| = ||y|]| = 1
together imply ||Z5%[| < 1.
(ii) A normed linear space (X, ||.||) is strictly convex if and only if z # y, [|z[| = |[y[| = 1

together imply || Az + (1 — A)y|| < 1 forevery 0 < A < 1.

Clarkson [8] and Krein [3] were the first to introduce and investigate strictly convex
normed linear spaces independently. The notion was extended to linear metric spaces
by Ahuja et al. [2] in order to analyse the uniqueness of best approximations in such
spaces. Subsequently, various other forms of strict convexity in linear metric spaces were
proposed and studied by Sastry et al. ([26], [27], [28]), Vasil’ev [33] and others. In this
paper, we explore the extant literature on various forms of strict convexity in linear metric
spaces, propose some new forms of strict convexity and analyse their inter connections.
We discuss some results on the uniqueness of best approximation and on the convexity of
Chebyshev sets in strictly convex linear metric spaces. We also provide characterizations
of strictly convex linear metric spaces in terms of uniqueness of best approximation and
some other properties. Some unresolved problems in the related areas have also been
mentioned in the paper.

2. PRELIMINARIES

In this section, we establish our terminology and recall some definitions that are needed
in the sequel.

Following Wilansky [35], by a linear metric space (X, d), we mean a real linear metric
space of dimension at least one such that the metric d is translation invariant i.e. d(z +
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z,y+z) =d(z,y), z,y, 2 € X and the linear operations are continuous with respect to d ;
B(z,r) = {y € X : d(z,y) < r} is an open ball with center « and radius > 0; B[z, r] =
{y € X : d(z,y) < 1} is a closed ball with center = and radius r; S[z,7] = {y € X :
d(z,y) = r} is a sphere with center x and radius 7; {(1 = XNz + Ay : 0 < A <1} = [z,y]isa
closed line segment in X; {(1 — ANz + Ay : 0 < A < 1} = (z,y) is an open line segment in
X.For AC X, z € X,wedefine d(z, A) = inf{d(z,y) : y € A} and for two subsets A and
Bof X, dist (A, B) = inf{d(a,b) : a € A,b € B}. Forz € X, Pa(z) = {y € X : d(z,y) =
d(z, A)} is the set of all best approximations to = in A. The set A is called (¢) an existence
set or a proximinal set if P4(x) # ¢ for each x € X, (i) a uniqueness set or a semi-Chebyshev
set if P4 (z) is atmost singleton for each = € X, (i) a Chebyshev set if P4(z) is a singleton
for each x € X, (iv) a convex set if [z,y] C A for all z,y € A. The mapping which takes
each element € X to the set P4(z) is called metric projection.

For any two sets A and B of a metric space (X,d), a € A and b € B are said to be
proximinal points if d(a,b) = dist (A, B). The pair (4, B) is said to be a proximinal pair or
distance pair [19], if there exists a pair (a,b) € A x B of proximinal points. If there exists
at most one pair of proximinal points for (A4, B), then the pair (A, B) is called a semi-
Chebyshev pair and if the pair (A4, B) is proximinal as well as semi-Chebyshev, then it is
called a Chebyshev pair. It is clear that when one of the two sets A and B is a singleton, then
the problem of finding proximinal points reduces to the problem of best approximation.

A set M in a metric space (X, d) is said to be
(i) approximatively compact [1] if for every x € X and every sequence (y,,) in M such that
{d(z, yn)} converges to d(x, M), there exists a subsequence (y,, ) of (y,,) converging to an
element of M.

(if) spherically compact [2] if for each & € X\ M, there is a real number r > d(x, M) such
that the set {y € M : d(z,y) < r} is compact.
(iif) boundedly compact [22] if every bounded sequence in M has a convergent subsequence.

The metric d of a linear metric space (X, d) is said to be strictly monotone [33] if z # 0,0 <
t < 1imply d(tz,0) < d(z,0), equivalently, for 0 < a < 3, we have d(ax,0) < d(fz,0),
and d is said to be absolutely monotone if d(tz,0) < d(x,0) whenever |t| < 1.

