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Fixed points and convergence results in ordered hyperbolic
spaces for monotone Suzuki mean nonexpansive mappings

KIRAN DEWANGAN

ABSTRACT. This paper is related to the fixed point results of monotone Suzuki mean nonexpansive mappings
and convergence and ∆-convergence of a sequence in ordered hyperbolic space defined by an iteration scheme
introduced by Abbas and Nazir.

1. INTRODUCTION

The geometric properties of space play an important role in metric fixed point theory.
Since Banach spaces have convex structures, it is studied extensively in the literature.
However, metric spaces do not have this structure. Therefore, there is a need to introduce
and define convex structures.

Hyperbolic spaces are rich in geometrical structure, and they are suitable to obtain new
results in topology, graph theory, multi-valued analysis and metric fixed point theory. The
study of fixed point theory for nonexpansive mappings in the framework of hyperbolic
spaces was initiated by Takahashi [22].

Goebel and Kirk [15] used hyperbolic-type spaces, which contain hyperbolic metric
spaces. To study, existence and approximations of fixed points for nonexpansive map-
pings, Reich and Shafrir [20] introduced hyperbolic metric spaces. After that, Kohlenbach
[16] introduced a more general definition of hyperbolic metric spaces, and he proved ex-
istence of fixed points for nonexpansive mappings. Leustean [17] showed that CAT (0)
spaces are uniformly convex hyperbolic metric spaces.

The study of monotone nonexpansive mappings increases rapidly in few years. The
existence of approximate fixed points for semi-groups of nonlinear monotone mappings
acting in a Banach vector space endowed with a partial order was proved in 2015 by
Bachar and Khamsi [3]. Dehaish and Khamsi [12] gave an analogues result to Browder
and Gohde’s fixed point theorem for monotone nonexpansive mappings in uniformly
convex hyperbolic metric spaces in 2016. Recently, Shukla et al. [21] proved existence
and convergence results for a monotone mappings satisfying some conditions in partially
ordered hyperbolic metric spaces.

A generalization of nonexpansive mapping in Banach space was introduced by Zhang
[26] in 1975, namely mean nonexpansive mapping, as follows:
A mapping T : K → K is called mean nonexpansive if

||Tx− Ty|| ≤ σ||x− y||+ τ ||x− Ty||,

Received: 22.01.2025. In revised form: 06.06.2025. Accepted: 09.09.2025
2020 Mathematics Subject Classification. 47H09, 47H10.
Key words and phrases. Monotone nonexpansive mapping, fixed point, ordered intervals, hyperbolic space, Suzuki

mean nonexpansive mapping.

417



418 KIRAN DEWANGAN

where σ, τ ≥ 0 and σ + τ ≤ 1.

The point is here that, for σ = 1 and τ = 0, a nonexpansive mapping is a mean nonex-
pansive, but converse need not be always true. The following example shows that a mean
nonexpansive mapping is not necessarily nonexpansive mapping.

Example 1.1. [2] Suppose that T : [0, 1]→ [0, 1] is a mapping defined by

Tx =

{
x
5 + 5

12 , x ∈ [0, 1
2 ];

x
6 + 5

12 , x ∈ [ 12 , 1].

Here T is mean nonexpansive mapping with σ = 1
3 , τ = 2

3 , but not continuous at x = 1
2 . Thus

T is not a nonexpansive mapping.

The concept of generalized nonexpansive mappings, which are called Suzuki general-
ized nonexpansive mappings or the condition (C), was introduced by Suzuki [23], and
obtained some fixed point results and convergence results for such mappings in Banach
spaces. In 2021, Mebawondu et al. [19] introduced a new class of monotone generalized
nonexpansive mappings, namely monotone Suzuki mean nonexpansive mappings, which
are wider than the class of nonexpansive mappings, mean nonexpansive mappings, and
mappings satisfying condition (C). Mebawondu et al. [19] established some weak and
strong convergence theorem for their proposed iterative scheme in the framework of an
ordered Banach space.

Uddin et al. [25], introduced the concept of partial order in the setting of CAT (0) spaces
as follows:
Let X be a complete CAT (0) space endowed with partial order ” ⪯ ”. An order interval
is any of the subsets

[σ,→) = {x ∈ X : σ ⪯ x} or (←, σ] = {x ∈ X : x ⪯ σ},

for any σ ∈ X . So an order interval [x, y] for all x, y ∈ X is given by

[x, y] = {ϑ ∈ X : x ⪯ ϑ ⪯ y}.

Following iteration scheme is introduced by Abbas and Nazir [1] in 2014, as follows:
For x1 ∈ K, the sequence {xk} is defined by

(1.1)


zk = (1− γk)xk + γkTxk,

yk = (1− βk)Txk + βkTzk,

xk+1 = (1− αk)Tyk + αkTzk, k ∈ N,

where {αk}, {βk}, {γk} are sequences in (0, 1).

Iteration scheme (1.1) can be expressed in hyperbolic space as follows:

(1.2)


zk = W (xk, Txk, γk),

yk = W (Txk, T zk, βk),

xk+1 = W (Tyk, T zk, αk), k ∈ N,

Recently, lots of work has been done to establish existence or approximate fixed points
of nonexpansive mappings in hyperbolic metric spaces (refer [6, 8, 10, 11]). In this paper,
convergence and ∆-convergence of a sequence defined by (1.2) is proved for monotone
Suzuki mean nonexpansive mapping in the framework of ordered hyperbolic space.
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2. PRELIMINARY

Let X be a non-empty set. A point x ∈ X is called a fixed point of a mapping T :
X → X if Tx = x. Through-out the literature F (T ) denotes set of fixed points of T , i.e.,
F (T ) = {x ∈ X : Tx = x}.

