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On minimal and mean spaces

KALLOL BHANDHU BAGCHI1 AND AJOY MUKHARJEE2

ABSTRACT. The minimal and mean open sets are relatively new concepts in the literature of topological
spaces. We use these two notions to introduce and study of the minimal and mean spaces which are generated
by bases consisting of minimal and mean open sets respectively. We see that every minimal space is of zero-
dimensional. We also obtain an equivalence relation between a T1 cut-point space and a mean space.

1. INTRODUCTION AND PRELIMINARY

We agree to write (Y,S ) for a topological space on a nonempty set Y endowed with a
topology S (̸= {∅, Y }). The term proper open set is used for an open set G ∈ S − {∅, Y }
of Y . Likewise, we use the term proper closed set for a closed set E in Y such that Y −E ∈
S − {∅, Y }. For P ⊂ Y , Cl(P ) stands for the closure of P and Int(P ), for the interior of
P in Y . The cardinality of P ⊂ Y is represented by |P |.

Undoubtedly, the concept of open sets plays the key role in studying topological spaces.
There in the literature of topological spaces, we find several generalizations of open sets,
e.g., semi-open set [4], pre-open sets [5] and many more. In recent years, Nakaoka and
Oda [11, 10, 9] introduced and studied two new varieties of open sets called maximal and
minimal open sets. Following the research works of Nakaoka and Oda [11, 10, 9], another
variety of open sets called mean open set [7] in topological spaces is posed. It reveals that
the study of open sets in topological spaces from different angles bear some importance
to the researchers. In the present study, we use the mean and minimal open sets to give
some new twists to the topological spaces after the name minimal and mean spaces.

Here is mainly three sections except introductory section in the article. Section 2 is
about the motivation of introducing notions such as minimal (Definition 3.7) and mean
spaces (Definition 4.8). In Section 3, the notion of minimal spaces is introduced and some
properties of such spaces are investigated. Theorem 3.8 ensures the existence of minimal
spaces whereas Theorem 3.9 gives necessary and sufficient conditions for existence of
minimal spaces. Theorem 3.12 shows that a minimal space is disconnected. We focus
on mean spaces in Section 4. Natural existence of mean spaces are shown in Example
4.2. Theorem 4.14 is regarding the existence of mean spaces. A necessary and sufficient
condition for existence of mean spaces is established in Theorem 4.15. Three equivalent
statements on the connected mean spaces are proved in Theorem 4.18. Some examples
are also framed to substantiate results as and when necessity arises.

Some established notions and results are hereby recalled so that the readers can go
through the contents easily as far as practical without consulting the cited articles.

Definition 1.1 (Nakaoka and Oda [11, 9]). An open set W ∈ S −{∅, Y } of Y is called minimal
open in Y if ∅ and W are the only open sets on Y contained in W .
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Definition 1.2 (Nakaoka and Oda [9]). A closed set E(̸= ∅, Y ) is called minimal closed in Y if
∅ and E are the only closed sets in Y contained in E.

Definition 1.3 (Nakaoka and Oda [10]). An open set W ∈ S −{∅, Y } of Y is called maximal
open in Y if Y and W are the only open sets in Y containing W .

Definition 1.4 (Mukharjee and Bagchi [7]). An open set W of Y is called mean open in Y if
there exist two different open sets G,V ( ̸= ∅,W, Y ) in Y such that G ⊂ W ⊂ V .

Definition 1.5 (Honari and Bahrampour [2]). A point t ∈ Y in a connected topological space
(Y,S ) is called a cut point in Y if Y − {t} is a disconnected subspace of Y . The connected
topological space Y is called a cut-point space if each point of Y is a cut point of Y .

Definition 1.6 (Howard and Tachtsis [3]). A cover W of a topological space (Y,S ) is called a
minimal cover if for each W ∈ W , W − {W} does not form a cover of Y .

If each member of a cover W of Y is minimal open (resp. minimal closed) then W is called a
minimal open (resp. minimal closed) cover of Y .

