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Impulsive Integro-Differential Equations via Densifiability
Techniques

KATTAR ENADA BENSATAL!, ABDELKRIM SALIM!?, AND MOUFFAK BENCHOHRA!

ABSTRACT. This article employs a new fixed-point theorem that relies on the degree of nondensifiability
to explore the existence of solutions to integro-differential equations within Banach spaces. Additionally, an
example is presented to validate the core findings. Furthermore, the results obtained in this research enhance
and broaden certain prior results in this field.

1. INTRODUCTION

Integro-differential equations are widely used in various fields, including physics, pop-
ulation dynamics, electrical engineering, finance, biology, ecology, and sociology. Re-
searchers have extensively examined the qualitative features of integro-differential equa-
tions, including existence, uniqueness, controllability, and stability. (See for instance,
[18,19,21,7,12, 30, 3, 5, 4, 14]).

Impulsive differential equations and inclusions have many applications in physics and
engineering, making them a popular topic (Ballinger and Liu. In [6]). Impulsive is-
sues are useful for explaining processes that change quickly and cannot be represented
using classical differential equations. Many authors have studied mild solutions to in-
stantaneous impulsive differential equations and inclusions, including Benchohra et al.
[9,1, 8,10, 11, 31], Ravichandran and Trujillo [37], Shu et al. [39], and Wang et al. [40].
The nonlocal condition improves solution resolution and precision for physical measure-
ments compared to the ordinary condition y(0) = yo. The nonlocal condition can de-
scribe things that ordinary initial value problems cannot, such as population dynamics
under rapid changes (e.g. harvesting, illnesses). For further remarks and citations, see to
[13, 29, 38, 33] and the references therein.

This manuscript draws significant inspiration from the studies conducted in [32, 33],
where the authors extensively explored nonlocal problems related to integro-differential
equations and nonlocal impulsive problems for nonlinear differential equations within
Banach spaces. The arguments presented in this paper, in fact, extend the findings of [32]
to a broader range of impulsive systems. Leveraging the compactness of the resolvent
operator {R(t)}:>o (refer to the details below), we have derived an intermediate result
crucial for establishing the existence of mild solutions, subject to various conditions on
the provided data, for a class of Volterra integro-differential equations.
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In particular, Ezzinbi et al. [20] studied the existence of mild solutions for a class of
nonlinear impulsive integro-differential equations with a nonlocal initial condition:

y'(t) = Zy(t) + N(t,y(t +f0 (t—o)y(o)do, if 0 <t < Tt #t;,
(l 9(y) = vo,

y(t ) y( ):Ij(y(t]‘)),jil,Q,...,p,O<t1<t2<"'<tp<T7

where Z generates a Cy-semigroup on a Banach space E, H(t) is a closed linear oper-
ator on E with time independent domain D(Z) € D(H). N : [0,T] x E — E and
g : PC([0,T],E) — E are continuous functions where the set PC([0,T], F) is a Banach
space.

In the 1980s [15], the authors introduced the concept of ¥-dense curves. Cherruault
[16] and Mora [34] were primarily responsible for its creation. Mora and Mira [35] estab-
lished the notion of degree of nondensifiability (DND), which is based on 1J-dense curves.
Garcia [26, 24] demonstrated a novel fixed-point result using the DND that is more appli-
cable than the Darbo fixed point theorem and its generalizations.

In [17], Benchohra et al studied the following problem:

{ Di"y(t) = N(t,y(t); ¢ € D= [t1,ta],
y(tl) y(t2) =0,

where ¢ € (1,2],¢ fop is the ¥-Caputo fractional derivative, N : D x E — E is a given
1

function, 6 is the null vector in the space E.

Our findings fundamentally rely on the notable contributions made by Garcia [26, 25]
in investigating the existence of mild solutions for impulsive integro-differential equa-
tions within Banach spaces:

y'(t) = Z()()+Nty +f0 o0)do, ift € ©,t #t;
(L1) y(0) =

y(t]) - ( )_I( (t;), =12 ,p, 0<ty<ta<---<t,<T,
where © = [0,T], N : © x E — E is a continuous function, (E, | - ||g) is a Banach space,
and Z(t) : G(Z(t)) C E — E, y(t, o) are closed linear operators on E, with dense domain

G(Z(t)), which is independent of ¢, and G(Z) C G(v(t, 0)).

Next, we investigate the existence of mild solutions for impulsive integro-differential
equations with a nonlocal initial condition:

Y (t) = Z(t)y(t) + N (t,ye) + [3 (¢, 0)y(o)do, ift € Ot # 1,
(12) y(0)+g(y) =yo € E,
y(th) —y(t;) = Lily(ty), §=1,2,--,p, 0<ty<ty<---<t,<T,

where g : PC(0, E) — E is continuous function and the set PC(0, E) is given later.
This paper is organized as follows. In Section 2, some necessary concepts and important
definitions and lemmas are given. In Section 3, we show the existence of mild solutions
for impulsive integro-differential equations with local and nonlocal initial conditions for
the problems (1.1) and (1.2) by applying a novel fixed point theorem based on DND. An
example is also given in Section 4 to illustrate the theory of the abstract main result.