If M is a closed linear subspace of a linear metric space (X, d), then the quotient space
X/M is also a linear metric space under the metric d defined by
dlx+ M,y + M) :=d(x —y, M) := Inf {d(x —y,m) : m € M} [11].

An element z in a linear metric space (X, d) is said to be algebraically between two distinct
elements x and y of X if z = ax + (1 — a)y for some a € (0, 1), and =z € X is called metrically
between x and y if d(x,y) = d(z,z) + d(z,y). z is called algebraic mid-point of x and vy if
z =Y and z is called a metric mid-point of x and y if d(z, 2) = d(z,y) = 3d(z,y) [12].

A pair (A, B) of non-empty subsets A, B of a metric space (X, d) is said to have (d)—
property [24] if d(z1,v1) = d(4, B), d(x2,y2) = d(A, B) imply d(x1, z2) = d(y1,y2)-

A metric space (X, d) is said to be round [29] if closure of every open ball in X is the
corresponding closed ball, and it is said to be sleek [30] if interior of every closed ball is the
corresponding open ball.

A mapping f defined on a metric space (X, d) is called nonexpansive [21]if d(f (x), f(y)) <
d(z,y) forall z,y € X.

3. DIFFERENT FORMS OF STRICT CONVEXITY IN LINEAR METRIC SPACES

We first recall the notion of strict convexity in linear metric spaces introduced by Ahuja
etal. [1].

A linear metric space (X, d) is said to be strictly convex if for any r > 0 and z,y €
X, d(z,0) < r,d(y,0) < rimply d(*:%,0) < r unless z = y.
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This notion of strict convexity was called S.C.Iin [27], in which S.C.II, S.C.Ill and S.C.IV
were introduced and studied. It is to be noted that all these forms of strict convexity are
equivalent in normed linear spaces, whereas, it is not so in linear metric spaces. Before we
define these notions and discuss their relationships in linear metric spaces, we reformulate
the notion S.C.I as below.

A linear metric space (X, d) is said to be strictly convex if d(Ax+ (1 — )y, 0) < Ad(z,0)+
(1 —XN)d(y,0) forall z,y € S[0, 7],z #yand 0 < A < 1.

Let us call this notion as S.C.V for now. We shall show that, both the notions S.C.I and
S.C.V, are equivalent. To start with, we recall all the forms of strict convexity known in
linear metric spaces and discuss their inter-relationships.

A linear metric space (X, d) is said to satisfy
S.CII [27] if for any » > O and z,y € X,z # y,d(z,0) = r,d(y,0) = r imply B(0,7) N
(x,y) # ¢.

S.C.III [27] if for any r > 0,z # y; x,y € B[0,7] imply (z,y) C B(0,r).

S.CIV[27]if z # 0,y # 0,d(z + y,0) = d(x,0) + d(y,0) imply y = tz for some ¢t > 0.

The notion S.C.IV was called pseudo strict convexity in [28]. It was shown in [27] that
S.C.I, S.C.II and S.C.III are all equivalent and so we shall call (X, d) strictly convex if it
has any (and hence all) of these S.C.I or S.C.II or S.C.IIIl. Whereas, S.C.I and S.C.IV are
equivalent in normed linear spaces [7], it was shown in [27] that for linear metric spaces
S.C.IV need not imply S.C.I It is not known whether S.C.I imply S.C.IV in general but it
is true on the real line.

It is known [27] that strictly convex linear metric spaces inherit many of the geomet-
ric properties enjoyed by normed linear spaces. It was shown in [27] that in a non-zero
strictly convex linear metric space, every half-ray emanating from the center of a ball
passes through its surface when the surface is non-empty ([27, Corollary 1.6]), and closed
balls with non-empty surface are compact if the space is finite dimensional ([27, Theorem
1.6]).

For strictly convex linear metric spaces, we have

Theorem 3.1. [26] Let (X, d) be a strictly convex linear metric space and x # 0 € X. Define
fz : RT = RY by f,(t) = d(tz,0). Then f, is continuous and strictly increasing.

