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On Brousseau Sums of Tetranacci Numbers

PRABHA SIVARAMAN NAIR1

ABSTRACT. In this paper, we show how to find the Brousseau sum
∑n

k=0 k
mTk and the shifted Brousseau

sum
∑n

k=1 k
mTk+r for all integers m, r with m ≥ 0. Here, (Tk)k≥0 is the Tetranacci sequence, which is defined

by the fourth-order linear recurrence Tk = Tk−1 + Tk−2 + Tk−3 + Tk−4 for k ≥ 4 with T0 = 0, T1 = T2 = 1,
and T3 = 2. These numbers are extended to negative indices by Tk = Tk+4 − Tk+3 − Tk+2 − Tk+1 for k < 0.
Furthermore, we find an exact formula for the Brousseau sum

∑n
k=1 k

mT ′
k , where T ′

k is the kth “generic”
Tetranacci number defined by T ′

k = T ′
k−1 + T ′

k−2 + T ′
k−3 + T ′

k−4 for k > 1 with arbitrary initial values
T ′
−2, T

′
−1, T

′
0, and T ′

1.

1. INTRODUCTION

The Tetranacci sequence (see [6]) (Tk)k≥0 is defined by the fourth-order linear recur-
rence

(1.1) Tk = Tk−1 + Tk−2 + Tk−3 + Tk−4,

for k ≥ 4 with initial terms T0 = 0, T1 = T2 = 1 and T3 = 2. This sequence is A000078 in
the OEIS [10] with an alternate indexing convention of T0 = T1 = T2 = 0 and T3 = 1. We
can extend the definition of Tetranacci numbers to negative indices by

Tk = Tk+4 − Tk+3 − Tk+2 − Tk+1,

for k < 0. Many researchers have studied the properties of Tetranacci numbers (see [12,
14, 16, 17]).

The Tetranacci numbers are regarded as a generalization of the classical Fibonacci num-
bers (A000045 in OEIS). Brousseau [2, 3], Erbacher and Fuchs [7], Ledin [9], Zeitlin [18]
and recently Ollerton and Shannon [11], Shannon and Ollerton [13], and Dresden [5] have
developed various methods to find expressions for the Brousseau sums of the form

n∑
k=0

kmFk,

where Fk is the kth Fibonacci number and m is a non-negative integer. In this paper, we
are interested in finding polynomial forms of the Brousseau sums

n∑
k=0

kmTk

of the Tetranacci numbers. Waddill [16] proved that

(1.2) 3 ·
n∑

k=0

Tk = Tn+2 + 2Tn + Tn−1 − 1.

Received: 07.02.2025. In revised form: 24.06.2025. Accepted: 09.09.2025
2020 Mathematics Subject Classification. 11B37, 11B39, 11B83.
Key words and phrases. Binomial coefficient, Brousseau sum, Convolution, Tetranacci number.

453



454 Prabha Sivaraman Nair

We can rewrite (1.2) as

(1.3) 3 ·
n∑

k=0

Tk = Tn+1 + 3Tn + 2Tn−1 + Tn−2 − 1.

Further, Schumacher [12] proved that

(1.4) 3 ·
n∑

k=0

kTk =

(
n− 7

3

)
Tn+1 +

(
3n− 1

)
Tn +

(
2n− 5

3

)
Tn−1 +

(
n− 4

3

)
Tn−2 +

7

3
.

Using (1.3) and (1.4), we can show that

3 ·
n∑

k=0

k2Tk =

(
n2 − 14

3
n+

59

9

)
Tn+1 +

(
3n2 − 2n+

17

3

)
Tn

+

(
2n2 − 10

3
n+

37

9

)
Tn−1 +

(
n2 − 8

3
n+

26

9

)
Tn−2 −

59

9
.

(1.5)

These identities (1.3), (1.4), and (1.5) suggest the following generalization:

(1.6) 3 ·
n∑

k=0

kmTk = ψ
(m)
0 (n)Tn+1 + ψ

(m)
1 (n)Tn + ψ

(m)
2 (n)Tn−1 + ψ

(m)
3 (n)Tn−2 − ψ

(m)
0 (0),

where ψ(m)
i (n) are some “coefficient polynomials” in n of degree m. We utilize basic

recursion techniques that include only the binomial coefficients to obtain expressions for
these polynomials. We further extend (1.6) to the shifted Brousseau sums

n∑
k=1

kmTk+r,

where r is an integer. This is our Theorem 2.4, which involves the identity

3 ·
n∑

k=1

kmTk+r = ψ
(m)
0 (n)Tn+r+1 + ψ

(m)
1 (n)Tn+r + ψ

(m)
2 (n)Tn+r−1 + ψ

(m)
3 (n)Tn+r−2

−
[
ψ
(m)
0 (0)Tr+1 + ψ

(m)
1 (0)Tr + ψ

(m)
2 (0)Tr−1 + ψ

(m)
3 (0)Tr−2

]
.