Theorem 1.1 (Nakaoka and Oda [11]). If W and V are minimal open set and open set respec-
tively in a topological space Y , then either W ∩ V = ∅ or W ⊂ V holds. If V (̸= W ) is also a
minimal open set in Y , then W ∩ V = ∅.

Theorem 1.2 (Nakaoka and Oda [10]). If W and V are maximal open set and open set respec-
tively in a topological space Y , then either W ∪ V = Y or V ⊂ W holds. If V ( ̸= W ) is also a
maximal open set in Y , then W ∪ V = Y .

Theorem 1.3 (Nakaoka and Oda [9]). A closed set F in Y is minimal closed in Y iff Y − F is
maximal open in Y .

Theorem 1.4 (Mukharjee [6]). If W is maximal as well as minimal open in Y , then either (i) W
is the only proper open set in Y or (ii) W and Y −W are the only proper open sets in Y .

Lemma 1.1 (Bagchi and Mukharjee [1]). The nonempty open sets in a T1 connected space Y
are infinite and they are not minimal open in Y .

Theorem 1.5 (Bagchi and Mukharjee [1]). A proper open set W in a T1 connected space Y is
mean open if and only if W ̸= Y − {s}, s ∈ Y .

Theorem 1.6 (Bagchi and Mukharjee [1]). Suppose (Y,S ) is a T1 connected space and Smo is
the collection of all mean open sets in Y . The collection {∅}∪Smo constitutes a basis of a topology
S on Y .

Theorem 1.7 (Honari and Bahrampour [2]). Let b ∈ Y be a cut point of a connected space Y
such that Y − {b} = M | N . The set {b} is either open or closed in Y . Also M and N are closed
(resp. open) in Y if {b} is open (resp. closed) in Y .

2. MOTIVATION

We observe that {w} is a minimal open set (Definition 1.1) for any w ∈ Y in the dis-
crete topological space Y and so {∅} ∪ {{w} | w ∈ Y } constitutes a basis of the discrete
topological space Y . It means that the discrete topological space Y has a basis forms by
minimal open sets and empty set only. It is well-known that the collection {(a, b)|a, b ∈ R}
of open intervals along with {∅} forms a basis for the usual topological space where R is
the set of real numbers. Since (a, b) is a mean open set (Definition 1.4) in R, we conclude
that R has a basis consisting of mean open sets and empty set only. These two facts lead
us to introduce and to investigate the minimal spaces (Definition 3.7) and mean spaces
(Definition 4.8).
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3. MINIMAL SPACES

We introduce below the notion of minimal spaces and obtain some characterizations
on such spaces.

Definition 3.7. A topological space (Y,S ) is said to be a minimal space if there exists a basis
{∅} ∪ C of S where C is a family of minimal open sets of Y . The family {∅} ∪ C is said to be a
minimal basis for S or Y when no confusion arises on S .

We see that a basis C is minimal for Y if the elements of C are pairwise disjoint.
We agree to write M for the family of all minimal open sets in Y . We also write N = {∅}∪M .

Clearly, if C is a minimal basis for Y then C ⊂ N .

Theorem 3.8 (Existence of minimal spaces). Suppose that Y is a nonempty set with |Y | ≥ 3.
There exists a topology S in Y different from the discrete topology in Y such that (Y,S ) is a
minimal space.

Proof. Suppose B = {∅} ∪ {Bγ | γ ∈ Γ} is a family of subsets of Y such that Bν ∩ Bµ = ∅
for any two ν, µ ∈ Γ, ν ̸= µ,

⋃
γ∈Γ Bγ = Y and |Bγ | ≥ 2 for some γ ∈ Γ. Then B forms

a basis for some topology S on Y . Suppose Bγ1
∈ B with |Bγ1

| ≥ 2 and s, y ∈ Bγ1
.