According to [9], a mapping T : X → X is called
(i) Lipschitz mapping if d(Tx, Ty) ≤ Ld(x, y), ∀ x, y ∈ X , where L > 0.

(ii) Contraction mapping if d(Tx, Ty) ≤ Ld(x, y), ∀ x, y ∈ X , where 0 < L < 1.
(iii) Nonexpansive if d(Tx, Ty) ≤ d(x, y), ∀ x, y ∈ X and L = 1.

Definition 2.1. [18] A mapping T defined on a closed convex subset K of a metric space space X
is said to satisfy condition (C), if

1

2
d(x, y) ≤ d(x, y)⇒ d(Tx, Ty) ≤ d(x, y),

for x, y ∈ K.

Remark 2.1. Note that T is generalization of nonexpansive mapping in the sense of Suzuki. It
is obvious that every nonexpansive mapping satisfies condition (C), but the converse is not true.
Consider the following examples:

Example 2.2. Let T : [0, 2]→ [0, 2] defined by

(2.3) Tx =

{
0, x ̸= 2,

2, x = 2.

It is clear that T is Suzuki nonexpansive mapping and also nonexpansive.

Example 2.3. Let X = R and K = [0, 5
2 ] is subset of X . Let d : X × X → R such that

d(x, y) = |x− y|. Clearly (X , d) is metric space. Let T be a mapping defined on K such that

(2.4) Tx =

{
0, x ∈ [0, 2],

4x− 12, x ∈ [0, 5
2 ].

Then T is Suzuki nonexpansive mapping. However it is not a nonexpansive mapping.

Definition 2.2. [25] Let K be a non-empty subset of an ordered metric space X . A mapping
T : K → K is said to be:

(i) monotone if Tx ⪯ Ty ∀ x, y ∈ K with x ⪯ y,
(ii) monotone nonexpansive if T is monotone and

d(Tx, Ty) ≤ d(x, y),

∀ x, y ∈ K with x ⪯ y,
(iii) monotone quasi-nonexpansive if T is monotone and

d(Tx, p) ≤ d(x, p)

∀ x ∈ K, p ∈ F (T ).

Definition 2.3. [16] A hyperbolic space (X , d,W ) is a metric space (X , d) together with a con-
vexity mapping W : X × X × [0, 1]→ X such that ∀ x, y, z ∈ X and α, β ∈ [0, 1],

(i) d(u,W (x, y, α)) ≤ (1− α)d(u, y) + αd(u, x),
(ii) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y),

(iii) W (x, y, α) = W (y, x, 1− α)
(iv) d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(z, w) + αd(x, y).
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Example 2.4. [14] Let X = R and d : X × X → [0,∞) be a mapping defined by

d(x, y) = ||x− y||.
It is clear that d is metric on X . Let K = [0, 1] be a subset of X . Further define a mapping
W : X × X × [0, 1] by

W (x, y, α) = αx+ (1− α)y,

∀ x, y ∈ X and α ∈ [0, 1]. Then (X , d,W ) is hyperbolic space.

Remark 2.2. In Example 2.4, if T : K → K defined by

Tx =

{
1− x, x ∈ [0, 1

5 );
x+4
5 , x ∈ [ 15 , 1].

Then T is a Suzuki mean nonexpansive mapping in hyperbolic space (X , d,W ), but not mean
nonexpansive.(mapping T is chosen as given in [19])

Definition 2.4. [7] A non-empty subset K of a hyperbolic space X is said to be convex, if
W (x, y, α) ∈ K, ∀ x, y ∈ K and α ∈ [0, 1].

Definition 2.5. [24] A hyperbolic space X is said to be uniformly convex if for any r > 0 and
ε ∈ (0, 2], ∃ a δ ∈ (0, 1] such that ∀ x, y, z ∈ X ,

d(W (x, y,
1

2
), z) ≤ (1− δ)r,

provided d(x, z) ≤ r, d(y, z) ≤ r and d(x, y) ≥ εr.

Definition 2.6. [5] Let K be a non-empty subset of a metric space X and {xk} be any bounded
sequence in K. For x ∈ X , there is a continuous functional r(., {xk}) : X → [0,∞) defined by

r(x, {xk}) = lim sup
k→∞

d(xk, x).

The asymptotic radius r(K, {xk}) of {xk} with respect to K is given by

r(K, {xk}) = inf{r(x, {xk}) : x ∈ K}.
A point x ∈ K is said to be an asymptotic center of the sequence {xk} with respect to K, if

r(x, {xk}) = inf{r(y, {xk}) : y ∈ K}.
The set of all asymptotic centers of {xk} with respect to K is denoted by A(K, {xk}).
Definition 2.7. [11] In hyperbolic space (X , d,W ) an order interval is any of the subsets

[σ,→) = {x ∈ X : σ ⪯ x} or (←, σ] = {x ∈ X : x ⪯ σ},
for any σ ∈ X . So an order interval [x, y] ∀ x, y ∈ X is given by

[x, y] = {z ∈ X : x ⪯ z ⪯ y}.
Remark 2.3. [11] The order intervals are closed and convex .

Definition 2.8. [5] A sequence {xk} in X is said to be ∆− converges to x ∈ X if x is the unique
asymptotic center of {xkn

} of {xk}. In this case ∆− lim
k→∞

xk = x.

Definition 2.9. [24] Let X be a hyperbolic space. A map η : (0,∞) × (0, 2] → (0, 1] which
provides such δ = η(r, ε) for a given r > 0 and ε ∈ (0, 2] is known as a modulus of uniform
convexity of X . The mapping η is said to be monotone, if it decreases with r.