A linear metric space (X, d) has property (B.C.) [26] if » > 0,d(z, 0) = d(y,0) = r imply
d(ZHL,0) <r,z,y € X.

A linear metric space has (B.C.) if and only if all balls in it are convex [26]. Moreover, if
(X, d) has (B.C.), then the function f, is an increasing function. Obviously, strictly convex
linear metric spaces have (B.C.) and therefore in a strictly space, all balls are convex ( [26,
Corollary 1.5]). However, the converse is not true [26, Example 1.3].

Given two linear metrics on a linear space X, their Euclidean combination on X x X
is a linear metric. While the Euclidean combination of two strictly convex norms on X is
strictly convex on X x X, it need not be so in the case of linear metrics as shown in the
following example:

Example 3.1. [27] Consider the strictly convex linear metric space (R, d), where d(s,t) = |s —
t|2,s,t € R. Then d*((s1,t1), (s2,t2)) = [|s1 — s2| + |t1 — t2|]2 is the Euclidean combination
of d with itself and is a linear metric on R x R but is not strictly convex, as d*((1,0), (0,0)) =
d*((0,1),(0,0)) = 1and d*((3, 3),(0,0)) = 1

272

The following example shows that S.C.IV need not imply S.C.I
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Example 3.2. [27] Let f : R — R be defined by

t, 0<t<l1
t =
®) {L t>1

and d be the linear metric on R defined by d(0,t) = |f(t)| for all t € R. Then (R, d) has (B.C.)
and S.C.IV but not S.C.I
The following example shows that S.C.IV need not imply (B.C.)
Example 3.3. [27] Let f : R — R be defined by
0<t<1

t,
ﬂﬂ{;u+b,t>1

and d be the linear metric on R defined by d(0,t) = |f(¢t)| forall t € R. Then (R,d) has S.C.IV
but not (B.C.).

While on the real line, 5.C.I = S.C.1V, the following problem is still open:
Problem 1: Does S.C.Iimply S.C.IV in general?
We show that S.CI = S.C.V.

Theorem 3.2. If a linear metric space has S.C.I, then it has S.C.V.

Proof. Let (X, d) be a linear metric space satisfying S.C.I and z,y € X be such that z,y €
S[0,r],z # y,r > 0. Let0 < ¢t < 1. Since 0 < ¢t < 1, there exists a § > 0 such that
O<t—d0<t<t+éd<l.Letz=(t—-9d)z+(1—-t+0)yandw = (t+d)x+ (1 -1t —0)y.
Since z,y € B[0,r] and B0, ] is convex as X has S.C.I, we have z, w € B[0,r]. Consider

d(tz + (1 - t)y,0) :d(”w,o)

2
<rbyS.C.1

=tr+(1—1t)r
=td(z,0) + (1 — t)d(y, 0).
Therefore, d(tx + (1 — t)y,0) < td(x,0) + (1 — t)d(y,0) and so (X, d) has S.C.V. O

Problem 2: Is there any hierarchical relationship between the properties S.C.IV and S.C.V?
Remark 1: Since S.C.I, S.C.II and S.C.III are equivalent, it follows that S.C.Il = S.C.V
and S.C.II = S.C.V.
Remark 2: The natural question whether S.C.V implies S.C.I has the positive answer, as,
S.C.V clearly implies S.C.II and S.C.IT implies S.C.I by Theorem 1.8 [26].
Remark 3: A linear metric space has S.C.V, if for each z # 0 € X, X € (0,1), we have
d(A\x,0) < Ad(z,0). This can be seen as under.
Let z,y € X be such that d(z,0) = r,d(y,0) = r,x # y,r > 0.
Consider
dAz + (1 = N)y,0) <d(Az,0) +d((1 — N)y,0)
< AMd(z,0) + (1 = MN)d(y,0)
i.e. d Az + (1 —N)y,0) < Ad(z,0)+ (1 —N)d(y,0).

