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A Study On Roman Domination in Deg-centric Graphs

TIMMY TOMY THALAVAYALIL 1

ABSTRACT. The deg-centric graph of a simple, connected graph G, denoted by Gd, is a graph constructed
from G such that V (Gd) = V (G) and E(Gd) = {vivj : dG(vi, vj) ≤ degG(vi)}. This paper presents the
Roman domination number of deg-centric graphs. Also, investigate the properties and structural characteristics
of this type of graph.

1. INTRODUCTION

For a basic terminology of graph theory, we refer to [4]. For further topics on graph
classes, [9]. The number of edges of a graph G is denoted by e(G). Recall that the distance
between two distinct vertices vi and vj of G, denoted by dG(vi, vj), is the length of the
shortest path joining them. The eccentricity of a vertex vi ∈ V (G), denoted by e(vi), is the
farthest distance from vi to some vertex of G. The diameter of a graph is the maximum
eccentricity among all the vertices. A particular type of newly derived graphs based on
the vertex degrees and distances in graphs called deg-centric graphs have been introduced
in [5] as follows, The degree centric graph or deg-centric graph of a graph G is the graph Gd

with V (Gd) = V (G) and E(Gd) = {vivj : dG(vi, vj) ≤ degG(vi)} [5]. Let G be a graph
and Gd be the deg-centric graph of G. Then, the successive iteration deg-centric graph of
G, denoted by Gdk , is defined as the derived graph obtained by taking the deg-centric
graph successively k times, that is, Gdk= ((Gd)d . . .)d, (k-times). This process is known as
deg-centrication process [5].

Roman dominating functions and their variants have been in the literature for over
more than two decades [2, 1, 3]. Cockayne et al.[1] were the first to mathematically formu-
late the concept of Roman dominating functions in graphs based on the defence strategy
of Roman Emperor Constantine that was mentioned in the work of Ian Stewart (see[13]).
A Roman Dominating Function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2}
such that every vertex v with f(v) = 0 is adjacent to at least one vertex u with f(u) = 2.
The value ω(f) =

∑
v∈V f(v) is called the weight of f . The least value of ω(f) among

all the Roman dominating functions f on S is called the Roman domination number of S,
denoted by γR(S) . A Roman dominating function f with ω(f) = γR(S) is called a γR-
function of S [1].

The functions f : V → {0, 1, 2} on a graph induce an ordered partition (V0, V1, V2)
of the vertex set, where Vi = {v ∈ V |f(v) = i}; i = 0, 1, 2. There is always a one-one
correspondence between these functions and the ordered partitions induced by them and
thus these functions can be written as f = (V0, V1, V2).

Motivated by the above-mentioned studies, we investigate the Roman domination and
some properties of deg-centric graphs.
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Definition 1.1. [5] The degree centric graph or deg-centric graph of simple graph G, denoted by
Gd, is the graph with V (Gd) = V (G) and E(Gd) = {vivj : dG(vi, vj) ≤ max{degG(vi),degG(vj)}}.
This graph transformation is called deg-centrication of the graph.

Definition 1.2. [5] The iterated deg-centric graph of a graph G, denoted by Gdk , is defined
as the graph obtained by applying deg-centrication successively k-times. That is, Gdk=
((Gd)d...)d, (k-times).

Theorem 1.1. [5] The deg-centric graph of a non-star graph G with δ(G) ≥ diam(G) is complete.

Corollary 1.1. [5] The deg-centric graph Gd of a non-star graph G with degG(vi) ≥ e(vi) is
complete.

Proposition 1.1. [1] For any graph G of order n, γ(G) = γR(G) if and only if G = Kn.

Proposition 1.2. [1] If G is a graph of order n which contains a vertex of degree n − 1, then
γ(G) = 1 and γR(G) = 2.

An illustration of iterated deg-centrication of a cycle graph on 7 vertices is given in
Figure 1.
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FIGURE 1 Example of iterated deg-centrication of C7.

2. RESULTS

Proposition 2.3. For a connected graph G of order n, if degG(vi) ≥ eG(vi), for all vi ∈ V (G),
then, γR(Gd) = 2.