Definition 2.10. [24] Let K be a convex subset of a hyperbolic space (X , d,W ). A mapping
T : K → K with non-empty fixed point set F (T ) inK will be said to satisfy Condition (I), if there
is a non-decreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for r ∈ (0,∞)
such that d(x, Tx) ≥ f(d(x, F (T ))) ∀ x ∈ K, where d(x, F (T )) = inf{||x− z|| : z ∈ F (T )}.
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Lemma 2.1. [17] Let X be a complete uniformly convex hyperbolic space with monotone modulus
of uniform convexity η. Then every bounded sequences {xk} in X has a unique asymptotic center
with respect to any non-empty closed convex subset K of X .

Definition 2.11. [5] Let K be a non-empty closed subset of a complete hyperbolic space X and
{xk} be a sequence inK. Then {xk} is called Fejer monotone sequence with respect toK if ∀ x ∈ K
and k ∈ N,

d(xk+1, x) ≤ d(xk, x).

Proposition 2.1. [5] Let K be a non-empty closed subset of a complete hyperbolic space X and
{xk} be a sequence in K. Suppose T : K → K is any nonlinear mapping and the sequence {xk} is
Fejer monotone with respect of K, then we have the following:

(i) {xk} is bounded.
(ii) The sequence {d(xk, x

∗)} is decreasing and converges ∀ x∗ ∈ F (T ).
(iii) limk→∞ d(xk, F (T )) exists.

Lemma 2.2. [13] Let (X , d,W ) be a complete uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity η. Let x∗ ∈ X and {tk} be a sequence in [a, b] for some
σ, τ ∈ (0, 1). If {xk} and {yk} are sequences in X such that lim supk→∞ d(xk, x

∗) ≤ c,
lim supk→∞ d(yk, x

∗) ≤ c, and limk→∞ d(W (xk, yk, tk, )x
∗) ≤ c, for some c > 0. Then

limk→∞ d(xk, yk) = 0.

Lemma 2.3. [4] The following properties related to ∆− convergence on a CAT (0) space (X , d)
hold true:

(i) Every bounded sequence in X has a ∆− convergent subsequence.
(ii) Every CAT (0) space satisfies the Opial’s property, that is

lim sup
k→∞

d(xk, x) < lim sup
k→∞

d(xk, y),

whenever a given sequence {xk} in X ∆− converges to x and y ̸= x.

3. MAIN RESULTS

The following results are generalizations of the results obtained by Mebawondu et al.
[19] from ordered Banach space to ordered hyperbolic space.

Proposition 3.2. Let K be a non-empty closed convex subset of an ordered hyperbolic space
(X , d,W ). Let T : K → K be a monotone Suzuki mean nonexpansive mapping with a fixed
point x∗ ∈ K and x∗ ⪯ y for y ∈ K. Then T is monotone quasi-nonexpansive mapping.

Proof. Let x∗ ∈ F (T ). Since T is Suzuki nonexpansive mapping,

1

2
d(x∗, Tx∗) = 0 ≤ d(x∗, y).

Also T is mean nonexpansive mapping,

d(x∗, T y) = d(Tx∗, T y)

≤ σ(x∗, y) + τ(x∗, T y)

(1− τ)d(x∗, T y) ≤ (1− τ)d(x∗, y).

This implies that d(Tx∗, T y) ≤ d(x∗, y). Hence T is quasi-nonexpansive mapping. □

Lemma 3.4. LetK be a non-empty closed convex subset of an ordered hyperbolic space (X , d,W ).
Let T : K → K be a monotone Suzuki mean nonexpansive mapping. Then F (T ) is closed and
convex.
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Proof. To show that F (T ) is closed, let {xk} be a sequence in F (T ) such that {xk} con-
verges to some y ∈ K. Using mean nonexpansiveness of Ω,

d(xk, Ty) = d(Txk, T y)

≤ d(xk, y) + τd(xk, T y)

(1− τ)d(xk, Ty) ≤ (1− τ)d(xk, y)

≤ d(xk, y).

Taking limk→∞ on both sides,
lim
k→∞

d(xk, T y) = 0.

By uniqueness of limit, y = Ty. Hence F (T ) is closed.

Now, to show that F (T ) is convex, let x, y ∈ F (T ) and α ∈ [0, 1]. Then

d(x, T (W (x, y, α))) = d(Tx, TW (x, y, α))

≤ σd(x,W (x, y, α)) + τd(x, T (W (x, y, α)))

(1− τ)d(x, T (W (x, y, α))) ≤ (1− τ)d(x,W (x, y, α))

≤ d(x,W (x, y, α)).

Hence,

(3.5) d(x, T (W (x, y, α))) ≤ d(x,W (x, y, α)).

Using similar argument,

(3.6) d(y, T (W (x, y, α))) ≤ d(y,W (x, y, α)).

Observe that

d(x, y) ≤ d(x, T (W (x, y, α))) + d(T (W (x, y, α)), y)

= d(Tx, T (W (x, y, α))) + d(T (W (x, y, α)), T y)

≤ σ(d(x,W (x, y, α)) + τd(x, T (W (x, y, α))) + σd(y,W (x, y, α)))

+ τd(T (W (x, y, α)), ℘)

≤ σ[d(x,W (x, y, α)) + d(y,W (x, y, α)))]

+ τ [d(x, T (W (x, y, α)) + d(T (W (x, y, α)), y)]

= σd(x, y) + τd(x, y)

≤ d(x, y).

Therefore

(3.7) d(x, y) ≤ d(x, y).