Remark 4: Proceeding as in Remark 3, we can show that a linear metric space (X, d) has
S.Clif foreachz # 0 € X, € (0,1) implies d(Az,0) < Ad(z,0).
Remark 5: Consider the following stronger form of 5.C.V:

A linear metric space (X, d) has S.C.VIif d(Ax + (1 — A)y,0) < Ad(x,0) + (1 — A)d(y,0)
forallz,y € X,z Zyand 0 < )\ < 1.
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Problem 3: Clearly S.C.VI implies S.C.I, S.C.II, S.C.III and S.C.V. It will be interesting to
know whether the converses hold, and, also its relationship with S.C.IV.

A closed ball BJ0, r] in a linear metric space (X, d) is said to be strictly convex (Vasilev
[33] called such balls as strongly convex) if for any distinct z,y € B[0, ] and any A € (0,1),
the point (1 — M)z 4+ Ay belongs to the topological interior of B0, r].

The strict convexity of closed balls in linear metric spaces was introduced by Albinus
[4] and it was linked to the strict convexity of the space by Vasilev [33]. Albinus [4] called
a linear metric space “strictly convex’ if all its closed balls are strictly convex.

Concerning the compactness of closed balls in strictly convex linear metric spaces, we
have

Theorem 3.3. [27] Let (X, d) be a finite-dimensional strictly convex linear metric space such that
S[0,7] # ¢, then B0, r] is a compact set.

Concerning the connectedness of the surface of closed balls in strictly convex linear
metric spaces, we have

Theorem 3.4. [27] In a strictly convex linear metric space of dimension two or more, the surface
of every closed ball is arcwise connected.

This result need not be true if strict convexity is replaced by ball convexity.

Example 3.4. [27] Let d be the metric on R? defined by d((z,y), (0,0)) = max{ lfl‘wl’ lyl}.
Then (R?, d) is a linear metric space which has (B.C.) but for r > 1, S[0, r] is neither compact nor

arcwise connected.

The following example shows that the distance between two points can be the sum of
their distances from an intermediate point but it need not be so for every intermediate
point even in a strictly convex linear metric space.

Example 3.5. [27] Define f : R — R be by

2t
sy == V=0
£ t>1

and d be the linear metric on R defined by d(s,t) = f|s — t| for all s,t € R. Then (R,d) is a
strictly convex linear metric space. We have

7 7
It is well known that a normed linear space is strictly convex if and only if the surface
of any closed ball does not contain any line segment on its surface. The following char-
acterization of linear metric spaces show that this is true in case of linear metric spaces
too.

Theorem 3.5. [26] Let (X, d) be a linear metric space. Then the following are equivalent:
(1) r>0,d(z,0) =r =d(y,0) and x # y imply B(0,r) N (x,y) # ¢

(1) (X, d) is strictly convex.

(#it) r > 0,z # y,x,y € B[0,r] imply (z,y) C B(0,r)

From the implication (i7) = (4i7) of Theorem 3.10, we have the following;:

Corollary 3.1 ([26], Corollary 2.3). Let (X, d) be a linear metric space. Then the following are
equivalent:

(i) X is strictly convex.

(i) d (Z52,0) < r forany x # y € X with d(z,0) = r = d(y,0), where r > 0 is any real
number.
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Consider the following form of strict convexity:

A linear metric space (X, d) has S.C.VIlif for all z,y € X,z # y,d(z,0) = d(y,0) = r,
we have d(Az + (1 — A)y,0) < r forall A € (0, 1). This form of strict convexity in normed
linear spaces is known in the literature (A normed linear space X is strictly convex if for
allz,y € X,z # vy, ||z|| = ||ly|]| = 1, we have ||Ax + (1 — N)y|| < 1 forall XA € (0,1)-([8], [15,
p- 426]). Concerning S.C.VII, we have the following two results:

Theorem 3.6. The following assertions are equivalent:

(1)(X,d) has S.C.VIL

(ii) Ifx,y € X, 2 # y,d(z,0) = d(y,0) = r, then d(*E£,0) < r.
(#91) If v,y € B[0,r],x # y then (x,y) C B(0,r).

Proof. (i) = (i) is obvious.

(19) = (iii) follows from Theorem 3.10.