(1.7)

If we define the “generic” Tetranacci numbers T ′
k by T ′

k = T ′
k−1 + T ′

k−2 + T ′
k−3 + T ′

k−4 for
k > 1 with arbitrary initial values T ′

−2, T
′
−1, T

′
0, and T ′

1, then we can derive an improved
version of (1.7) as

3 ·
n∑

k=1

kmT ′
k = ψ

(m)
0 (n)T ′

n+1 + ψ
(m)
1 (n)T ′

n + ψ
(m)
2 (n)T ′

n−1 + ψ
(m)
3 (n)T ′

n−2

−
[
ψ
(m)
0 (0)T ′

1 + ψ
(m)
1 (0)T ′

0 + ψ
(m)
2 (0)T ′

−1 + ψ
(m)
3 (0)T ′

−2

]
.

Throughout this paper, we assume that
(
0
0

)
= 1 and 00 = 1.

2. MAIN RESULT

2.1. Tetranacci numbers and Powers. In this part, we will derive a recursive formula for
the convolution of the Tetranacci numbers and powers expressed as

n∑
k=0

kmTn−k.

This will be accomplished by utilizing the lemma provided.
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Lemma 2.1. For all integers m,n ≥ 1, the following identity holds:

(2.8) Tn = nm−
[
(−1)m+(−2)m

]
Tn−1−(−1)mTn−2+

n∑
k=1

[
3km−

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k,

where αj = 1− (−1)j − (−2)j − (−3)j .

Proof. The proof is by induction on n. The cases n = 1, n = 2, n = 3, and n = 4 can be
confirmed by direct substitution. Note that T−1 = T−2 = 0. Fix n > 4 and assume that
(2.8) holds for all positive integers less than n. Then

Tn−1 = (n− 1)m −
[
(−1)m + (−2)m

]
Tn−2 − (−1)mTn−3

+

n−1∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k−1,

(2.9)

Tn−2 = (n− 2)m −
[
(−1)m + (−2)m

]
Tn−3 − (−1)mTn−4

+

n−2∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k−2,

(2.10)

Tn−3 = (n− 3)m −
[
(−1)m + (−2)m

]
Tn−4 − (−1)mTn−5

+

n−3∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k−3,

(2.11)

and

Tn−4 = (n− 4)m −
[
(−1)m + (−2)m

]
Tn−5 − (−1)mTn−6

+

n−4∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k−4.

(2.12)

Note that Tn−k−1 = 0 at k = n − 1. So we may drop the corresponding term from the
outer sum in (2.9) and obtain

Tn−1 = (n− 1)m −
[
(−1)m + (−2)m

]
Tn−2 − (−1)mTn−3

+

n−2∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k−1.

(2.13)

Since Tn−k−3 = Tn−k−4 = 0 at k = n − 2 and Tn−k−4 = 0 at k = n − 3, we may rewrite
(2.11) and (2.12) respectively as

Tn−3 = (n− 3)m −
[
(−1)m + (−2)m

]
Tn−4 − (−1)mTn−5

+

n−2∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k−3,

(2.14)

and

Tn−4 = (n− 4)m −
[
(−1)m + (−2)m

]
Tn−5 − (−1)mTn−6

+

n−2∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k−4,

(2.15)
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Now, adding (2.10), (2.13), (2.14), (2.15) and then using the Tetranacci recurrence (1.1), we
obtain

Tn = (n− 1)m + (n− 2)m + (n− 3)m + (n− 4)m −
[
(−1)m + (−2)m

]
Tn−1

− (−1)mTn−2 +

n−2∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k.