From Equation (3.5) and (3.6), d(x, T (W (x, y, α))) = d(x,W (x, y, α)) and d(y, T (W (x, y, α))) =
d(y,W (x, y, α)) respectively, because if strictly less than sign < is used, then from Equa-
tion (3.7), there is a contradiction that d(x, y) < d(x, y). Therefore

T (W (x, y, α)) = W (x, y, α),

∀ x, y ∈ F (T ) and α ∈ [0, 1]. Thus W (x, y, α) ∈ F (T ) which implies that F (T ) is convex.
□

Lemma 3.5. LetK be a non-empty closed convex subset of an ordered hyperbolic space (X , d,W ).
Let T : K → K be a monotone Suzuki mean nonexpansive mapping. Then ∀ x, y ∈ K with x ⪯ y,

(i) d(T 2x, Tx) ≤ d(Tx, x).
(ii) Either 1

2d(x, Tx) ≤ d(x, y) or 1
2d(Tx, T

2x) ≤ d(Tx, y).
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(iii) Either d(Tx, Ty) ≤ σd(x, y) + τd(x, Ty) or d(Tx, Ty) ≤ σd(Tx, y) + τd(Tx, Tx).

Proof. (i) Since 1
2d(x, Tx) < d(x, Tx) and T is mean nonexpansive mapping,

d(T 2x, Tx) = d(T (Tx, Tx)

≤ σd(Tx, x) + τd(Tx, Tx)

≤ d(Tx, x).

(ii) On contrary, suppose that 1
2d(x, Tx) > d(x, y) or 1

2d(Tx, T
2x) > d(Tx, y). Observe

that

d(x, Tx) ≤ d(x, y) + d(y, Tx)

<
1

2
d(x, Tx) +

1

2
d(x, Tx)

= d(x, Tx),

which is a contradiction. Therefore either 1
2d(x, Tx) ≤ d(x, y) or 1

2d(Tx, T
2x) ≤

d(Tx, y).
(iii) The proof follows from (ii).

□

Theorem 3.1. Let K be a non-empty closed convex subset of a uniformly convex ordered hyper-
bolic space (X , d,W ). Let T : K → K be a monotone Suzuki mean nonexpansive mapping. Then
F (T ) ̸= ∅ if and only if {T kx} is bounded sequence for some x ∈ K provided that T kx ⪯ y for
some y ∈ K with x ⪯ Tx.

Proof. Suppose that {xk} = {T kx} is a bounded sequence and for some x ∈ K, x ⪯
Tx. Using monotonicity of T , Tx ⪯ T 2x ⪯ T 3x ⪯ .... By asymptotic center of {xk},
A(K, {xk}) = {x∗} such that xk ⪯ x∗ ∀ k ∈ N. Since

1

2
d(xk, Txk) =

1

2
d(T kx, Txk)

=
1

2
d(T kx, T k+1x)

< d(T kx, T k+1x)

= d(xk, xk+1).

Now

d(xk+2, xk+1) = d(T k+2x, T k+1x)

= d(T (T k+1x, T kx))

= d(Txk+1, Txk)

≤ σd(xk+1, xk) + τd(xk+1, xk+1)

≤ d(xk+1, xk).

We claim that d(xk+1, xk) ≤ 2d(xk, x
∗) or d(xk+2, xk+1) ≤ d(xk+1, x

∗) ∀ k ∈ N.
On contrary, suppose that d(xk+1, xk) > 2d(xk, x

∗) or d(xk+2, xk+1) > d(xk+1, x
∗).

d(xk+1, xk) ≤ d(xk+1, x
∗) + d(x∗, xx)

≤ 1

2
d(xk+2, xk+1) +

1

2
d(xk+1, xk)

≤ 1

2
d(xk+1, xk) +

1

2
d(xk+1, xk)

≤ d(xk+1, xk),
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which is a contradiction. Therefore d(xk+1, xk) ≤ 2d(xk, x
∗) or d(xk+2, xk+1) ≤ d(xk+1, x

∗)
∀ k ∈ N.

Now, using the fact that 1
2d(xk+1, xk) =

1
2d(Txk, xk) ≤ d(xk, x

∗).

d(Txk, Tx
∗) ≤ σd(xk, x

∗) + τd(xk, Tx
∗)

≤ d(xk, x
∗)

lim sup
k→∞

d(Txk, Tx
∗) ≤ lim sup

k→∞
d(xk, x

∗).

This implies that Tx∗ ∈ A(K, {xk}). By uniqueness of limit, x∗ = Tx∗.
Similar results will be followed by considering the fact that 1

2d(Tx, T
2x) ≤ d(Tx, x∗).

Hence F (T ) ̸= ∅.

Now suppose that F (T ) ̸= ∅with x∗ ∈ F (T ). Then by mathematical induction, T kx∗ =
x∗ ∀ k ∈ N. Since {T kx∗} is a constant sequence, it is bounded. □

Theorem 3.2. Let K be a non-empty closed convex subset of a complete uniformly convex or-
dered hyperbolic space (X , d,W ) with monotone modulus of convexity η. Let T : K → K be a
monotone Suzuki mean nonexpansive mapping and {xk} be a bounded sequence in K such that
limk→∞ d(xk, Txk) = 0 and ∆− limk→∞ xk = x∗. Then x∗ ∈ F (T ).

Proof. Since {xk} is a bounded sequence in K, from Lemma 2.1, {xk} has a unique as-
ymptotic center in K. Since ∆ − limk→∞ xk = x∗, we have A({xk}) = {x∗}. Observe
that

d(xk, Tx
∗) ≤ d(xk, Txk) + d(Txk, Tx

∗)

≤ d(xk, Txk) + σd(xk, x
∗) + τ(xk, Tx

∗)

(1− τ)d(xk, Tx
∗) ≤ σd(xk, x

∗) + d(xk, Txk)

≤ 1

1− τ
[σd(xk, x

∗) + d(xk, Txk)].