Proof. Connected graph G of order n, if degG(vi) ≥ eG(vi), then,in view of Proposition
1.1, Gd

∼= Kn. In Roman domination, the functions f : V → {0, 1, 2} on a graph induce an
ordered partition (V0, V1, V2) of the vertex set, where Vi = {v ∈ V |f(v) = i}; i = 0, 1, 2. The
deg-centric graph is a complete graph with n vertices so that we can assign value two to
any vertex vi. That is, f(vi) = 2, all other vertices are adjacent with vi, we can assign value
zero to these vertices. Then, after summation, the least value of ω(f) =

∑
v∈V f(v) = 2.

Hence, γR(Gd) = 2. □

Proposition 2.4. If Gd is a graph of order n ≥ 3 which contains a vertex of degree n − 1, then
γR(Gd) = 2.

Proof. The result is a direct consequence of Proposition 1.2. □

Proposition 2.5. For any deg-centric graph Gd of order n, Gd = Kn, then, γR(Gd) = n.

Proof. The result is a direct consequence of the Definition of Roman domination, and we
can assign each vertex a separate value. □
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3. ROMAN DOMINATION NUMBER OF DEG-CENTRIC GRAPHS

This section will address the Roman domination number of the deg-centric graphs.

Proposition 3.6. For a complete graph Kn, n ≥ 3, γR((Kn)d) = 2.

Proof. For a complete graph Kn, δ(Kn) ≥ eG(vi), the deg-centric graph of a complete
graph Kn of order n ≥ 3 is always isomorphic to the complete graph Kn. In view of
Proposition 2.3, γR((Kn)d) = 2. □

For convenience, a path Pn is depicted on a horizontal line, and the vertices are labelled
from left to right as v1, v2, v3,. . . , vn.

Proposition 3.7. For a path Pn,

γR((Pn)d) =


1; if n = 1

2⌈n
5 ⌉, if n ≡ 0, 2, 3, 4( mod 5).

2⌊n
5 ⌋+ 1, if n ≡ 1( mod 5).

.

Proof. The path Pn is depicted on a horizontal line, and the vertices are labelled from
left to right as v1, v2, v3,. . . , vn. In Roman domination, the functions f : V → {0, 1, 2}
on a graph induce an ordered partition (V0, V1, V2) of the vertex set, where Vi = {v ∈
V |f(v) = i}; i = 0, 1, 2. In view of Definition1.1, the vertices v1, vn have a degree of two,
vertices v2, vn1

have a degree of three and the vertices v3, v4, . . . , vn−3, vn−2 have a degree
of four in (pn)d. Consider the deg-centric graph P1, clearly γR((P1)d) = 1. For n = 2, 3, 4,,
clearly v2 added to the least domination set. Hence, γR((Pn)d) = 2. Similarly, in P5,
vertex v3 is adjacent to all other vertices in the deg-centric graph, γR((P5)d) = 2. Hence,
γR((P5)d) = 2⌈n

5 ⌉.
If n ≥ 6, with consecutively labeled vertices {v1, v2, v3, . . . , vn}. In view of Definition

1.1, the path P6, in Roman domination of (p6)d, we can assign value two to vertex v3.
That is, f(v3) = 2, assign all 4 adjacent vertices value as zero, that is f(v1) = 0, f(v2) =
0, f(v4) = 0 and f(v5) = 0. Then, the remaining vertex v6 adds value as f(v6) = 1.
HenceγR((P6)d) = 3. Hence, γR((Pn)d) = 2⌊n

5 ⌋. Similarly, in the Roman domination of
(p7)d, we can assign value two to vertices v3 and v7. That is, f(v3) = 2 and f(v7) = 2,
assign all other adjacent vertices value as zero, γR((P7)d) = 4. Hence, γR((P7)d) = 2⌈n

5 ⌉.
If n ≡ 0, 2, 3, 4( mod 5), in Roman domination of (pn)d, we can assign value 2 to the

vertices v3+5i, all other vertices are adjacent with these vertices, add value zero to these
vertices, the least value of ω(f) =

∑
v∈V f(v) = 2⌈n

5 ⌉.
If n ≡ 1( mod 5), in Roman domination of (pn)d, we can assign value 2 to vertices

v3+5i, all other vertices are adjacent with these vertices except vertex v5i+1. Then, the
remaining vertex v5i+1 adds value as f(v5i+1) = 1. Hence, the least value of ω(f) =∑

v∈V f(v) = 2⌊n
5 ⌋+ 1. □

An illustration of proposition 3.7 is given in Figure 2.
A star graph, denoted by k1,n, n ≥ 0, is obtained by attaching n pendant vertices (also

called leaves) to a central vertex v0.