(2.16)

At k = n− 1, we have Tn−k = 1 and

3km −
m∑
j=1

αj

(
m

j

)
km−j = 3(n− 1)m −

m∑
j=1

[
1− (−1)j − (−2)j − (−3)j

](m
j

)
(n− 1)m−j

= 3(n− 1)m −
[
nm − (n− 1)m − (n− 2)m + (n− 1)m

− (n− 3)m + (n− 1)m − (n− 4)m + (n− 1)m
]

= (n− 1)m + (n− 2)m + (n− 3)m + (n− 4)m − nm.

Hence by adding the term corresponding to k = n− 1 to the outer sum and then subtract-
ing it from the right-hand side of (2.16), we obtain

Tn = (n− 1)m + (n− 2)m + (n− 3)m + (n− 4)m

−
[
(−1)m + (−2)m

]
Tn−1 − (−1)mTn−2 +

n−1∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k

− [(n− 1)m + (n− 2)m + (n− 3)m + (n− 4)m − nm]

= nm −
[
(−1)m + (−2)m

]
Tn−1 − (−1)mTn−2 +

n−1∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k.

Since Tn−k = 0 at k = n, we may simply add the corresponding term to the outer sum in
the above equation. Thus,

Tn = nm −
[
(−1)m + (−2)m

]
Tn−1 − (−1)mTn−2 +

n∑
k=1

[
3km −

m∑
j=1

αj

(
m

j

)
km−j

]
Tn−k,

and the proof is complete by induction. □

Theorem 2.1. For all integers m ≥ 1 and n ≥ 0, the following identity holds:

3 ·
n∑

k=0

kmTn−k =
(
1− αm

)
Tn +

[
(−1)m + (−2)m

]
Tn−1 + (−1)mTn−2 − nm

+

m∑
j=1

αj

(
m

j

)[ n∑
k=0

km−jTn−k

]
.

(2.17)

Proof. The case where n = 0 is trivial. Let n ≥ 1. Then we may rewrite (2.8) in Lemma 2.1
as

Tn = nm −
[
(−1)m + (−2)m

]
Tn−1 − (−1)mTn−2 + 3 ·

n∑
k=1

kmTn−k

−
m∑
j=1

αj

(
m

j

)[ n∑
k=1

km−jTn−k

]
.

(2.18)
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Since kmTn−k = 0 at k = 0, we may start the first summation on the right-hand side of
(2.18) at k = 0 instead of at k = 1. Thus, we get

Tn = nm −
[
(−1)m + (−2)m

]
Tn−1 − (−1)mTn−2 + 3 ·

n∑
k=0

kmTn−k

−
m∑
j=1

αj

(
m

j

)[ n∑
k=1

km−jTn−k

]
.

(2.19)

Since the term corresponding to k = 0 in the last summation on the right-hand side of
(2.19) is 0m−jTn = 0 for j ̸= m and 1 · Tn for j = m, we may rewrite (2.19) in the form

Tn = nm −
[
(−1)m + (−2)m

]
Tn−1 − (−1)mTn−2 + 3 ·

n∑
k=0

kmTn−k

−
m∑
j=1

αj

(
m

j

)[ n∑
k=0

km−jTn−k

]
+ αmTn,

and hence

3 ·
n∑

k=0

kmTn−k =
(
1− αm

)
Tn +

(
(−1)m + (−2)m

)
Tn−1 + (−1)mTn−2 − nm

+

m∑
j=1

αj

(
m

j

)[ n∑
k=0

km−jTn−k

]
,

as desired. □

2.2. Convolutions. Using (1.3) and Theorem 2.1, we can find the sums
∑n

k=0 k
mTn−k for

m = 1, 2, 3, . . . in a recursive manner. For example, setting m = 1 in (2.17) yields

3 ·
n∑

k=0

kTn−k = −6Tn − 3Tn−1 − Tn−2 − n+ 7 ·
n∑

k=0

Tn−k.

But it follows from(1.3) that

3 ·
n∑

k=0

Tn−k = Tn+1 + 3Tn + 2Tn−1 + Tn−2 − 1.