(i1)) = (i) Letz,y € X,z # y,d(z,0) = d(y,0) = r. Then z,y € B[0,r] and so by the
hypothesis, (z,y) C B(0,7) and hence (X, d) has S.C.VII O

Problem 4: It will be interesting to know the relationship of S.C.VII with other forms of
strict convexity. It appears that in the light of Theorems 3.10 and 3.12, S.C.I and S.C.VII
are equivalent. In fact, this is true and it follows from Corollary 3.11 and Theorem 3.12.
This assertion is further strengthened by the following result:

Theorem 3.7. A linear metric space (X,d) satisfies S.C.VII if and only if S, = {z € X :
d(z,0) = r} contains no nontrivial line segments.

To prove this theorem, we shall be using the following lemma:

Lemma 3.1 ([15], p.175). Suppose that C' is a convex subset of a linear topological space X. If
xeCyeC?and0 <t <1, thentx+ (1 —t)y € C° where C° denotes interior of the set C.

Proof. For x € C,y € C°,0 <t < limpliestz + (1 —t)y € tC+ (1 —t)C° C CasC'is
convex. Since tC + (1 — t)C° is an open subset of C'and C* is the largest open subset of
C,wehave tC + (1 — t)C° C C° and hence tx + (1 — t)y € C°. O

Proof of Theorem 3.13. Let z,y € X,z # y,d(x,0) = d(y,0) = r. Since (X, d) satisfies
S.C.VII, we obtain that (z, y) lies entirely in the interior of the ball B, = {z € X : d(#,0) <
r} and so S, contains no nontrivial line segments.

Conversely, suppose that no nontrivial line segments lie in S, and «, y are two different
points of S,.. Then some of the points of (z, y) lie in B?, so it follows easily from the above
lemma that all the points of (z,y) lie in B? and hence d(tz + (1 — t)y,0) < rie. (X,d)
satisfies S.C.VIL
Remark 6: ([15], p. 175) The last portion of the argument in the proof of the above theorem
also establishes the following characterization of S.C.VII that involves only the midpoints
of line segments rather than the entire line segments:

A linear metric space satisfies S.C.VII if and only if d(*t%,0) < r whenever z,y €
X,z #y,d(x,0) =d(y,0) = r.

The following result shows that the metric of a strictly convex linear metric space is
strictly monotone.

Theorem 3.8. If (X, d) is a strictly convex linear metric space and 0 # x € X, then f, : RT —
R* defined by f,(t) = d(tz,0) is strictly monotone and so d is strictly monotone.

Proof. Since (X, d) is strictly convex, f; is strictly increasing (Theorem 3.1) and so f,(t) <
fz(5),0 <t < s. In particular, 0 < ¢ < 1, implies that f,(t) < fz(1) i.e. d(tz,0) < d(x,0)
and so d is strictly monotone. O
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For strictly monotone metrics (and so for strictly convex linear metric spaces), we have

Theorem 3.9. If the metric d of a linear metric space (X, d) is strictly monotone, C'is a convex
subset of X, and T : C' — C'is a non-expansive map, then Ty : C' — C defined by T\(y) =
(1 =Nz + M (y); =,y € C, 0 <\ < 1, is contractive.

Proof. For y;,ys € C, consider

d(Tx(y1), Tx(y2)) = d((1 = Nz + AT (y1), (1 = Nz + AT'(y2))

(
(
(T'(y1), T(y2)) as d is strictly monotone
(y1,y2) as T is non-expansive.
Therefore, d(Tx(y1), Tx(y2)) < d(y1,y2) i.e. Ty is contractive.

For absolutely monotone metrics, we have

Theorem 3.10. If the metric d of a linear metric space (X, d) is absolutely monotone, C' is a
convex subset of X, and T is a non-expansive map, then T : C — C defined by T\(y) =
(I =XNax+ ATy; z,y € C, 0 < X < 1is non-expansive.