Integro-Differential Equations via the Degree of Nondensifiability 407

2. PRELIMINARIES

In this section, we introduce notations, definitions and preliminary facts that used in
the remainder of this paper.
Let E be a real Banach space with the norm || - |z and Mg is the class of non-empty and
bounded subsets of E, let B(E) be the space of all bounded linear operators from E into
E, with the norm

1T 5z) = sup | T'(y)| -
yeE

We denote by (L' (O, E), || -||1) the Banach space of measurable functions that are Bochner
integrable from © := [0, T] into E, with the norm

T
Iyl = / ly(t) | et

L>(0, E), is the Banach space of measurable functions which are essentially bounded,
with the norm
I lloo =1nf{C >0: |ly(t)||le <C, ae. t € O}.

By C(©, E) we denote the Banach space of all continuous functions from © into E with

lyll = sup [ly(t)| &-
teO

We consider the following linear Cauchy problem

y(t) = )+ fo 0)do, fort >0,
23) { y(0) = %o 6 E
Definition 2.1. ([27]) A resolvent operator for a Cauchy problem (2.3) is a bounded linear operator-
valued function R € B(E) for t > 0, verifying the following conditions:

(1) R(0) = I (the identity map of E) and ||R(t)|| sy < Me™ for some constants M > 0

andn € R.
(2) Foreachy € E, t — R(t)y is strongly continuous for t > 0.
(3) R€ B(E)fort >0.Fory € E, R(:)y € C*(Ry, E)NC(Ry, F) and

Rty = ZR(t)y+ / 7(t, o) R(o)yde

= y+/Rt9 0)ydo,
fort > 0.

From now on, we assume that:

(P1) The operator Z is the infinitesimal generator of a uniformly continuous semigroup
{T(t)}e>o0.

(P2) Fort > 0, (¢, 0) is closed linear operator from G(Z) to E and v(t,0) € B(E).
For any y € E, the map t — (¢, o)y is bounded, differentiable and the derivative
t — 7'(t, 0)y is bounded uniformly continuous on R .

The following theorem gives a satisfactory answer to the problem of existence of resolvent
to (2.3).

Theorem 2.1. ([28]) Assume that (P1) — (P2) hold, then there exists a unique resolvent operator
for the Cauchy problem (2.3).

Definition 2.2. ([34, 36]) Suppose that 9 > 0 and k € Mg, a continuous mapping ¢ : ¢ =
[0,1] = E is an 9—dense curve in k if:



408 K. Bensatal, A. Salim, M. Benchohra

. C(¢) Ck

e Forany yy €k, thereis yo € ((¢) such that ||y1 — y2||g < 9.
Ff for 9 > 0O, there is an ¥—dense curve in k, then k is densifiable.

Definition 2.3. ([35, 22]) Let ¥ > 0, and denote by L'y the class of all 9—dense curves in
k € Mg. The DND is a mapping s : Mg — R defined as:

#(k) =inf{0 > 0: Ty x # &},
foreachk € Mg.

Remark 2.1. It is important to highlight that a thorough examination of the degree of nondensi-
fiability (DND) was conducted in [22]. Specifically, the study established that the DND does not
function as a measure of noncompactness [22]. Nonetheless, it exhibits characteristics remarkably
akin to those of MNC (see Proposition 2.6 in [22]).

Lemma 2.1 ([23, 22]). Let ky,ko € Mg. Then, we have:
(@) »(ki) = 0 <= ky is a precompact set, for each nonempty, bounded and arc-connected
subset ky of E. )

(b) s¢(ky1) = »(kq), where ky denotes the closure of k.

(€) 2¢(Nkq) = |A|s¢(kq), for A € R.

(d) »(z+ky) =), forallz € E.

(e) »#(Convky) < 3(ky) and »(Convky Uks) < max{s(Conuvk;), s¢(Convks)}, where
(

() »(

2(Convk, ) represent the convex hull of k.

Let

w : Ry — R, : w is monotone increasing
X = and lim @w” =0foranyt e Ry ’

n—oo

where n € Nand @w"(t) denotes the n—th composition of w with itself.

Remark 2.2. [t is important to observe that the fixed point theorem based on DND in [26] takes a
form closely resembling the renowned Darbo fixed-point theorem [2]. Nevertheless, as demon-
strated in [26, 23] through various examples, both outcomes are fundamentally distinct. The
presented theorem in [26] operates under more inclusive conditions than the Darbo fixed-point
theorem or its well-known generalizations.