Therefore,

3 ·
n∑

k=0

kTn−k = −6Tn − 3Tn−1 − Tn−2 − n+
7

3

(
Tn+1 + 3Tn + 2Tn−1 + Tn−2 − 1

)
=

7

3
Tn+1 + Tn +

5

3
Tn−1 +

4

3
Tn−2 −

(
n+

7

3

)
.
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Proceeding like this, we obtain the following set of identities:

3 ·
n∑

k=0

Tn−k = 1Tn+1 + 3Tn + 2Tn−1 + 1Tn−2 − 1,

3 ·
n∑

k=0

kTn−k =
7

3
Tn+1 + 1Tn +

5

3
Tn−1 +

4

3
Tn−2 −

(
n+

7

3

)
,

3 ·
n∑

k=0

k2Tn−k =
59

9
Tn+1 +

17

3
Tn +

37

9
Tn−1 +

26

9
Tn−2 −

(
n2 +

14

3
n+

59

9

)
,

3 ·
n∑

k=0

k3Tn−k =
251

9
Tn+1 +

83

3
Tn +

205

9
Tn−1 +

128

9
Tn−2 −

(
n3 + 7n2 +

59

3
n+

251

9

)
.

(2.20)

A pattern is evident in these convolution identities (2.20). To identify the rule of formation
of the coefficients and the polynomials in these identities, we need to define the following
four sequences of numbers.

Definition 2.1. For all integers m ≥ 0, we define the sequences
(
A

(m)
i

)
m≥0

for i = 0, 1, 2, 3, as
follows:

A
(m)
0 =

{
1, if m = 0 ;
1
3

∑m
j=1 αj

(
m
j

)
A

(m−j)
0 , if m ≥ 1,

A
(m)
1 =

{
3, if m = 0 ;
(−1)m + (−2)m + (−3)m + 1

3

∑m
j=1 αj

(
m
j

)
A

(m−j)
1 , if m ≥ 1,

A
(m)
2 =

{
2, if m = 0 ;
(−1)m + (−2)m + 1

3

∑m
j=1 αj

(
m
j

)
A

(m−j)
2 , if m ≥ 1,

A
(m)
3 =

{
1, if m = 0 ;
(−1)m + 1

3

∑m
j=1 αj

(
m
j

)
A

(m−j)
3 , if m ≥ 1,

where αj = 1− (−1)j − (−2)j − (−3)j .

The first few terms of these sequences are given in Table 1.

m 0 1 2 3 4 5 6 7 · · ·

A
(m)
0 1 7

3
59
9

251
9

4661
27

107659
81

981311
81

31359377
243 · · ·

A
(m)
1 3 1 17

3
83
3

1451
9

32947
27

303353
27

9711041
81 · · ·

A
(m)
2 2 5

3
37
9

205
9

3787
27

84125
81

770113
81

24749815
243 · · ·

A
(m)
3 1 4

3
26
9

128
9

2486
27

55888
81

506834
81

16273616
243 · · ·

TABLE 1. First few terms of A(m)
0 , A

(m)
1 , A

(m)
2 , and A(m)

3

Now, we generalize the convolution identities given in (2.20).

Theorem 2.2. For all integers m,n ≥ 0, the following identity holds:

3 ·
n∑

k=0

kmTn−k = A
(m)
0 Tn+1 +A

(m)
1 Tn +A

(m)
2 Tn−1 +A

(m)
3 Tn−2 −

m∑
r=0

(
m

r

)
A

(r)
0 nm−r.

(2.21)
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Proof. To show that (2.21) holds for all integers m ≥ 0, we use induction on m. When
m = 0, it follows from (1.3) that the left-hand side of (2.21) is

3 ·
n∑

k=0

Tn−k = 3 ·
n∑

k=0

Tk = Tn+1 + 3Tn + 2Tn−1 + Tn−2 − 1,

and the right-hand side is

A
(0)
0 Tn+1 +A

(0)
1 Tn +A

(0)
2 Tn−1 +A

(0)
3 Tn−2 −A

(0)
0 = Tn+1 + 3Tn + 2Tn−1 + Tn−2 − 1.

Thus, the base case of m = 0 is verified. Now, set m ≥ 1 and assume that (2.21) holds for
all non-negative integers less than m. Using Theorem 2.1, we have

3 ·
n∑

k=0

kmTn−k =
(
1− αm

)
Tn +

[
(−1)m + (−2)m

]
Tn−1 + (−1)mTn−2 − nm

+

m∑
j=1

αj

(
m

j

)[ n∑
k=0

km−jTn−k

]
.