It then follows that {s}, {y} are not the members of B. Hence (Y,S ) is not the discrete
space. Again since any two distinct members of B are disjoint, B is a minimal basis for a
topology S on Y . Hence (Y,S ) is a minimal space. □

Theorem 3.9. A topological space Y is a minimal space iff M forms an open cover of Y . Further,
M forms a minimal open cover of Y .

Proof. Firstly, let Y be a minimal space and D be a minimal basis for Y . The collection D
being a basis for Y ,

⋃
B∈D B = Y . Since D ⊂ N , M = N −{∅} constitutes an open cover

of Y .
Conversely, suppose M is an open cover of Y . As two distinct elements of M are

disjoint by Theorem 1.1 and M ⊂ N , N is a minimal basis for Y . It means that Y is a
minimal space.

M is a minimal open cover of Y follows from the fact that any two distinct members
of M are disjoint. □

Remark 3.1. We see that M forms a partition on Y when Y is a minimal space. Hence there
exists an equivalence relation on Y .

Theorem 3.10. If B is a basis for a topological space Y and M is a minimal open set in Y , then
M ∈ B.

Proof. If possible, let M /∈ B. There is a subcollection B1 of B containing at least two
nonempty basic open sets distinct from M such that M =

⋃
B∈B1

B which implies that
B ⊂ M for some B( ̸= ∅,M) ∈ B1. But this contradicts the fact that M is a minimal open
set in Y . □

Corollary 3.1. The minimal basis for a minimal space is unique.

Proof. Let H ,B be two minimal bases for a minimal space Y . Suppose M ∈ H − {∅}.
Since M is minimal open in Y and B is a basis for Y , we have M ∈ B by Theorem 3.10
and hence H ⊂ B. So we obtain H = B. □

Corollary 3.2. If B is a minimal basis of a minimal space Y , then B = N .

Proof. We have B ⊂ N . Also by Theorem 3.10, N ⊂ B. Hence B = N . □
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Theorem 3.11 (Existence of maximal open sets). A minimal space Y contains a maximal
open set. Further, if M ∗ denotes the collection of all maximal open sets on Y , then M ∗ =
{
⋃

G∈M−{P} G | P ∈ M }.

Proof. Given Y is a minimal space. So M is a minimal open cover of Y by Theorem
3.9. For any M ∈ M ,

⋃
G∈M−{M} G is a proper open set in Y . If possible, suppose that

N is an open set in Y such that
⋃

G∈M−{M} G ⊂ N . Since M is a minimal open set in
Y , we conclude that either M ⊂ N or M ∩ N = ∅ by Theorem 1.1. If M ⊂ N , then⋃

G∈M G ⊂ N which shows Y ⊂ N and so we get N = Y . If M ∩ N = ∅, then we have
N ⊂ Y −M =

⋃
G∈M−{M} G. So

⋃
G∈M−{M} G = N . So it follows that

⋃
G∈M−{M} G is

a maximal open set in Y .
From the above discussion, it is clear that {

⋃
G∈M−{P} G | P ∈ M } ⊂ M ∗. Now let

G ∈ M ∗. If possible, let G ̸=
⋃

H∈M−{M} H for any M ∈ M . Since N is the minimal
basis for Y by Corollary 3.2 and any two distinct members of M are disjoint by Theorem
1.1, there exist at least two disjoint members O,N in M such that G =

⋃
H∈H H where

H is a subfamily of M − {M,N,O}. But this contradicts the fact of the maximality of
G because G is a subset of the proper open sets

⋃
H∈M−{M,N} H and

⋃
H∈M−{M,O} H .

Hence M ∗ ⊂ {
⋃

G∈M−{P} G | P ∈ M } and thus M ∗ = {
⋃

G∈M−{P} G | P ∈ M }. □

Remark 3.2. From Theorem 3.11, it is clear that if M ∗ denotes the family of all maximal open
sets in Y , then |M | = |M ∗|.

Corollary 3.3. A minimal space Y is T1 iff Y is discrete.