Proposition 3.8. For n ≥ 1, γR((K1,n)d) = 2.

Proof. In view of Definition 1.1, the deg-centric graph of a star graph k1,n, n ≥ 0, is always
isomorphic to the star graph. If n ≥ 0, in Roman domination, in the central vertex, assign
value as two, and all other vertices as zero. Hence, γR((K1,n)d) = 2. □
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FIGURE 2 γR((P8)d) = 4.

Proposition 3.9. For a cycle Cn, n ≥ 3,

γR((Cn)d) =

{
2⌈n

5 ⌉, if n ≡ 0, 2, 3, 4( mod 5).

2⌊n
5 ⌋+ 1, if n ≡ 1( mod 5).

.

Proof. In Roman domination, the functions f : V → {0, 1, 2} on a graph induce an ordered
partition (V0, V1, V2) of the vertex set, where Vi = {v ∈ V |f(v) = i}; i = 0, 1, 2. Con-
sider the deg-centric graph Cn, n ≤ 5, clearly (Cn)d is complete, γR((Cn)d) = 2. Hence,
γR((Cn)d) = 2⌈n

5 ⌉. If n ≥ 6, with consecutively labeled vertices {v1, v2, v3, . . . , vn}. In
view of Definition 1.1, degCn

(vi) = 2, for all vi ∈ V (Cn), any vertex vi in (Cn)d is adjacent
to all vertices dCn(vi, vj) ≤ 2, the deg-centric graph, (cn)d is always a 4-regular graph.

In view of Definition 1.1, the cycle C6, in Roman domination of (C6)d, we can assign
value two to vertex v3. That is, f(v3) = 2, assign all 4 adjacent vertices value as zero, that
is f(v1) = 0, f(v2) = 0, f(v4) = 0 and f(v5) = 0. Then, the remaining vertex v6 adds value
as f(v6) = 1, γR((C6)d) = 3. If n ≡ 1( mod 5), in Roman domination of (Cn)d, we can
assign value 2 to vertices v3+5i, all other vertices are adjacent with these vertices except
vertex v5i+1. Then, the remaining vertex v5i+1 adds value as f(v5i+1) = 1. Hence, the
least value of ω(f) =

∑
v∈V f(v) = 2⌊n

5 ⌋+ 1. Hence, γR((Cn)d) = 2⌊n
5 ⌋.

Similarly, the Roman domination of (C7)d, we can assign value two to vertices v3 and
v7. That is, f(v3) = 2 and f(v7) = 2, assign all other adjacent vertices value as zero,
γR((C7)d) = 4. Hence, γR((C7)d) = 2⌈n

5 ⌉. If n ≡ 0, 2, 3, 4( mod 5), in Roman domination
of (Cn)d, we can assign value 2 to the vertices v3+5i, all other vertices are adjacent with
these vertices, add value zero to these vertices, the least value of ω(f) =

∑
v∈V f(v) =

2⌈n
5 ⌉. □

An illustration of Proposition 3.9 is given in Figure 3.
A non-trivial bistar graph, denoted by Sa,b, is a graph obtained by joining the centers of

two non-trivial star graphs k1,a, a ≥ 1 and k1,b, b ≥ 1 with the edge v0u0.

Proposition 3.10. For a, b ≥ 2, γR((Sa,b)d) = 2.

Proof. The bistar graph Sa,b; a, b ≥ 1, let the pendant vertices of k1,a be the set X =
{v1, v2, . . . , va} and let the pendant vertices of k1,b be the set Y = {u1, u2, . . . , ub}. Finally,
let W = {v0, u0} be center vertices. By Definition 1.1, it follows that both v0, u0 are adja-
cent with all other a+b+1 vertices. In Roman domination, we can assign value two to any
one of these vertices. That is, f(v0) = 2 0r f(u0) = 2, assign all a+ b+ 1 adjacent vertices
value as zero. Then, the least value of ω(f) =

∑
v∈V f(v) = 2. Hence, γR((Sa,b)d) = 2. □
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FIGURE 3 γR((C7)d) = 4.