Since

r(Tx∗, {xk}) = lim sup
k→∞

d(xk, Tx
∗)

≤ 1

1− τ
lim sup
k→∞

[σd(xk, x
∗) + d(xk, Txk)]

≤ lim sup
k→∞

d(xk, x
∗)

= r(x∗, {xk}).

By uniqueness of asymptotic center of {xk}, Tx∗ = x∗. Hence x∗ ∈ F (T ). □

4. CONVERGENCE RESULTS

In 2021, Mewomo et al. [18] obtained common fixed point of two mean nonexpansive
mappings in the framework of hyperbolic spaces by using iteration scheme (1.2). This
section contains some convergence results that extend the work of Mewomo et al. [18]
from mean nonexpansive mapping to monotone Suzuki mean nonexpansive mapping by
using iteration scheme (1.2) in an ordered hyperbolic spaces.

Lemma 4.6. LetK be a non-empty closed convex subset of an ordered hyperbolic space (X , d,W ).
Let T : K → K be a monotone Suzuki mean nonexpansive mapping. Let x1 ∈ K such that
x1 ⪯ Tx1 and {xk} be a sequence in K defined by (1.2). Then xk ⪯ Txk ⪯ xk+1 ∀ k ∈ N.
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Proof. Applying induction on k. By assumption x1 ⪯ Ωx1. Since order intervals are
convex, x1 ⪯ (1− γ1)x1 + γ1Tx1 ⪯ Tx1 ⇒ x1 ⪯ z1 ⪯ Tx1.
Now x1 ⪯ z1 and T is monotone, Tx1 ⪯ Tz1. Therefore Tx1 ⪯ (1 − β1)Tx1 + β1Tz1 ⪯
Tz1 ⇒ Tx1 ⪯ y1 ⪯ Tz1. Since x1 ⪯ z1 ⪯ Tx1 ⪯ y1 ⪯ Tz1, Tz1 ⪯ Ty1. Therefore
Tz1 ⪯ (1 − α1)Tz1 + α1Ty1 ⪯ Ty1 ⇒ Tz1 ⪯ x2 ⪯ Ty1. Since x1 ⪯ Tz1 ⪯ x2 ⇒ x1 ⪯ x2.
Hence induction is true for k = 1.
Now assume that induction is true for k ≥ 2. Since xk ⪯ Txk, xk ⪯ (1− γk)xk + γkΩxk ⪯
Txk ⇒ xk ⪯ zk ⪯ Txk and by monotonicity of T , Txk ⪯ Tzk. Therefore Txk ⪯ (1 −
βk)Txk + βkTzk ⪯ Tzk ⇒ Txk ⪯ yk ⪯ Tzk.
Since Tyk ⪯ Tzk, therefore Tyk ⪯ (1 − αk)Tyk + αkTzk ⪯ Tzk ⇒ Tyk ⪯ xk+1 ⪯ Tzk.
Using similar approach as above, xk+1 ⪯ zk+1 ⪯ Txk+1.
Since T is monotone, we have Txk+1 ⪯ (1 − βk+1)Txk+1 + βk+1zk+1 ⪯ zk+1 ⇒ Txk+1 ⪯
yk+1 ⪯ zk+1. Since Tyk+1 ⪯ Tzk+1 ⇒ Tyk+1 ⪯ (1 − αk+1)Tyk+1 + αk+1Tzk ⪯ Tzk, i.e.
Tyk+1 ⪯ xk+2 ⪯ Tzk+1. Therefore xk+1 ⪯ Txk+1 ⪯ xk+2. □

Lemma 4.7. Let K be a non-empty closed convex subset of a complete ordered hyperbolic space
(X , ϱ,W ). Let T : K → K be a monotone Suzuki mean nonexpansive mapping. Let x1 ∈ K such
that x1 ⪯ Tx1 and {xk} be a sequence in K defined by (1.2). Then

(i) Sequence {xk} is bounded.
(ii) limk→∞ d(xk, x

∗) exists ∀ x∗ ∈ F (T ).
(iii) limk→∞ d(xk, F (T )) exists.

Proof. Let {xk} be a sequence in K defined by (1.2) and x∗ ∈ F (T ) with x1 ⪯ x∗. By
monotonicity of T , Tx1 ⪯ Tx∗ = x∗.
Observe that

d(zk, x
∗) =d(W (xk, Txk, γk), x

∗)

≤ (1− γk)d(xk, x
∗) + γkd(Txk, x

∗)

≤ (1− γk)d(xk, x
∗) + γk[σd(xk, x

∗) + τd(xk, x
∗)]

≤ d(xk, x
∗),

d(yk, x
∗) =d(W (Txk, T zk, βk), x

∗)

≤ (1− βk)d(Txk, x
∗) + βkd(Tzk, x

∗)

≤ (1− βk)[σd(xk, x
∗) + τd(xk, x

∗)] + βk[σd(zk, x
∗) + τd(zk, x

∗)]

≤ d(xk, x
∗),

d(xk+1, x
∗) = d(W (Tyk, T zk, αk), x

∗)

≤ (1− αk)d(Tyk, x
∗) + αkd(Tzk, x

∗)

≤ d(xk, x
∗).

This shows that sequence {xk} is Fejer monotone with respect to F (T ), Hence by Propo-
sition 2.1, the desire result holds. □

Lemma 4.8. Let K be a non-empty closed convex subset of a complete ordered hyperbolic space
(X , d,W ) with monotone modulus of convexity η. Let T : K → K be a monotone Suzuki mean
nonexpansive mapping such that F (T ) ̸= ∅. Let x1 ∈ K such that x1 ⪯ Tx1 and {xk} be a
sequence in K defined by (1.2). Then limk→∞ d(xk, Txk) = 0.