Proof. Firstly, suppose that Y is T1. Then for each z ∈ Y , {z} is minimal closed in Y .
So Y − {z} is maximal open in Y by Theorem 1.3. Hence by Theorem 3.11, Y − {z} =⋃

G∈M−{P} G for some P ∈ M which gives P = {z}. Therefore for each z ∈ Y , {z} is
open in Y and so Y is a discrete space.

The converse part is straightforward. □

Corollary 3.4. A minimal space Y is metrizable iff Y is a discrete space.

Proof. The proof follows by Corollary 3.3 with the fact that every metric space is T1. □

Theorem 3.12. A minimal space Y is disconnected.

Proof. As Y is a minimal space, M forms a minimal open cover of Y by Theorem 3.9. By
Theorem 3.11, it follows that

⋃
G∈M−{M} G is a maximal open set in Y for any M ∈ M .

Hence by Theorem 1.2, {
⋃

G∈M−{M} G,M} makes a separation on Y for each M ∈ M . □

Example 3.1 (Mukharjee [6]). On the set R of real numbers, we define T = {∅, R, {a}, (−∞, a),
(−∞, a], [a,∞)}. The topological space (R,T ) is disconnected but it is not a minimal space.
Hence we conclude that the converse of Theorem 3.12 need not be true.

It is well known that a topological space Y is of zero-dimensional iff Y has a basis
consisting of clopen sets only.

Corollary 3.5. A minimal space Y is of zero-dimensional.

Proof. From Theorem 3.12, it is clear that each M ∈ M is closed in Y . Thus we have a
basis for Y consisting of clopen sets only and so Y is of zero-dimensional. □

Theorem 3.13. A minimal space Y is compact iff |M | = n, where n(̸= 1) is a finite natural
number.
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Proof. Firstly, let Y be a compact space. Since Y is a minimal space, M is a minimal open
cover of Y by Theorem 3.9. If possible, let |M | be infinite. As Y is compact, M has a
finite subcover. But this contradicts the fact that M is a minimal open cover of Y . Since a
minimal open set is a proper open set, |M | ≠ 1.

Conversely, suppose |M | = n, where n( ̸= 1) is a finite natural number. Since Y is a
minimal space, M is a finite basis for Y by Corollary 3.2. As we know that a topological
space Y is compact if and only if there is a basis C for Y such that any open cover of Y by
members of C has a finite subcover, Y is a compact topological space. □

Remark 3.3. Recall that a basis C of a topological space Y is uniform if for each point z ∈ Y
and any open set M with z ∈ M , there are at most finitely many members C of C for which
z ∈ C ⊈ M . So by Theorem 3.13, if Y is a compact minimal space then M forms a uniform basis
for Y and in this case Y is metacompact as well as developable [8, p. 262].

4. MEAN SPACES

This section deals with mean topological spaces.

Definition 4.8. A topological space Y is said to be a mean space if there is a basis {∅} ∪ B for Y
where B consists of mean open sets of Y only. In this case, B is said to be a mean basis for Y .

We see that a mean topological space has no minimal open set.

Example 4.2. (i) Every T1 connected topological space is a mean space (by Theorem 1.6).
(ii) Sorgenfrey line is a disconnected mean space.

Remark 4.4. From the above examples, it is clear that two mean spaces may not be homeomorphic.

It may appears that a disconnected space may be a mean space but it is not true.

Example 4.3. Let R be the set of real numbers and T = {∅, R, {a}, (−∞, a), (−∞, a], (a,∞), [a,
∞), R− {a}}. The topological space (R,T ) is disconnected but it is not a mean space.

Theorem 4.14. There exists a mean space on a linear ordered set Y if for p, q ∈ Y with p < q, we
have t ∈ Y such that p < t < q.