Lemma 2.2. ([26]) Let k C C(©, E) be non-empty and bounded. Then:
sup »(k(t)) < s(k).
teo

3. EXISTENCE OF MILD SOLUTIONS FOR INTEGRO-DIFFERENTIAL EQUATIONS

Let PC = PC(0O, E) be the set of all function y from O into E such that y is continuous
at t # t; and left continuous at ¢ = t; and the right limit y(tj) exists for j = 1,2,--- ,p.
We recall from [32] that PC(©, E) is a Banach space with the following norm

lyllpc = sup|ly(®)| &
te®

Definition 3.4. We say that a function y(-) € PC(0©, E) is a mild solution of problem (1.1), if y
satisfies the following integral equation

mo::Rmmm+AmeNmmm@
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+ > R(t)I(y(ty), foreacht € ©.
0<t; <t

Now, we assume the following hypotheses:

(H1) The function N : © x E — FE satisfies the Carathéodory conditions, and there exist
ps € L'(©,R;) and ¢ : Ry — R, a nondecreasing continuous function such that:

IN(t,v)lle <pst)Y(ylle), fory € E, and for a.e. t € ©.

(H2) The functions I; : PC(©, E) — E are continuous and there exist constant L; > 0,
j=1,2,--- ,p,suchthatforanyy € £

1;W)lle < Lillyllpc.
(H3) The resolvent operator is uniformly continuous and there exist M > 1 such that
|R(t, 0)llBr) < M, foreveryt c ©.

(H4) There exist K € L>(0,R;) and h € X where for any non-empty, bounded and
convex subsetk C F,

#(N(t,k)) < K()h(>(k)),

holds for a.e. t € ©.
(H5) There exists r > 0 such that

P
r>M v+ @)l +r YL

j=1
Theorem 3.2. Assume that the conditions (H1) — (H5) are satisfied and that
TM| K] < 1.
Thus, (1.1) has at least one solution defined on ©.

Proof. Firstly, define the operator
t

Uylt) = R0+ [ RtV (e.u(0)de
0

+ Z R(t,tj)1;(y(t;)), foreachte ©.
0<t;<t

We consider the set
kz{yéPCﬂMbC<r}

We note that k is bounded, closed and convex subset.

Step 1 : We prove that Uk c k.

Indeed for any y € k and under (H;) — (Hs) we obtain

||Uy(t)||E:||R(t,0)y0+/0 R(t,0)N(0,y(0))do+ Y R(t:t;)I;(y(t;))]le

0<t;<t
t
< ||R(t70)||B(E)Hy0||E+/O 1R(t, )l B(m)IN (2, y(0)) || 2deo

+ > IR I LW )e

0<t;<t
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< Mlyolls + M / pr@e(ly@®lp)de+ M S Lilly(t) e

0<t; <t

p
< Mr+ My(r)|pslle + Mr Y L;
j=1
<.

Thus U (ﬁ) c k. By (H,) and the Lebesgue dominated convergence theorem, U is contin-
uous on k.

Step 2 : We prove that U satisfies the contractive condition.

Let / be any non-empty and convex subset of k, and for each ¢ € ©, let ¥, = #(F (t)).
Then K € L>*(©,R;) and h € X where fora.et € O,

#(N(t, F (1)) < K(t)h(5<(D)).

Therefore, for ¢ < 0, there is a continuous mapping ¢; : ¢ — E, with (;(¢) C N(¢, F (1)),
such that for all y € F, there is ) € ¢ with

(3.4) [Nt y(t) — G)lle < K()h(J:) ¢, foraet € ©.
Construct now the mapping ¢ : ¢ — ((C(0, E)), || - ||) as follows:

n€d— Ent) = R(t,0)yo + / R(t, 0)Co(n)de

+ > R(tt)L(y(t)), foraet € ©.
0<t;<t

So, ( is continuous and ¢ (¢) € U(F). By (3.4), given y € F we have n € ¢ where

1Uy(t) = Gm)le < /O I1R(t, 0)lB(m) IV (2, y(0)) — Co(n)llde

t
< M/ K(o)h(9,) + edp.
0
Setting ¢ := »(F ), we can deduce that h(¥;) < h(¥) fora.et € ©, and

1Uy(t) = Gl < TM|K||och(0)
< h(9).
Thus, from the arbitrariness of ¢t € ©, that »(UF ) < h(?)). O

4. INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITION

Definition 4.5. We say that a function y(-) € PC(0, E) is a mild solution of problem (1.2), if y
satisfies the following integral equation

y(t) = R(t0)o—g(w)] + / R(t, )N (0, y(0))de
+ Y R(tt)I(y(ty), foreacht € ©.
0<t;<t

Now, we assume the following hypotheses:
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(C1) The function g : PC' — E is continuous, and there exists a constant Ly > 0 such
that

lgW)lle < Lellyl po, fory € PC.
(C2) There exists r > 0 such that

p
r > M|r+ Lor + ¢(r)||pyl 2 +TZLJ]
j=1

Theorem 4.3. Assume that the conditions (H1) — (H4) and (C1) — (C2) are satisfied and that
TM|| K|l < 1.
So, (1.2) has at least one solution defined on O.