Proof. From Lemma 4.7, limk→∞ d(xk, x
∗) exists ∀ x∗ ∈ F (T ). Suppose that limk→∞ d(xk, x

∗) =
w, where w ≥ 0. The result is true for w = 0. So, suppose that w > 0. Since

d(zk, x
∗) ≤ d(xk, x

∗), k ∈ N,
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taking lim supk→∞ on both sides,

lim sup
k→∞

d(zk, x
∗) ≤ w.

Also

d(Tzk, x
∗) ≤ σd(zk, x

∗) + τd(zk, x
∗)

≤ d(zk, x
∗).

Hence
lim sup
k→∞

d(Tzk, x
∗) ≤ w.

Similarly
d(yk, x

∗) ≤ d(xk, x
∗),

hence
lim sup
k→∞

d(yk, x
∗) ≤ w,

and
lim sup
k→∞

d(Tyk, x
∗) ≤ w.

Observe that
d(xk+1, x

∗) = d(W (Tyk, T zk, αk), x
∗).

This implies that
lim
k→∞

d(W (Tyk, T zk, αk), x
∗) = w.

Hence from Lemma 2.2, limk→∞ d(Tyk, T zk) = 0.
Now, using the fact that T is mean nonexpansive mapping,

d(Txk, x
∗) ≤ σd(xk, x

∗) + τd(xk, x
∗)

≤ d(xk, x
∗).

Taking lim supk→∞ on both sides,

lim sup
k→∞

d(Txk, x
∗) = w.

Since

d(xk+1, x
∗) = d(W (Tyk, T zk, αk), x

∗)

≤ (1− αk)d(Tyk, x
∗) + αkd(Tzk, x

∗)

≤ (1− αk)d(Tyk, x
∗) + αk[d(Tzk, T yk) + d(Tyk, x

∗)]

≤ (σ + τ)d(yk, x
∗) + αkd(Tzk, T yK)

≤ d(yk, x
∗) + αkd(Tzk, Tyk).

Taking lim infk→∞ on both sides,

lim inf
k→∞

d(yk, x
∗) ≥ w.

Hence
lim
k→∞

d(yk, x
∗) = w ⇒ d(W (Txk, T zk, βk), x

∗) = w.

From Lemma 2.2,
lim
k→∞

d(Txk, T zk) = 0.
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Since

lim
k→∞

d(Txk, T yk) ≤ lim
k→∞

d(Txk, T zk) + lim
k→∞

d(Tzk, Tyk)

⇒ lim
k→∞

d(Txk, T yk) = 0.

Similarly, limk→∞ d(zk, x
∗) = w and limk→∞ d(W (xk, Txk, γk), x

∗) = w and from Lemma
2.2,

lim
k→∞

d(xk, Txk) = 0.

□

Theorem 4.3. Let K be a non-empty closed convex subset of a complete uniformly convex ordered
hyperbolic space (X , d,W ) with monotone modulus of uniform convexity η. Let T : K → K be
a monotone Suzuki mean nonexpansive mapping. Let x1 ∈ K such that x1 ⪯ Tx1 and {xk}
be a sequence in K defined by (1.2). Then {xk} converges strongly to x∗ ∈ F (T ) if and only if
lim infk→∞ d(xk, F (T )) = 0, where d(xk, F (T )) = inf{d(xk, T

∗) : T ∗ ∈ F (T )}.

Proof. If {xk} converges strongly to x∗ ∈ F (T ), then limk→∞ d(xk, x
∗) = 0. Since 0 ≤

d(xk, F (T )) = inf{d(xk, x
∗) : x∗ ∈ F (T )}, limk→∞ d(xk, F (T )) = 0.

Conversely, suppose that limk→∞ d(xk, F (T )) = 0. Since

d(xk+1, x
∗) ≤ d(xk, x

∗),

which implies that
d(xk+1, F (T )) ≤ d(xk, F (T )).

This implies that limk→∞ d(xk, F (T )) exists. Therefore by assumption
limk→∞ d(xk, F (T )) = 0.
Next, to show that {xk} is a Cauchy sequence in K. For k > n,

d(xk, xn) ≤ d(xk, x
∗) + d(x∗, xn)

≤ 2d(xk, x
∗).

Taking inf on right hand side,

d(xk, xn) ≤ 2d(xk, F (T )).

Hence, d(xk, xn) → 0 as k, n → ∞. Hence {xk} is Cauchy sequence in K, therefore it
converges to some q ∈ K.
Now, to show that q ∈ F (T ), since d(xk, F (T )) = inf{x∗ ∈ F (T ) : d(xk, x

∗)}. So for each
ε > 0, ∃ {pk} ∈ F (T ) such that

d(xk, pk) < d(xk, F (T )) +
ε

2

Since d(pk, q) ≤ d(xk, pk) + d(xk, q)⇒ limk→∞ d(pk, q) ≤ ε
2 . Hence,

d(Tq, q) ≤ d(Tq, pk) + d(pk, q)

≤ σd(pk, q) + τd(q, T q) + d(pk, q)

≤ 2d(pk, q).

Which implies that d(Tq, q) ≤ ε. Hence d(Tq, q) = 0. Since F (T ) is closed, q ∈ F (T ). □

Theorem 4.4. Let K be a non-empty closed convex subset of a complete uniformly convex ordered
hyperbolic space (X , d,W ) with monotone modulus of uniform convexity η. Let T : K → K be a
monotone Suzuki mean nonexpansive mapping such that F (T ) ̸= ∅. Also suppose that T satisfies
Condition (I). Let x1 ∈ K such that x1 ⪯ Tx1 and {xk} be a sequence in K defined by (1.2).
Then T converges strongly to a point of F (T ).
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Proof. From Lemma 4.7, limk→∞ d(xk, F (T )) exists and from Lemma
4.8, limk→∞ d(xk,Ωxk) = 0. Using the fact that

0 ≤ lim
k→∞

d(xk, F (T )) ≤ lim
k→∞

d(xk, Txk) = 0, ∀ x ∈ K,

lim
k→∞

f(d(xk, F (T ))) = 0.