Proof. For y;,y2 € C, consider

d(Tx(y1), Ta(y2)) = d((1 = Nz + AT (y1), (1 = Nz + AT (y2))
(AT (y1), AT (y2))
(
(y

T(y1),T(y2)) as A < 1 and d is absolutely monotone

VARVA

y1,Y2) as T is non-expansive.
Therefore, d(T(y1), Tx(y2)) < d(y1,y2) i.e. Ty is non-expansive.
U

It is known ([27], [36]) that in a linear metric space satisfying (B.C.), closure of an open
ball need not be the corresponding closed ball. Infact, in a linear metric space (X, d) with
(B.C.), the closure of every open ball is the corresponding closed ball if and only if the
function f, : Rt — R* defined by f,(t) = d(tx,0) is a strictly increasing function for
every non-zero 2 in the space X. Since the function f, is strictly increasing if the space X
is strictly convex (Theorem 3.1) and a strictly convex space has (B.C.), we obtain that in a
strictly convex linear metric space, the closure of an open ball is the corresponding closed
ball. In fact, we have:

Theorem 3.11. [33] A linear metric space (X, d) is strictly convex
(i) if and only if for any r > 0, the ball B[z, r] is strictly convex and B(x,r) = Blz,r].
(22) if and only if every B(x,r) is convex and no sphere S[x, r| contains segments.

It is well known [15] that a normed linear space is strictly convex if and only if any two
closed balls in X having disjoint interior, do not intersect at more than one point. This
result was extended to linear metric spaces in [13] as under:

Theorem 3.12 ([13], Theorem 2.7). (i) In a strictly convex linear metric space, no two closed
balls having disjoint interiors intersect at more than one point.

(ii) A linear metric space (X, d) with ball convexity is strictly convex if no two closed balls in X
having disjoint interiors intersect at more than one point.
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Theorem 3.19 results in the following characterization of strictly convex linear metric
spaces amongst the linear metric spaces that have ball convexity:

Theorem 3.13 ([13], Theorem 2.8). A linear metric space (X, d) with ball convexity is strictly
convex if and only if no two closed balls in X having disjoint interiors intersect at more than one
point.

The inheritance of strict convexity of linear metric spaces by the quotient spaces has
been recently discussed in [11] in which the following result has been proved:

Theorem 3.14 ([11], Proposition 2.2). Let (X, d) be a strictly convex linear metric space and M

be a proximinal subspace of X, then the quotient space (X /M, d) is also strictly convex.

Remark 7. The proximinality of M cannot be replaced by closedness of M even in case of
normed linear spaces [11].

4. APPLICATIONS TO BEST APPROXIMATIONS

The concept of strict convexity has been applied extensively in problems dealing with
the uniqueness of best approximations in normed linear spaces. Ahuja et al. [1] intro-
duced strictly convex linear metric spaces in order to analyse the problem of uniqueness
of best approximation in linear metric spaces. We now briefly survey some of the known
results in this direction.

Albinus [4] proved the following:

Theorem 4.15. [4] [5] Suppose X is a linear metric space with monotone quasi norm and dimX >
2. Then the following conditions are equivalent:
() Every subspace of X is a uniqueness set.
i1) Every one dimensional subspace of X is a uniqueness set.
1it) Every finite dimensional subspace of X is a Chebyshev set.
iv) Every one dimensional subspace of X is a Chebyshev set.
v) The space X is strictly convex.

Py

Remark 8: Wriedt [37] proved that any non-normable strictly convex linear metric space
contains a closed subspace of codimension 2 which is not an existence set.
Ahuja et al. [2] proved the following:

Theorem 4.16. Every convex proximinal set in a strictly convex linear metric space is a Cheby-
shev set.

The following result proved by Narang [18] shows that the converse of the above men-
tioned result is also true.

Theorem 4.17. A linear metric space (X,d) is strictly convex if and only if each proximinal
convex subset of X is Chebyshev, or equivalently, if and only for each convex subset S of X and
distinct points x and y of S, S, NS, = 0, where S, = {x € S : d(x,z) = d(z,S)}, or
equivalently, if and only if balls in (X, d) are convex, and S[0,r] = {z € X : d(x,0) = r} does
not contain any line segment for r > 0, or equivalently, if and only if x,y € B[0,7] = (x,y) C
B(0,r).