Proof. We have to prove that there is a mean basis B for some topology S on Y . For this,
we consider the following four cases:
Case (i): Let Y has neither the least nor the greatest element. Then B = {∅}∪{(s, t) | s, t ∈
Y } gives a mean basis for Y .
Case (ii): Let u be the least element of Y but Y has no greatest element. Then B =
{∅} ∪ {[u, d) | d ∈ Y } gives a mean basis for Y .
Case (iii): Let v be the greatest element of Y but Y has no least element. Then B =
{∅} ∪ {(c, v] | c ∈ Y } gives a mean basis for Y .
Case (iv): Let u be the least element and v be the greatest element of Y . Since u < v, there
exists c ∈ Y such that u < c < v. The subbasis {∅} ∪ {[u, d) | d ∈ Y, u < d} ∪ {(e, v] | e ∈
Y, e < v} gives a mean basis for Y . □

Corollary 4.6. There exists a compact, connected and non-metrizable mean space.

Proof. We consider a linearly ordered set Y having the following properties:
(i) whenever p, q ∈ Y with p < q there is a z ∈ Y such that p < z < q, and
(ii) Y has both least and greatest elements, namely u and v respectively.
Let C be the basis for Y generated by the subbasis constructed in Case (iv) of Theorem
4.14 and P be the topology generated by the basis C . Clearly, C is a mean basis for P . As
any two distinct open sets of (Y,P) have nonempty intersection, (Y,P) is connected. Let
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U be an open cover of Y . We choose U1, U2 ∈ U such that u ∈ U1, v ∈ U2. Then {U1, U2}
is a finite subcover of U . So (Y,P) is compact. Since (Y,P) is not a Hausdorff space, it
is non-metrizable. □

Theorem 4.15. A cut-point space Y is a mean space iff Y is T1.

Proof. Necessity: Any t ∈ Y is a cut point of Y and so {t} is either open or closed in Y
follows by Theorem 1.7. As Y is a mean space, there has no minimal open set in Y . There-
fore {t} is closed in Y . It then follows that Y is a T1-space.
Sufficiency: As Y is a T1 connected topological space, we get a mean basis for Y by Theo-
rem 1.6. □

Theorem 4.16. Let Y, Z be two topological spaces and there is a homeomorphism f : Y → Z. If
Y is a mean space, Z is so.

Proof. Let D be a mean basis for Y . We prove that {f(B) | B ∈ D} forms a mean basis for
Z. As each B ∈ D is mean open in Y and f is bijective, f(B) is mean open in Z. Suppose
that M is open in Z. Then f−1(M) is open in Y . It means that there have a subfamily D1

of D such that f−1(M) =
⋃

B∈D1
B. Now f−1(M) =

⋃
B∈D1

B ⇒ M = f(
⋃

B∈D1
B) =⋃

B∈D1
f(B). As {f(C) | C ∈ D1} is a subcollection of {f(C) | C ∈ D}, it follows that

{f(C) | C ∈ D} is a basis for Y . □

Lemma 4.2. Suppose Y is a mean space and G1, G2 be distinct open sets in Y with G1∩G2 ̸= ∅.
Then G1 ∩G2 is a mean open set in Y .

Proof. The following two cases may arise:
Case (i): Gi ⊊ Gj , i, j ∈ {1, 2}, i ̸= j. Then G1 ∩ G2 is a proper subset of G2 or G1 which
gives that G1 ∩G2 is not a maximal open set in Y .
Case (ii): Gi ⊈ Gj , i, j ∈ {1, 2}, i ̸= j. Then G1 ∩G2 is a proper subset of both G1, G2 and
so G1 ∩G2 is not a maximal open set in Y .

In either of above two cases, as Y has no minimal open set, G1 ∩G2 is a mean open set
in Y . □

For any subset A of the topological space Y , we express the derived set of A by A′.

Theorem 4.17. For any open set G in a mean space Y , G ⊂ G′.