Since T satisfies Condition (I), limk→∞ d(xk, F (T )) = 0. Hence from Theorem 4.3, {xk}
converges strongly to x∗ ∈ F (T ). □

Theorem 4.5. Let K be a non-empty closed convex subset of a complete uniformly convex ordered
hyperbolic space (X , d,W ) with monotone modulus of uniform convexity η. Let T : K → K be a
monotone Suzuki mean nonexpansive mapping. Let x1 ∈ K such that x1 ⪯ Tx1. Suppose that
F (T ) ̸= ∅ with x∗ ∈ F (T ) such that x1 ⪯ x∗ and {xk} be a sequence in K defined by (1.2). Then
{xk} converges weakly to a point of F (T ).

Proof. From Lemma 4.7, {xk} is bounded and from Lemma 4.8, limk→∞ d(xk, Txk) = 0.
Since X is uniformly convex, ∃ subsequence {xkn

} of {xk} that converges weakly to x∗ ∈
K. Using Lemma 4.6, x1 ⪯ xkn

⪯ x∗ ∀ n ∈ N.

d(xkn
, Tx∗) = d(xkn

, Txkn
) + d(Txkn

, Tx∗)

≤ d(xkn , Txkn) + σ(d(xkn , x
∗) + τd(xkn , Tx

∗).

This implies that

lim inf
k→∞

d(xkn
, Tx∗) ≤ lim inf

k→∞
d(xkn

, x∗)

lim
k→∞

d(xkn
, Tx∗) = 0.

Now, to how that {xk} has a unique weak subsequential limit in F (T ). Let x∗ and u
are two weak limits of the subsequence {xkn

} and {xkm
} of {xk}. By similar approach,

u ∈ F (T ). Now suppose that x∗ ̸= u. By Opial’s property,

lim
k→∞

d(xk, x
∗) = lim

k→∞
d(xkn

, x∗)

< lim
k→∞

d(xkn
, u)

= lim
k→∞

d(xk, u)

< lim
k→∞

d(xkm
, u)

= lim
k→∞

d(xkm
, x∗)

= lim
k→∞

d(xk, x
∗),

which is a contradiction. Hence x∗ = u. □

Theorem 4.6. Let K be a non-empty closed convex subset of a complete uniformly convex ordered
hyperbolic space (X , d,W ) with monotone modulus of convexity η and satisfies Opial’s property.
Let T : K → K be a monotone Suzuki mean nonexpansive mapping. Let x1 ∈ K such that
x1 ⪯ Tx1. Suppose that F (T ) ̸= ∅ with x∗ ∈ F (T ) such that x1 ⪯ x∗ and {xk} be a sequence in
K defined by (1.2). Then {xk} ∆− converges to a fixed point x∗ of T .

Proof. From Lemma 4.7, limk→∞ d(xk, x
∗) exists, and {xk} is bounded sequences and also

from Lemma 4.8, limk→∞ d(Txk, xk) = 0.
Let B({xk}) = ∪X({yk}), where union is taken over all subsequence {yk} of {xk}. To
prove that {xk} ∆− converges to a fixed point p of T , first we will show that B({xk}) ⊂
F (T ) and after-that B({xk}) is singleton set.
Let v ∈ B({xk}), then ∃ a subsequence {vk} of {xk} such that X({vk}) = v. Since X is
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uniformly convex, ∃ a subsequence {wk} of {vk} such that ∆−limk→∞ wk = w and w ∈ K.
Since {wk} is subsequence of {xk}, we have limk→∞ d(Twk, wk) = 0, w = Tw and hence
w ∈ F (T ).
Next to show show that w = v. Suppose not, i.e., w ̸= v. Since X satisfies Opial’s condi-
tion,

lim sup
k→∞

d(wk, w) < lim sup
k→∞

d(wk, v)

≤ lim sup
k→∞

d(vk, v)

< lim sup
k→∞

d(vk, w)

≤ lim sup
k→∞

d(xk, w)

= lim sup
k→∞

d(wk, w)

Which is a contradiction. Hence w = v ∈ F (T ). Now to show that B({xk}) is singleton
set, let X({vk}) = v and X({xk}) = x. Since we already proved that v = w, so it is
sufficient to prove that v = x. If v ̸= x, then doing the same procedure as above,

lim sup
k→∞

d(wk, v) < lim sup
k→∞

d(wk, x)

≤ lim sup
k→∞

d(xk, x)

< lim sup
k→∞

d(xk, v)

= lim sup
k→∞

d(wk, v)

Which is a contradiction. Hence v = x, which proves that B({xk}) is singleton set and
that particular element will be fixed point of T . □

5. NUMERICAL EXAMPLE

Example 5.5. LetX = R with metric d defined by d(x, y) = |x−y|. Define W : X×X×[0, 2]→
X by

W (x, y, ζ) = ζx+ (1− ζ)y,

for x, y ∈ X , ζ ∈ [0, 2]. Then (X , d,W ) is hyperbolic space. For this
(i)

d(u,W (x, y, ζ)) = |u−W (x, y, ζ)|
= |u− ζx− (1− ζ)y|
= |(1− ζ)(u− y) + ζ(u− x)|
≤ (1− ζ)d(u, y) + ζd(u, x).