(2.22)

Applying the induction hypothesis, we obtain

3 ·
n∑

k=0

km−jTn−k =A
(m−j)
0 Tn+1 +A

(m−j)
1 Tn +A

(m−j)
2 Tn−1 +A

(m−j)
3 Tn−2

−
m−j∑
r=0

(
m− j

r

)
A

(r)
0 nm−j−r,

for j = 1, 2, . . . ,m. Therefore,
m∑
j=1

αj

(
m

j

)[ n∑
k=0

km−jTn−k

]

=
1

3

{[ m∑
j=1

αj

(
m

j

)
A

(m−j)
0

]
Tn+1 +

[ m∑
j=1

αj

(
m

j

)
A

(m−j)
1

]
Tn

+

[ m∑
j=1

αj

(
m

j

)
A

(m−j)
2

]
Tn−1 +

[ m∑
j=1

αj

(
m

j

)
A

(m−j)
3

]
Tn−2

−
m∑
j=1

αj

(
m

j

)m−j∑
r=0

(
m− j

r

)
A

(r)
0 nm−j−r

}
= A

(m)
0 Tn+1 +

[
A

(m)
1 + αm − 1

]
Tn +

[
A

(m)
2 − (−1)m − (−2)m

]
Tn−1

+
[
A

(m)
3 − (−1)m

]
Tn−2 −

1

3

m∑
j=1

m−j∑
r=0

αj

(
m

j

)(
m− j

r

)
A

(r)
0 nm−j−r,

where the last equality follows from Definition 2.1.
Substituting this into (2.22), we get

3 ·
n∑

k=0

kmTn−k = A
(m)
0 Tn+1 +A

(m)
1 Tn +A

(m)
2 Tn−1 +A

(m)
3 Tn−2 − nm

− 1

3

m∑
j=1

m−j∑
r=0

αj

(
m

j

)(
m− j

r

)
A

(r)
0 nm−j−r.
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Thus,

3 ·
n∑

k=0

kmTn−k = A
(m)
0 Tn+1 +A

(m)
1 Tn +A

(m)
2 Tn−1 +A

(m)
3 Tn−2 − Φ(m)(n),

where

(2.23) Φ(m)(n) = nm +
1

3

m∑
j=1

m−j∑
r=0

αj

(
m

j

)(
m− j

r

)
A

(r)
0 nm−j−r.

To conclude the proof, we must show that

Φ(m)(n) =

m∑
r=0

(
m

r

)
A

(r)
0 nm−r.

Now, keeping j fixed and changing r to r − j in (2.23), we get

Φ(m)(n) = nm +
1

3

m∑
j=1

m∑
r=j

αj

(
m

j

)(
m− j

r − j

)
A

(r−j)
0 nm−r.

If we switch the order of summation and use the binomial identity (see [1, Identity 134])(
m
j

)(
m−j
r−j

)
=

(
m
r

)(
r
j

)
, this becomes

Φ(m)(n) = nm +

m∑
r=1

(
m

r

)
nm−r

[
1

3

r∑
j=1

αj

(
r

j

)
A

(r−j)
0

]

= nm +

m∑
r=1

(
m

r

)
nm−rA

(r)
0 .

Since A(r)
0 = 1 at r = 0, we have

Φ(m)(n) =

m∑
r=0

(
m

r

)
A

(r)
0 nm−r,

as desired. □

2.3. Brousseau Sums. The convolution identity in Theorem 2.2 can be used to find the
Brousseau sums

n∑
k=0

kmTk

of the Tetranacci numbers, for m ≥ 0.
As an illustration, consider the case of m = 2. We have,

3 ·
n∑

k=0

k2Tk = 3 ·
n∑

k=0

(n− k)2Tn−k

= 3n2 ·
n∑

k=0

Tn−k − 6n ·
n∑

k=0

kTn−k + 3 ·
n∑

k=0

k2Tn−k.
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Now, using the first three convolution identities in (2.20), we obtain

3 ·
n∑

k=0

k2Tk = n2
[
Tn+1 + 3Tn + 2Tn−1 + Tn−2 − 1

]
− 2n

[
7

3
Tn+1 + Tn +

5

3
Tn−1 +

4

3
Tn−2 −

(
n+

7

3

)]
+

[
59

9
Tn+1 +

17

3
Tn +

37

9
Tn−1 +

26

9
Tn−2 −

(
n2 +

14

3
n+

59

9

)]
=

(
n2 − 14

3
n+

59

9

)
Tn+1 +

(
3n2 − 2n+

17

3

)
Tn

+

(
2n2 − 10

3
n+

37

9

)
Tn−1 +

(
n2 − 8

3
n+

26

9

)
Tn−2 −

59

9
.