Note that, the complete bipartite graph Kn,m, n,m ≥ 2, by Definition 1.1, all the ver-
tices of kn,m are adjacent in (Kn,m)d; that is, the deg-centric graph is complete. Hence,
γR((Kn,m)d) = 2.

A wheel graph denoted by W1,n, n ≥ 3 is obtained by taking a cycle Cn, n ≥ 3 (the
rim with rim-vertices) and adding the central vertex v0 with spokes namely, edges v0vi,
1 ≤ i ≤ n.

Proposition 3.11. For n ≥ 3, γR((W1,n)d) = 2.

Proof. For a wheel graph W1,n, n ≥ 3, note that, deg(vi) ≥ e(vi) in wheel graph, for all
vi ∈ V (W1,n). In view of Definition 1.1, (W1,n)d is isomorphic to Kn+1. In views of
Proposition 2.4, γR((W1,n)d) = 2. □

A helm graph, denoted by H1,n,, n ≥ 3 is a graph obtained from a wheel graph W1,n by
attaching a pendant vertex ui to the corresponding rim vertex vi [9].

Proposition 3.12. For n ≥ 3, γR((H1,n)d) = 2.

Proof. The helm graph H1,n,, n ≥ 3 is of the order 2n+1. Let V (H1,n,) = {v0, v1, v2, . . . , vn,
u1, u2, . . . , un︸ ︷︷ ︸

pendant vertices

}.In view of Definition 1.1, there are 2n edge incident to v0 and vi in

(H1,n)d. In Roman domination, we can assign value two to any of these vertices v0 0r vi.
That is, f(v0) = 2 0r f(vi) = 2, assign all 2n adjacent vertices value as zero. Then, the least
value of ω(f) =

∑
v∈V f(v) = 2. Hence, γR((H1,n)d) = 2. □

A closed helm graph denoted by CH1,n, n ≥ 3 is the graph obtained from a helm graph
H1,n by cyclically joining the pendant vertices to form an outer rim.

Proposition 3.13. For n ≥ 3, γR((CH1,n)d) = 2.

Proof. Consider a closed helm graph CH1,n n ≥ 3, is of the order 2n+1. Let V (CH1,n,) =
{v0, v1, v2, . . . , vn, u1, u2, . . . , un}. For all CH1,n, n < 8, δ(CH1,n) = 3. If n = 3, 4, 5, 6, 7 the
diameter is bounded by diam(CH1,n) ≤ 3. Since δ(CH1,n) ≥ diam(CH1,n)δ(CH1,n) = 3.
Then, the deg-centric graph of a closed helm graph CH1,n of order n < 8 is the complete
graph. Finally, by Proposition 2.4, γR((CH1,n)d) = 2. If n ≥ 8, we have δ(CH1,n) = 3
and diam(CH1,n) = 4, in CH1,n center vertex v0, deg(v0) = n. In view of Definition 1.1,
deg(v0) = 2n in deg-centric graph. Now we can assign value as two in Roman domina-
tion, f(v0) = 2, all other 2n vertices are adjacent to v0, and assign value zero to all these
values. Finally, γR((CH1,n)d) = 2. □
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A sunlet graph , denoted by Sln, n ≥ 3, is a graph obtained by attaching a pendant
vertex to every vertex of a cycle graph cn, n ≥ 3. In other words, a sunlet graph on 2n
vertices is obtained by taking the corona product Cn ◦K1. Recall that the corona between
G of order n and H is denoted by G◦H . It is obtained by taking n copies of H and joining
a copy of H to each vertex of G.

Proposition 3.14. For n ≥ 3,

γR((Sln)d) =

{
2⌈n

5 ⌉, if n ≡ 0, 2, 3, 4( mod 5).

2⌊n
5 ⌋+ 1, if n ≡ 1( mod 5).