Proof. As G is open in the mean space Y , G is an infinite subset of Y . Let g ∈ G. To show
that g ∈ G′, let M be an open set with g ∈ M . Then the following two cases may arise:
Case (i): G = M . Then M contains a point of G other than g.
Case (ii): G ̸= M . Then G ∩M ̸= ∅ and so by Lemma 4.2, G ∩M is a mean open set in Y .
Thus G ∩M is infinite and so M contains a point of G other than g.
For both of the above two cases, we see that any for open set M with g ∈ M consists of a
point of G different from g which means g ∈ G′. Hence we have G ⊂ G′. □

Corollary 4.7. An open set M in a mean space Y is also closed in Y iff M = M ′.

Proof. If M = M ′, then Cl(M) = M ∪M ′ = M and so M is closed in Y .
Conversely, let M be closed in Y . Then Cl(M) = M . It yields M∪M ′ = M ⇒ M ′ ⊂ M .

Therefore by the Theorem 4.17, M = M ′. □

Corollary 4.8. For any open set M in a connected mean space Y , we have M ⊊ M ′.

Proof. By Theorem 4.17, M ⊂ M ′ which yields either M ⊊ M ′ or M = M ′. The open
set M in Y would also be closed in Y if M = M ′ by Corollary 4.7 which in turns would
implies that Y is disconnected. Hence M = M ′ is not possible as Y is connected. □
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Theorem 4.18. Three statements given below are equivalent in a connected mean space Y :
(i) M is a proper regularly open set.

(ii) Int(M ′) = M .
(iii) M ′ −M ⊂ (Y −M ′)′.

Proof. (i) ⇒ (ii): Given M is open in a connected mean space Y . So we have M ⊊ M ′ by
Corollary 4.8. Then Cl(M) = M ∪ M ′ = M ′. As M is a proper regularly open set in Y ,
Cl(M) ̸= Y . Since M = Int(Cl(M)), we see that M = Int(M ′).

(ii) ⇒ (iii): Let t ∈ M ′ − M . Then t /∈ M and by (ii) t is not an interior point of M ′.
Hence any open set V with t ∈ V consists of a point z(̸= t) such that z /∈ M ′ which in
turns implies that z ∈ Y −M ′. Therefore t ∈ (Y −M ′)′ and so M ′ −M ⊂ (Y −M ′)′.

(iii) ⇒ (i): We have M ⊂ M ′ according to Theorem 4.17. So M ⊂ Int(M ′). Then
we only require to show that Int(M ′) ⊂ M . Let p ∈ Int(M ′). So we have an open set
N in Y such that p ∈ N ⊂ M ′. If p /∈ M then by (iii) N contains a point of Y − M ′

but this contradicts the fact that N ⊂ M ′. Thus p ∈ M and so Int(M ′) ⊂ M . Hence
Int(Cl(M)) = Int(M ′) = M . □

Theorem 4.19. For any topological space Z, a function h : Z → R is continuous iff h−1(M) is
open in Z for any mean open set M in R.

Proof. Firstly, suppose h−1(M) is open in Z for each mean open set M in R. Then h−1(d,∞)
and h−1(−∞, d) are open sets in Z for each d ∈ R. Therefore h is upper as well as lower
semicontinuous. Thus h is continuous.

The converse part is obvious. □

5. CONCLUSION

A basis of a topological space Y is sufficient to find all characterizations of that topolog-
ical space Y and it is easier to study a topological space Y by a basis compare to taking into
consideration of the topological structure. Theorem 3.8 and Theorem 4.14 ensure the ex-
istence of minimal spaces and mean spaces respectively. An endorsement to the minimal
spaces is due to Theorem 3.9. Thus we expect that the article would make it convenient
to get findings of topological spaces. A natural example of a cut-point space is the real
line R endowed with the usual topology. Theorem 4.15 glorifies the mean spaces by the
cut-point spaces. Theorem 4.19 reveals that a continuous function of the type f : Y → R
can be characterized by the mean open sets in R. In overall, we conclude that the present
work may further enhance and promote the research in the fields like the cut-point spaces,
connectedness, compactness etc.

Acknowledgement. The authors would like to state that the remarks, suggestions of the referees
have definitely helped to improve the quality of contents of the article and hence we express sincere
gratitude to the referees for reading this note carefully.
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