The general formula is given here.

Theorem 2.3. For all integers m,n ≥ 0, the following identity holds:

(2.24) 3 ·
n∑

k=0

kmTk = ψ
(m)
0 (n)Tn+1+ψ

(m)
1 (n)Tn+ψ

(m)
2 (n)Tn−1+ψ

(m)
3 (n)Tn−2−ψ

(m)
0 (0),

where

(2.25) ψ
(m)
i (n) =

m∑
j=0

(−1)j
(
m

j

)
A

(j)
i nm−j ,

for i ∈ {0, 1, 2, 3}.

Proof. It is easy to check the case for m = 0. Now, set m ≥ 1. Then, using the binomial
expansion, we have

n∑
k=0

kmTk =

n∑
k=0

(n− k)nTn−k

=

n∑
k=0

m∑
j=0

(
m

j

)
nm−j(−k)jTn−k.

Switching the order of summation, we get

n∑
k=0

kmTk =

m∑
j=0

(−1)j
(
m

j

)
nm−j

[ n∑
k=0

kjTn−k

]
.(2.26)

Replacing m by j in (2.21), we have

(2.27) 3 ·
n∑

k=0

kjTn−k = A
(j)
0 Tn+1 +A

(j)
1 Tn +A

(j)
2 Tn−1 +A

(j)
3 Tn−2 −

j∑
r=0

(
j

r

)
A

(r)
0 nj−r.
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Combining (2.26) and (2.27), we obtain

3 ·
n∑

k=0

kmTk =

[ m∑
j=0

(−1)j
(
m

j

)
A

(j)
0 nm−j

]
Tn+1 +

[ m∑
j=0

(−1)j
(
m

j

)
A

(j)
1 nm−j

]
Tn

+

[ m∑
j=0

(−1)j
(
m

j

)
A

(j)
2 nm−j

]
Tn−1 +

[ m∑
j=0

(−1)j
(
m

j

)
A

(j)
3 nm−j

]
Tn−2

−
m∑
j=0

j∑
r=0

(−1)j
(
m

j

)(
j

r

)
A

(r)
0 nm−r.

If we write

ψ
(m)
i (n) =

m∑
j=0

(−1)j
(
m

j

)
A

(j)
i nm−j ,

for i ∈ {0, 1, 2, 3}, then

3 ·
n∑

k=0

kmTk = ψ
(m)
0 (n)Tn+1 + ψ

(m)
1 (n)Tn + ψ

(m)
2 (n)Tn−1 + ψ

(m)
3 (n)Tn−2

−
m∑
j=0

j∑
r=0

(−1)j
(
m

j

)(
j

r

)
A

(r)
0 nm−r.

Now, by switching the order of summation, this becomes

3 ·
n∑

k=0

kmTk = ψ
(m)
0 (n)Tn+1 + ψ

(m)
1 (n)Tn + ψ

(m)
2 (n)Tn−1 + ψ

(m)
3 (n)Tn−2

−
m∑
r=0

A
(r)
0 nm−r

[ m∑
j=r

(−1)j
(
m

j

)(
j

r

)]
.

Finally, applying the binomial identity

m∑
j=r

(−1)j
(
m

j

)(
j

r

)
=

{
0, if r ̸= m ;
(−1)m, if r = m,

from Gould’s collection (see [8, Identity 3.119]), we obtain

3 ·
n∑

k=0

kmTk = ψ
(m)
0 (n)Tn+1 + ψ1

(m)(n)Tn + ψ
(m)
2 (n)Tn−1 + ψ

(m)
3 (n)Tn−2 − (−1)mA

(m)
0 .

Since ψ(m)
0 (0) = (−1)mA

(m)
0 , the proof is complete. □

Theorem 2.4. For all m,n, r ∈ Z with m ≥ 0 and n ≥ 1, the following identity holds:

(2.28) 3 ·
n∑

k=1

kmTk+r =

3∑
i=0

[
ψ
(m)
i (n)Tn+r+1−i − ψ

(m)
i (0)Tr+1−i

]
,

where ψ(m)
i (n) is as defined in (2.25).
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Proof. The case of r = 0 follows from (2.24). Note that T0 = T−1 = T−2 = 0 and T1 = 1.
Now, assume that r ≥ 1. Then, using the binomial expansion, we have

n∑
k=1

kmTk+r =

n+r∑
k=r+1

(k − r)mTk

=

n+r∑
k=r+1

m∑
j=0

(
m

j

)
km−j(−r)jTk

=

m∑
j=0

(
m

j

)
(−r)j

[ n+r∑
k=r+1

km−jTk

]
.