Proof. The sunlet graph Sln, n ≥ 3 is of the order 2n. Let V (Sln) = {v1, v2, . . . , vn,
u1, u2, . . . , un︸ ︷︷ ︸

pendant vertices

}. If 3 ≤ n ≤ 5, in view of Definition 1.1, degSln(vi) = 3 > e(vi) = 2 then

all vi vertices are adjacent with other 2n− 1 vertices. In Roman domination, the functions
f : V → {0, 1, 2} on a graph induce an ordered partition (V0, V1, V2) of the vertex set,
where Vi = {v ∈ V |f(v) = i}; i = 0, 1, 2. In the Roman domination set, add any one of the
vertex vi to the value 2. Hence, γR((Sln)d) = 2.

If n = 6, by Definition 1.1, then all vi vertices are adjacent with other 2n − 2 vertices.
However, since all ui are pendant vertices, in view of Definition 1.1, no edge forms from a
ui in (Sln)d. In the Roman domination set, add value 2 to the vertex v3, f(v3) = 2, and one
non-adjacent vertex u6 add value 1, f(u6) = 1. Hence, γR((Sl6)d) = 3. If n ≡ 1( mod 5),
in Roman domination of (Sln)d, we can assign value 2 to vertices v3+5i, all other vertices
are adjacent with these vertices except vertex u5i+1. Then, the remaining vertex u5i+1 adds
value as f(u5i+1) = 1. Hence, the least value of ω(f) =

∑
v,u∈V f(v) + f(u) = 2⌊n

5 ⌋ + 1.
Hence, γR((Sln)d) = 2⌊n

5 ⌋+ 1.
If n ≥ 7, by Definition 1.1, then all vi vertices are adjacent with eleven vertices. How-

ever, since all ui are pendant vertices, no edge forms from a ui in (Sln)d. Then, all ui have
degree five in (Sln)d. The deg-centric graph of (Sln), n = 7, with consecutively labeled
rim vertices {v1, v2, v3, . . . , vn}. If n ≡ 0, 2, 3, 4( mod 5), in Roman domination of (Sln)d,
we can assign value 2 to the vertices v3+5i, all other vertices are adjacent with these ver-
tices, add value zero to these vertices, the least value of ω(f) =

∑
u,v∈V f(v) + f(u) =

2⌈n
5 ⌉. □

An illustration of a proposition 3.14 is given in Figure 4.
A djembe graph, denoted by D1,n, is obtained by joining the vertices ui’s; 1 ≤ i ≤ n of a

closed helm graph CH1,n to its central vertex v0.

Proposition 3.15. For n ≥ 3, γR((D1,n)d) = 2.

Proof. The djembe graph D1,n, n ≥ 3, is of the order 2n+1. Let V (D1,n) = {v0, v1, v2, . . . , vn,
u1, u2, . . . , un}. Since δ(D1,n) = 4 > diam(D1,n) = 2, by Definition 1.1, 2n edge incident
at all 2n + 1 vertices in (D1,n)d. That is, (D1,n)d ∼= K2n+1. In views of Proposition 2.4,
γR((D1,n)d) = 2. □

A double wheel DWn is obtained by taking two copies of a wheel Wn n ≥ 3 and merging
the two central vertices.

Proposition 3.16. For n ≥ 3, γR((DWn)d) = 2.

Proof. The double wheel graph DWn, n ≥ 3, is of the order 2n + 1. Let V (DWn) =
{v0, v1, v2, . . . , vn, u1, u2, . . . , un}. Since deg(v0) = 2n > e(v0) = 1 and deg(vi) = degG(ui) =
3 > e(v0) = 1 in DWn, by Definition 1.1, 2n edge incident from all 2n + 1 vertices in
(DWn)d. That is, (DWn)d ∼= K2n+1. In views of Proposition 2.4, γR((DWn)d) = 2. □
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FIGURE 4 γR(Sl7)d) = 4.

A gear graph, denoted by Gn,n ≥ 3, is a graph obtained by inserting an extra vertex
between each pair of adjacent vertices on the rim of a wheel graph Wn.

Proposition 3.17. For n ≥ 3, γR((Gn)d) = 2.