Since all balls in a strictly convex linear metric space are convex, such a space is locally
convex. Using this fact, Narang [17] proved the following:

Theorem 4.18. A convex boundedly weakly compact set (a set in which every bounded sequence
has a weakly convergent subsequence) in a strictly convex linear metric space is Chebyshev.

The following example shows that a finite dimensional subspace or a convex subset of
a non strictly convex linear metric space need not be semi-Chebyshev.
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Example 4.6. Consider X = R? with metric d defined by d((z1,y1), (z2,y2)) = maz{d(z1,22),d(y1,92)}
and K = {(z,0) : © € R}. For x = (0,1), P (z) = {(2,0) : || < 2}, K is a finite dimensional
subspace of non strictly convex linear metric space (R?, d) and K is not semi-Chebyshev.

However we have the following characterization [20] of strictly convex linear metric
spaces:

Theorem 4.19. (i) A linear metric space (X, d) is strictly convex if and only if each linear sub-
space of X is semi Chebyshev. (ii) A linear metric space (X, d) is strictly convex if and only if
each convex subspace of X is semi Chebyshev.

Proof. As each linear subspace is a convex set, it is sufficient to prove necessary part of
(#4) and the sufficient part of (z).

Necessary part of (ii): Let (X, d) be a strictly convex linear metric space and K be convex
subset of X. Then K is semi Chebyshev [2].

Sufficient part of (i): Suppose (X,d) is a linear metric space such that each linear sub-
space of X is semi Chebyshev. Then X is strictly convex [20, Theorem 2]. O

Remark 9: For Banach spaces, Theorem 3.6 was proved by Sthechkin ([32], [9]).
The following characterization of strictly convex linear metric spaces was given by
Vasilev [33]:

Theorem 4.20. A linear metric space (X, d) is strictly convex if and only if all locally compact
closed convex sets in X are Chebyshev.

The following results on uniqueness of best approximation were proved by Sthechkin
[32] in strictly convex normed linear spaces:

Theorem 4.21. Let X be a strictly convex normed linear space, A C X, xg € X\A, yo €
Pa(zo). Then Pa(z) = {yo} for every x in the semi-interval (zo, yo)-

Theorem 4.22. In a strictly convex normed linear space X, the set Q(A) = {x € X : P4(x) contains at most
is dense in X, for every subset A of X.

Theorem 4.23. Let X be a strictly convex Banach space and A a relatively boundedly compact
subset of X (i.e. intersection of A with any ball is compact in X). Then Q(A) is a set of second
category, i.e. X\Q(A) is of first Baire Category.

Theorem 4.24. A Banach space X is strictly convex if and only if every subset A of X is a near
uniqueness set, i.e. Q(A) is dense in X for every subset A of X.

Sthechkin [32] posed the following problem, that is still open:

Problem 5: If a Banach space X has the property that Q(A) is dense in X or Q(A) is of
second category for every compact subset A of X, then must X be strictly convex?

One of the major unsolved problem in approximation theory is: Whether every Cheby-
shev subset of a Hilbert space is convex? Various partial answers to this problem are
known in the literature ([6], [10], [14], [16], [21], [34]). In this connection, Phelps [23]
proved that a Chebyshev subset of a strictly convex normed linear space is convex if the
associated metric projection is non-expansive. This result was extended to linear metric
spaces by Narang [21] as under:

Theorem 4.25. [21] Let X be a linear metric space with a metric d that is convex (i.e. for all
x,y € X and for all 5, > 0,02 > 0 such that §; + d2 = d(z,y), there is a point z € X with
d(x, z) = 61 and d(z,y) = 02) and translation invariant and suppose that (X, d) has S.C.IV.If S
is a Chebyshev subset of X, then S is convex if the associated metric projection is non-expansive.
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The strict convexity of linear metric spaces has also been used to discuss the problem of
proximinal points by Narang in [19] and [22] and the following results have been proved:

Theorem 4.26. [19] If A and B are mid-point convex sets in a strictly convex linear metric space
(X,d) such that (A — A) N (B — B) = {0}, then the pair (A, B) is semi-Chebyshev.