Thus,
n∑

k=1

kmTk+r =

m∑
j=0

(
m

j

)
(−r)j

[ n+r∑
k=0

km−jTk −
r∑

k=0

km−jTk

]
.

Now, multiplying both the sides by 3 and applying Theorem 2.3, we obtain

3 ·
n∑

k=1

kmTk+r =

m∑
j=0

(
m

j

)
(−r)j

[ 3∑
i=0

ψ
(m−j)
i (n+ r)Tn+r+1−i −

3∑
i=0

ψ
(m−j)
i (r)Tr+1−i

]

=

m∑
j=0

3∑
i=0

(
m

j

)
(−r)j

[
ψ
(m−j)
i (n+ r)Tn+r+1−i − ψ

(m−j)
i (r)Tr+1−i

]
.

By switching the order of summation, this becomes

3 ·
n∑

k=1

kmTk+r =

3∑
i=0

{[ m∑
j=0

(
m

j

)
(−r)jψ(m−j)

i (n+ r)

]
Tn+r+1−i

−
[ m∑

j=0

(
m

j

)
(−r)jψ(m−j)

i (r)

]
Tr+1−i

}
.

(2.29)

Now, for x ∈ Z, write ∑
i
(x) =

m∑
j=0

(
m

j

)
(−r)jψ(m−j)

i (x).

Then, ∑
i
(x) =

m∑
j=0

(
m

j

)
(−r)j

[m−j∑
k=0

(−1)kA
(k)
i

(
m− j

k

)
xm−j−k

]
.

By switching the order of summation and using the binomial identity (see [1, Identity
134])

(
m
j

)(
m−j
k

)
=

(
m
k

)(
m−k

j

)
, this becomes

∑
i
(x) =

m∑
k=0

(−1)k
(
m

k

)
A

(k)
i

[m−k∑
j=0

(
m− k

j

)
xm−k−j(−r)j

]
.

Thus, ∑
i
(x) =

m∑
k=0

(−1)k
(
m

k

)
A

(k)
i (x− r)m−k.(2.30)
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Setting x = n+ r in (2.30) yields

(2.31)
∑

i
(n+ r) =

m∑
k=0

(−1)k
(
m

k

)
A

(k)
i nm−k = ψ

(m)
i (n).

Setting x = r in (2.30) yields

(2.32)
∑

i
(r) = (−1)mA

(m)
i = ψ

(m)
i (0),

since

(x− r)m−k =

{
1, if k = m and x = r ;
0, if 0 ≤ k < m and x = r.

Substituting (2.31) and (2.32) in (2.29), we obtain

3 ·
n∑

k=1

kmTk+r =

3∑
i=0

[
ψ
(m)
i (n)Tn+r+1−i − ψ

(m)
i (0)Tr+1−i

]
.

The case r < 0 follows from the above case and the identity [15, Identitity (5.5)]

Tr+k = Tr−2Tk+3 +
(
Tr−3 + Tr−4 + Tr−5

)
Tk+2 +

(
Tr−3 + Tr−4

)
Tk+1 + Tr−3Tk.

This completes the proof. □

3. EXTENSION TO GENERIC TETRANACCI NUMBERS

In this section, we find an exact formula for the Brousseau sums
n∑

k=1

kmT ′
k

of the generic Tetranacci numbers. The usual Tetranacci numbers Tk and the generic
Tetranacci numbers T ′

k are connected by the relation [15, Identitity (5.4)]

(3.33) T ′
k = T ′

1Tk +
(
T ′
0 + T ′

−1 + T ′
−2

)
Tk−1 +

(
T ′
0 + T ′

−1

)
Tk−2 + T ′

0Tk−3.

Theorem 3.5. For all integers m ≥ 0 and n ≥ 1, the following identity holds:

(3.34) 3 ·
n∑

k=1

kmT ′
k =

3∑
i=0

[
ψ
(m)
i (n)T ′

n+1−i − ψ
(m)
i (0)T ′

1−i

]
,

where ψ(m)
i (n) is as defined in (2.25).