Proof. The gear graph, n ≥ 4, is of the order 2n+ 1. Let V (Gn) = {v0, v1, v2, . . . , vn,
u1, u2, . . . , un}. Since degG(v0) = n > e(v0) = 2, by Definition1.1, 2n edge forms from
v0 in (Gn)d, f(v0) = 2, and assign a value zero to all other adjacent vertices. Finally,
γR((Gn)d) = 2. □

A web graph, denoted by Wb1,n, n ≥ 3 is the graph obtained by attaching a pendant
edge to each vertex of the outer cycle (or rim) of the closed helm graph CH1,n.

Proposition 3.18. For n ≥ 3, γR((Wb1,n)d) = 2.

Proof. The web graph Wb1,n, n ≥ 3, is of the order 3n+1. Let V (Wb1,n,) = {v0, v1, v2, . . . ,
vn−1, vn, u1, u2, u3, . . . , un, w1, w2, w3, . . . , wn︸ ︷︷ ︸

pendant vertices

}. If n ≥ 3, Since deg(v0) = n ≥ e(v0) = 2 in

Wb1,n, by Definition 1.1, all other vertices are incident to v0 in (Wb1,n)ld, f(v0) = 2, and
assign value zero to all other vertices. Then, the least value of ω(f) =

∑
v∈V f(v) = 2.

Hence, γR((Wb1,n)d) = 2. □

A flower graph, F1,n, n ≥ 3 is a graph obtained from a helm graph H1,n, by joining each
of its pendant vertices ui’s to its central vertex v0.

Proposition 3.19. For n ≥ 3, γR((F1,n)d) = 2.

Proof. The flower graph F1,n,, n ≥ 3 is of the order 2n+ 1. Let V (F1,n,) = {v0, v1, v2, . . . ,
vn, u1, u2, . . . , un}. Since δ(F1,n,) = 2 = diam(F1,n,) = 2, Since deg(v0) = 2n ≥ deg(vi) =
n ≥ e(v0) = 2 in F1,n,, by Definition 1.1, 2n edge incident at v0 and vi in (F1,n,)d. In
Roman domination, we can assign value two to vertex v0. That is, f(v0) = 2 assign all 2n
adjacent vertices value as zero. Then, the least value of ω(f) =

∑
v∈V f(v) = 2. Hence,

γR((F1,n)d) = 2. □

The sunflower graph, denoted by SF1,n, n ≥ 3 is obtained from the wheel W1,n by at-
taching n vertices ui, 1 ≤ i ≤ n such that each ui is adjacent to vi and vi+1 and count the
suffix is taken modulo n.
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Proposition 3.20. For n ≥ 3, γR((SF1,n)d) = 2.

Proof. For a sunflower graph SF1,n,, n ≥ 3, is of the order 2n + 1. Let V (SF1,n,) =
{v0, v1, v2, . . . , vn, u1, u2, . . . , un}. Since deg(v0) = n ≥ e(v0) = 2 and deg(vi) = n+ 1 ≥
e(vi) = 2 in SF1,n. Then by Definition 1.1, 2n edge incident at v0 and vi in (SF1,n,)d. In
Roman domination, we can assign value two to any of these vertices v0 0r vi. That is,
f(v0) = 2 0r f(vi) = 2, assign all 2n adjacent vertices value as zero. Then, the least value
of ω(f) =

∑
v∈V f(v) = 2. Hence, γR((SF1,n)d) = 2. □

A closed sunflower graph CSF1,n is obtained by adding the edge uiui+1 of the sunflower
graph.

Proposition 3.21. For n ≥ 3, γR((CSF1,n)d) = 2.

Proof. The closed sunflower graph CSF1,n,, is of the order 2n + 1. Let V (CSF1,n,) =
{v0, v1, v2, . . . , vn, u1, u2, . . . , un}. For n ≥ 3, δ(CSF1,n,) ≥ diam(CSF1,n,), By Definition
1.1, (CSF1,n)d is complete. In view of Proposition 2.4, γR((CSF1,n)d) = 2. □

Consider a complete graph Kn with the vertex set V = v1, v2, v3, . . . , vn. Let U =
u1, u2, u3, . . . , un be a copy of V (G) such that ui corresponds to vi. The sun graph, denoted
by Sn, is a graph with vertex set V ∪U and two vertices x and y are adjacent in Sn if x ∼ y
in Kn and x = ui, y ∈ vi, vi+1 .