Theorem 4.27. [22] Let (X, d) be a strictly convex linear metric space. If A is locally compact or
boundedly compact or spherically compact or approximatively compact closed convex subset of X
and B is a compact convex subset of X, then (A, B) is a distance pair.

5. CONNECTIONS OF STRICT CONVEXITY WITH SOME OTHER PROPERTIES

It is well known [12] that in a normed linear space, algebraic betweenness implies met-
ric betweenness but not conversely. In fact, Smiley [31] proved that a real normed linear
space X is strictly convex if and only if algebraic and metric betweenness coincide in X.
For strictly convex real linear metric spaces, Grover et al. [12] proved that implication of
algebraic betweenness from metric betweenness characterizes pseudo strictly convexity.

Recall that a linear metric space is called pseudo strict convex if z # 0,y # 0, d(z +
y,0) = d(z,0) + d(y,0) imply that y = tx for some ¢ > 0 [28]. In normed linear spaces,
pseudo strict convexity is actually equivalent to strict convexity.

Theorem 5.28. A linear metric space is pseudo strictly convex if and only if metric betweenness
implies algebraic betweenness.

In the following result, Grover et al. [12] proved that in linear metric spaces, the two
notions of algebraic betweenness and metric betweenness coincide if and only if the linear
metric space is a strictly convex normed linear space.

Theorem 5.29. For a linear metric space (X, d), the following statements are equivalent:

(i) The notions of algebraic betweenness and metric betweenness coincide.

(ii) The notions of algebraic mid-point and metric mid-point coincide.

(iii) The function ||.|| : X — R™, defined by ||z|| = d(x,0) is a strictly convex norm function.

Raj and Eldred [24] characterized strictly convex normed linear spaces in terms of (d)—
property and proved the following result:

Theorem 5.30. A normed linear space X is strictly convex if and only if every pair (A, B) of
non-empty closed and convex subsets of X has the (d)— property.

Sangeeta and Narang [25] partially extended Raj and Eldred’s result to linear metric
spaces as under:

Theorem 5.31. In a strictly convex linear metric space (X, d), every pair (A, B) of non-empty
closed and convex subsets of X has the (d)— property.

As seen above, the converse of the above result holds in normed linear spaces but it is
still not known whether it holds in linear metric spaces.

Problem 6: [25] If in a linear metric space, every pair (A4, B) of non-empty closed and
convex subsets has the (d)— property, then must (X, d) be strictly convex ?

It is well known that all normed linear spaces are round as well as sleek, but this is
not the case [29] in metric spaces or even linear metric spaces. However, there are some
necessary and sufficient conditions known in the literature for metric spaces and linear
metric spaces to be round ( [29], [33] ) or sleek [30]. Vasilev [33] gave the following char-
acterizations of strictly convex linear metric spaces:

Theorem 5.32. A linear metric space (X, d) is strictly convex if and only if for any r > 0, the
ball B0, r] is strictly convex and the space X is round.
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The following analogue of this result was proved by Singh and Narang [29]:

Theorem 5.33. A linear metric space (X, d) is strictly convex if and only if for any r > 0, the
ball B0, ] is strictly convex and the space is sleek.

Thus strictly convex linear metric spaces are both round and sleek, and if a linear metric
space has the strict ball convexity, then the notions of being round and sleek are equiva-
lent.

6. CONCLUSION

One of the very natural trends in mathematical research is to refine the framework of
the known results and to see which of the results survive in more general settings. For in-
stance, it is natural to analyse the questions, that have already been dealt with in normed
linear spaces, in linear metric spaces. Although, the available literature in the theory of
best approximation in strictly convex normed linear spaces is very rich but only a few
results have been extended to strictly convex linear metric spaces. The concept of strictly
convex normed linear spaces has also proved out to be particularly fertile and beneficial
in the study of geometry of Banach spaces, orthogonality, semi inner product spaces, the-
ory of non-linear operators, fixed point theory etc. It is anticipated that this article may
spark more research on these topics, as well as in other branches of mathematics where
the underlying spaces are linear metric spaces.
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