Proof. Using the identity (3.33), we have
n∑

k=1

kmT′
k = T ′

1

[ n∑
k=1

kmTk

]
+
(
T ′
0 + T ′

−1 + T ′
−2

)[ n∑
k=1

kmTk−1

]

+
(
T ′
0 + T ′

−1

)[ n∑
k=1

kmTk−2

]
+ T ′

0

[ n∑
k=1

kmTk−3

]
.

(3.35)

Replacing r by 0,−1,−2, and −3 successively in (2.28) yields

(3.36) 3 ·
n∑

k=1

kmTk =

3∑
i=0

[
ψ
(m)
i (n)Tn+1−i − ψ

(m)
i (0)T1−i

]
,

(3.37) 3 ·
n∑

k=1

kmTk−1 =

3∑
i=0

[
ψ
(m)
i (n)Tn−i − ψ

(m)
i (0)T−i

]
,
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(3.38) 3 ·
n∑

k=1

kmTk−2 =

3∑
i=0

[
ψ
(m)
i (n)Tn−1−i − ψ

(m)
i (0)T−1−i

]
,

and

(3.39) 3 ·
n∑

k=1

kmTk−3 =

3∑
i=0

[
ψ
(m)
i (n)Tn−2−i − ψ

(m)
i (0)T−2−i

]
.

Now, (3.34) follows by substituting (3.36)-(3.39) in (3.35) and applying the identity (3.33)
four times. □

4. NUMERICAL EXAMPLES

As an illustration, we find the weighted sum
n∑

k=1

kL
(4)
k ,

whereL(4)
k is the kth 4-Lucas number (see [4]) defined byL(4)

k = L
(4)
k−1+L

(4)
k−2+L

(4)
k−3+L

(4)
k−4

for k > 3 with initial values L(4)
0 = 4, L

(4)
1 = 1, L

(4)
2 = 3, and L

(4)
3 = 7. Note that L(4)

−1 =

L
(4)
−2 = −1.

Setting m = 1 and T ′
k = L

(4)
k in (3.34) yields

3 ·
n∑

k=1

kL
(4)
k =

3∑
i=0

[
ψ
(1)
i (n)L

(4)
n+1−i − ψ

(1)
i (0)L

(4)
1−i

]
,

where
ψ
(1)
i (n) = A

(0)
i n−A

(1)
i .

Thus, we have
n∑

k=1

kL
(4)
k =

1

3

[
ψ
(1)
0 (n)L

(4)
n+1 + ψ

(1)
1 (n)L(4)

n + ψ
(1)
2 (n)L

(4)
n−1 + ψ

(1)
3 (n)L

(4)
n−2

− ψ
(1)
0 (0)L

(4)
1 − ψ

(1)
1 (0)L

(4)
0 − ψ

(1)
2 (0)L

(4)
−1 − ψ

(1)
3 (0)L

(4)
−2

]
=

1

3

[(
n− 7

3

)
L
(4)
n+1 +

(
3n− 1

)
L(4)
n +

(
2n− 5

3

)
L
(4)
n−1 +

(
n− 4

3

)
L
(4)
n−2 +

10

3

]
.

Likewise, for m = 2, we get the following lovely formula:
n∑

k=1

k2L
(4)
k =

1

3

[(
n2 − 14

3
n+

59

9

)
L
(4)
n+1 +

(
3n2 − 2n+

17

3

)
L(4)
n

+

(
2n2 − 10

3
n+

37

9

)
L
(4)
n−1 +

(
n2 − 8

3
n+

26

9

)
L
(4)
n−2 −

200

9

]
.

5. CONCLUSIONS

In this study, we determined the polynomial forms of the Brousseau sums of Tetranacci
numbers. We introduced a novel identity that builds upon the findings from studies con-
ducted since 1963. The proof is straightforward because all we need to establish our new
identity are the binomial coefficients. We have expanded the analysis to include general-
ized Tetranacci numbers. The new approach we have adopted is also applicable to a wider
range of related problems. Future studies may focus on developing techniques to derive
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polynomial expressions for the Brousseau sums associated with the general fourth-order
linear recurrences given by

Rk = pRk−1 + qRk−2 + rRk−3 + sRk−4,

for k ≥ 1 with arbitrary initial values R−3, R−2, R−1, and R0, where p, q, r, and s are
real numbers. Exploring the relationships between the coefficient polynomials ψ(m)

i and
representing the Brousseau sums with a single polynomial could also be an avenue for
future research.
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