Proposition 3.22. For n ≥ 3, γR((Sn)d) = 2.

Proof. The sun graph Sn, n ≥ 3, is of the order 2n. Let V (Sn) = {v1, v2, . . . , vn, u1,
u2, . . . , un}. Since degSn

(vi) = n + 1 > e(vi) = 2, by Definition 1.1, (2n − 1) edges form
from vi in (Sn)d, assign any one of vi value as two, f(vi) = 2, and assign a value of zero
to all other 2n− 1 vertices. Finally, γR((Sn)d) = 2. □

A closed sun graph CSn is the graph obtained from adding the edges uiui+1 in the sun
graph. In view of Definition 1.1, the deg-centric graph of a closed sun graph CSn, n ≥ 3,
is complete which implies ε((CSn)d) = ε(K2n). That is, γR((CSn)d) = 2.

A friendship graph, denoted by Fn, n ≥ 1, is obtained by joining n copies of the complete
graph K3 with a common vertex. In view of Definition 1.1, γR((Fn)d) = 2.

An antiprism graph, denoted by An, n ≥ 3 is a graph obtained two cycles Cn and C ′
n of

order n with vertex sets V = {v1, v2, v3, . . . , vn} and U = {u1, u2, u3, . . . , un} respectively.
Join the vertices uivi and uivi+1 to form the additional edges.

Proposition 3.23. For n ≥ 3,

γR((An)d) =

{
2⌈n

8 ⌉, if n ≡ 0, 2, 3, 4, 5, 6, 7( mod 8).

2⌊n
8 ⌋+ 1, if n ≡ 1( mod 8).

Proof. Consider an antiprism graph An, n ≥ 3, is of the order 2n. Let V (An) = {v1, v2, . . . ,
vn, u1, u2, . . . , un}. In Roman domination, the functions f : V → {0, 1, 2} on a graph
induce an ordered partition (V0, V1, V2) of the vertex set, where Vi = {v ∈ V |f(v) = i}; i =
0, 1, 2. If 3 ≤ n ≤ 8 , deg(vi) = deg(ui) = 4 > e(vi) = e(ui) in An then by Definition 1.1,
(An)d ∼= K2n,γR((An)d) = 2. Hence, γR((An)d) = 2⌈n

8 ⌉.
If n ≥ 9, deg(vi) = deg(ui) = 4 in An then by Definition 1.1, deg(vi) = deg(ui) = 16

in (An)d. The deg-centric graph of (An), n ≥ 9, with consecutively labeled rim vertices
{v1, v2, v3, . . . , vn}. If n ≡ 0, 2, 3, 4, 5, 6, 7( mod 8), the Roman domination set of (An)d, of
vertex vi, where 1 ≤ i ≤ n, the vertex vi, added to the value 2, f(vi) = 2, the vertex vi
adjacent with eight vertices in rim , vi−4, vi−3, vi−2, vi−1, vi+1, vi+2,vi+3 and vi+4 in (An)d
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added the value zero. Then we can add value 2 to the vertices v8i+1, i = 1, 2, 3 . . . n,
f(v8i+1) = 2. Hence, γR((An)d) = 2⌈n

8 ⌉.
If n ≡ 1( mod 8), in Roman domination of (An)d, we can assign value 2 to vertices

v4+8i, all other vertices are adjacent with these vertices except vertex u8i+1. Then, the
remaining vertex u8i+1 adds value as f(u8i+1) = 1. Hence, the least value of ω(f) =∑

v,u∈V f(v) + f(u) = 2⌊n
8 ⌋+ 1. Hence, γR((An)d) = 2⌊n

8 ⌋+ 1. □

4. CONCLUSION

The Roman domination of deg-centric graphs has been discussed, and the Roman dom-
ination number of deg-centrication of some graph classes also. Various exploratory results
have been presented to establish some foundation for further research. As a scope of the
study, the researchers can extend the study on graph theoretical parameters to deg-centric
graphs of various class graphs and obtain fruitful results. New researchers can also study
different types of graph domination.
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