(ii)

d(W (x, y, ζ),W (x, y, τ)) = |W (x, y, ζ)−W (x, y, τ)|
= |ζx− ζy − τx+ τy|
= |(ζ − τ)x− (ζ − τ)y|
= |ζ − τ |d(x, y).
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(iii)

W (y, x, 1− ζ)) = (1− ζ)y + (1− (1− ζ))x

= W (x, y, ζ).

(iv)

d(W (x, z, ζ),W (y, s, ζ)) = |(W (x, z, ζ)−W (y, s, ζ)|
= |(1− ζ)(z − s) + ζ(x− y)|
= (1− ζ)d(z, s) + ζd(x, y).

Also (X , d,W, ) is a complete uniformly hyperbolic space with monotone modulus of uniform
convexity and K = [0, 2] is non-empty compact convex subset of X . Now consider relation ” ⪯ ”
on X by x ⪯ y ∀ x, y ∈ X . Let T : K → K be a mapping defined by

Tx =

{
1− x, x ∈ [0, 1

3 ),
x+2
3 , x ∈ ( 13 , 2].

Then T is a monotone Suzuki mean nonexpansive mapping, but not mean nonexpansive.

Proof. To show that T is not mean nonexpansive. Suppose that T is mean nonexpansive,
so ∃ non-negative real numbers σ and τ with σ + τ ≤ 1 and ϱ(Tx, Ty) ≤ σd(x, y) +
τd(x, Ty), ∀ x, y ∈ [0, 2]. Now suppose that x = 1, y = 0. Then

d(Tx, Ty) = |x+ 2

3
− 1 + y|

= 0

≤ σd(x, y) + τd(x, Ty)

= σ + τ |1− 1 + y|
= σ.

Clearly d(Tx, Ty) ≤ d(x, y) for σ ≤ 1 and τ = 0. So therefore, T is a nonexpansive
mapping, but this contradicts the fact that T is not continuous. Hence T is not mean non-
expansive.

Next, to show that T is monotone mapping. For this, consider the following cases:
Case I: when x, y ∈ [0, 1

3 ). Then

d(Tx, Ty) = |x+ y|
≤ |x|+ |y|
= d(x, y).

Case II: when x, y ∈ ( 13 , 2]. Then

d(Tx, Ty) = |x+ 2

3
− y + 2

3
|

=
1

3
|x− y|

< |x− y| = d(x, y).

Hence T is monotone mapping.

To establish that T is a Suzuki mean nonexpansive mapping, consider the following
cases.
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Case I: when x ∈ [0, 1
3 ).

1

2
d(x, Tx) =

1

2
|x− 1 + x|

≤ |x|+ 1

2
.

Suppose that

1

2
d(x, Tx) ≤ d(x, y)

⇒ |x|+ 1

2
≤ |x|+ |y|

⇒ |y| ≥ 1

2
.

Hence 1
2d(x, Tx) ≤ d(x, y) for |y| ≥ 1

2 , i.e., y ∈ [ 12 , 1] ⊂ [1, 2].
Now

d(Tx, Ty) = |1− x− y + 2

3
|

= |1− 3x− y

3
|

≤ 1

3
+ |x|+ |y|

3
,

σd(x, y) + τd(x, Ty) = σd(x, y) + τ
3x− y − 2

3

≤ σ|x|+ σ|y|+ τ |x|+ τ
|y|
3

+
2

3
τ.

Suppose that

d(Tx, Ty) ≤ σd(x, y) + τd(x, Ty)

⇒ 1

3
+ |x|+ |y|

3
≤ (σ + τ)|x|+ (σ +

τ

3
)|y|+ 2

3
τ.

For σ = 1
2 , τ = 1

4 ,

1

3
+ |x|+ |y|

3
≤ (

1

2
+

1

4
)|x|+ (

1

2
+

1

12
)|y|+ 1

6

⇒ 1

3
+ |x|+ |y|

3
≤ 3

4
|x|+ 7

12
|y|+ 1

6

⇒ |y| − 2

3
≥ |x|.

Since x ∈ [0, 1
3 ), |y| ≥

2
3 , i.e., y ∈ [ 23 , 1] ⊂ [1, 2]. Hence T is Suzuki mean nonexpansive

mapping.

Case II: when x ∈ ( 13 , 2]. Then

1

2
d(x, Tx) =

1

2
|x− x+ 2

3
|

≤ |x|+ 1.
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Suppose that
1

2
d(x, Tx) ≤ d(x, x)

⇒ |x|+ 1 ≤ |x|+ |y|
⇒ |y| ≥ 1.

Hence 1
2d(x, Tx) ≤ d(x, x) for |x| ≥ 1, i.e., x ∈ [1, 2] ⊂ [0, 2].

Now

d(Tx, Ty) = |x+ 2

3
− y + 2

3
|

≤ |x|
3

+
|y|
3
,

σd(x, y) + τd(x, Ty) = σd(x, y) + τ |3x− y − 2

3
|

≤ σ|x|+ σ|y|+ τ |x|+ τ |x|+ τ

3
|x|+ 2

3
τ.

Suppose that

d(Tx, Ty) ≤ σd(x, y) + τd(x, Ty)

⇒ |x|
3

+
|y|
3
≤ (σ + τ)|x|+ (σ +

τ

3
)|y|+ 2

3
τ.

For σ = 1
2 , τ = 1

4 ,

|x|
3

+
|y|
3
≤ 3

4
|x|+ 7

12
|y|+ 1

6

⇒ −5
12
|x| − 3

12
|y| ≤ 1

6
⇒ 5|x|+ 3|y| ≥ −2,

which is true as y ∈ [ 12 , 1] and x ∈ ( 13 , 2]. Hence T is Suzuki mean nonexpansive mapping.
□
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