Proof. Let

My(t) = R(t0)[yo - g(y)] + / R(t, 0)N(0,5(0))de

+ Z R(t,t;)1;(y(t;)), foreachte ©.

0<t; <t

Step 1 : We prove Mk C k.
For any y € k we obtain

1My = [R(0)yo — g / R(t, )N (o,y(0)do+ S Rit,t)I(y(t))]1s

0<t;<t
t
<Rt 0)l| ey 10 — 9(0) 1 + / IR, o)l | N (2, v0) | 2de

+ > IR )@ Iy (E)) e

0<t,; <t

< M{llyoll & + Lallyllpc] +M/ pr(@¢(lyle)de+M D Lilly(t;)e
0<t; <t

P
< Mr+ MLor + My(r)|psll o+ Mr > L
j:l
<r.

Thus M(k) C k. Furthermore, combining assumption (H;) and the Lebesgue dominated
convergence theorem, M is continuous on k.

Step 2 : Let / C k, and for each ¢ € ©, let ¥, = #(F (t)). Thus, K € L>*(©,R;) and
h € X where foraet € ©

#(N(L F (1)) < K(6)h(>(0:)).
By the same techruque of the step 2 in the Theorem 3.2, we get:
¢ is continuous and ¢ () ¢ M(F). By (3.4), given y € | we can find 7 € t where

[My() = Gl < / IR (t, o)l (e [N (2, y(0) — Co(n)llde

<M/K o) +edo.
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Setting ¥ := »(F ), we can deduce that h(¢;) < h(?) for a.et € ©, and
[My(t) = Gl < TM| K |och(9)
< h(9).

So, from the arbitrariness of ¢ € ©, that s(MF ) < h(¥).
Then y is a fixed point of M, which is a mild solution of (1.2). O

5. AN EXAMPLE

Consider the following class of partial integro-differential system:

%Z(t’m aijz v@) fo dgz(g,@dg
~ o (e +ln(1—|—| (t.9)) ift€©=(0,1] and § & (0,1),

(5.5) z(t,0) = 2(t,1) =0, fort € ©,

2(0,5) = €%, forye (0,1),

2(tF,9) — 2(t;,9) = L;(2(t,9)), forge (0,1),j=1,2,--,p.
Let Z be defined by
(29(@) = g+t D).
And
G(Z) ={z € L*(0,1) /z z € L*(0,1); 2(0) = 2(1) = 0}.

The operator Z is the infinitesimal generator of a Cy-semigroup on L?(0, 1) with domain
G(Z), and with more appropriate conditions on operator «(-) = I'(-) Z, the problem (5.5)
has a resolvent operator (R(t));>o on L?(0, 1) which is norm continuous.

Now, define

y()(Y) = =(t,9),

N(t,y())(y) = N(t 2() ()
and N : © x L%(0,1) — L?*(0,1) given by

1 1
Nt 0@ = 1 (1 o +in(L+ L2t zm)) , forteo,
Now, for t € ©, we have
1 1
IV 20D = | o (s + 01+ (620D ) i
1 ~
< T (0, )

<ps () (=@ z2)-

Therefore, assumption (H1) is satisfied with

1 - o~
pf(t):mv te®and¢(y) =1+y, ye(0,1).
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Now we shall check that condition of (H5) is satisfied. Indeed, we have
r>Mr+MQA+7r)+TMLyr.
Thus
> —.
"=13M

For / c C(©,L?(0,1)) and t € O fixed, let ¢ be an ¥;-dense curve in f (t) for some ¥; > 0.
Then, for z € F, there is n € ¢ satisfying:

ly(&) = Cn,t)l|> < Vs

Therefore, we have:

IN(t,2(8) = N(t,¢(n, 1))[|> < ;Hln(l + 26 9))) = (L + |, )]l 22

1+ et

< 2 fon (14 B2 CO)
1+et 1+ [¢(n, ?)] L2

1

<7 —_ 2

< 1+etln(1+ 2(t,9) — ¢(n, )| =)

< —

< T+ d0),

and h(t) = In(1+t). This function is continuous, and h € X, so (H,) is verified by K (t) =
ﬁ. Consequently, all the hypotheses of Theorem 3.2 are satisfied and we conclude that
the problem (5.5) has at least one solution y € C(6, L?(0, 1)).
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