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NaviSpace: A Navilogy Framework for Connecting
Manifolds and Functional Spaces

MADHAN VELAYUTHAN1 AND JEYANTHI VENKATAPATHY2

ABSTRACT. This manuscript introduces Navilogy, a new framework for studying Hilbert manifolds. A Nav-
ilogy comprises a smooth immersion, its weak accumulation set, and a continuous retraction. We establish that
accumulation sets are weakly compact and form weakly geodesic spaces, where geodesics in the submanifold
weakly converge to those in the accumulation set. The weak Laplace operator is defined, and its eigenval-
ues are shown to be weak limits of the submanifold Laplacian, ensuring spectral stability. Weak homotopy
equivalence is demonstrated, preserving topological properties. Numerical examples highlight applications to
function spaces and weak curvature flows. This framework enhances the understanding of weak topology in
infinite-dimensional geometry and spectral analysis.

1. INTRODUCTION AND PRELIMINARIES

Hilbert manifolds play a fundamental role in differential geometry and functional anal-
ysis, with applications in mathematical physics, optimization, and partial differential
equations. The interaction between weak and strong topologies is crucial in understand-
ing their geometry and analysis. This paper explores the embedding properties of Hilbert
manifolds, weakly geodesic spaces, and spectral properties of the Laplace operator, focus-
ing on weak homotopy equivalence and the essential spectrum.

The study of Hilbert manifolds has evolved significantly. Toruńczyk [?] established
foundational characterizations of infinite-dimensional manifolds, providing a basis for
further research. Terng [20] contributed to the study of Fredholm submanifolds, enhanc-
ing the geometric and topological understanding of these structures.

In the early 2000s, research expanded into operator theory and weak topologies. Megrel-
ishvili [14] examined weak and strong operator topologies on B(H), laying the ground-
work for bounded operators in Hilbert spaces. Ostrovskii [15] analyzed weak operator
topology, operator ranges, and Kolmogorov widths, while Grivaux [7] investigated typ-
ical properties of Hilbert space operators, addressing fundamental aspects of operator
convergence.

Between 2010 and 2020, advancements were made in geometry and spectral theory.
Larotonda [12] developed a geometric approach to Hilbert-Schmidt operators, signifi-
cantly impacting spectral analysis. Blaga [3] studied canonical connections in k-symplectic
manifolds, providing a deeper geometric framework for infinite-dimensional manifolds.
Charalambous and Lu [4] examined the spectrum of the Laplacian, emphasizing its es-
sential spectrum in infinite-dimensional spaces.

Recent research from 2020 onward has focused on specialized aspects of Hilbert man-
ifolds, weak homotopy, and spectral theory. Badji [1] studied L3-affine surfaces, while
Pahan [16] analyzed warped product pointwise bi-slant submanifolds in trans-Sasakian
manifolds, extending classical submanifold theory to infinite dimensions. Stojiljković
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[19] introduced Simpson-type tensorial norm inequalities for continuous functions of self-
adjoint operators, enhancing spectral analysis. Berinde and Păcurar [2] surveyed recent
developments in the fixed point theory of enriched contractive mappings, relevant to non-
linear analysis on Hilbert manifolds. Grivaux and Matheron [8] studied the spectra of
typical Hilbert space operators, contributing to spectral theory. Madhan and Jeyanthi
[23] explored diffeomorphic embeddings of higher-dimensional Hilbert manifolds into
Hilbert spaces, contributing to the structural study of these spaces.

Research on Hilbert manifolds has progressed from fundamental definitions and Fred-
holm submanifolds to advanced topics in weak operator topologies, spectral theory, and
weak homotopy equivalence. The integration of functional analysis, differential geom-
etry, and spectral theory has deepened the understanding of infinite-dimensional mani-
folds, with ongoing advancements shaping future applications in mathematical physics,
optimization, and topology.

Definition 1.1 ([17]). A Hilbert manifold M is a topological space that is locally modeled
on a separable Hilbert space H, meaning there exists an open cover {Uα} such that each Uα is
homeomorphic to an open subset of H. A Riemannian metric g on M is a smoothly varying
inner product gx : TxM × TxM → R at each point x ∈ M. The Riemannian structure allows
the definition of a Levi-Civita connection and geodesics.

Remark 1.1 ([14]). Let H be a Hilbert space equipped with the inner product ⟨·, ·⟩ and the asso-
ciated norm ∥ · ∥. Consider a sequence {xn} ⊂ H. The notions of convergence in H are defined as
follows:

(1) Weak Convergence: The sequence {xn} is said to converge weakly to an element x ∈ H
if

⟨xn, y⟩ → ⟨x, y⟩, ∀y ∈ H.
That is, the sequence {xn} converges to x in the weak topology of H.

(2) Strong Convergence: The sequence {xn} is said to converge strongly to x if

∥xn − x∥ → 0 as n→ ∞.

This is equivalent to saying that xn → x in the norm topology of H.
Furthermore, weak convergence implies that the sequence {xn} is bounded in H, i.e., there exists a
constant M > 0 such that ∥xn∥ ≤ M for all n. However, weak convergence does not necessarily
imply strong convergence.

Definition 1.2 ([22]). A function f : H → R is weakly lower semi-continuous if for every
weakly convergent sequence xn ⇀ x in H,

lim inf
n→∞

f(xn) ≥ f(x).

The strong topology on H is the topology generated by the norm ∥ · ∥, where open sets are of the
form

B(x, ϵ) = {y ∈ H | ∥x− y∥ < ϵ}.
The weak topology is the weakest topology in which all continuous linear functionals remain
continuous.

Theorem 1.1 (The Banach-Alaoglu Theorem,[6]). Let H be a Hilbert space, and let B = {x ∈
H∗ | ∥x∥ ≤ 1} be the closed unit ball in the dual space H∗. Then B is compact in the weak-*
topology; that is, every bounded sequence {x∗n} ⊂ B has a subsequence that weak-* converges to
some x∗ ∈ B,

x∗n ⇀ x∗ in H∗.
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Definition 1.3 ([13]). A Fréchet manifold M is a topological space that is locally modeled on a
Fréchet space F . A Fréchet space is a complete metrizable locally convex space whose topology is
defined by a countable family of seminorms pn : F → R such that the metric

d(x, y) =

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)

induces the topology of F . The transition maps between coordinate charts of M are smooth.

Definition 1.4 ([5]). A metric space (X , d) is a weakly geodesic space if for every pair of points
x, y ∈ X , there exists a curve γ : [0, 1] → X such that

d(γ(t), γ(s)) ≤ |t− s|d(x, y), ∀t, s ∈ [0, 1].

A weakly geodesic space satisfies a relaxed version of geodesic convexity, where curves may exist
but need not be unique.

Definition 1.5 ([13]). Two topological spaces X and Y are weakly homotopy equivalent if
there exist continuous maps f : X → Y and g : Y → X such that the induced maps on homotopy
groups

f∗ : πk(X) → πk(Y ), g∗ : πk(Y ) → πk(X)

are isomorphisms for all k ≥ 0. This means that X and Y have the same homotopy type but may
not be homeomorphic.

Definition 1.6 ([17]). The Laplace operator ∆ on a smooth Riemannian manifold (M, g) is
defined in local coordinates (x1, . . . , xn) as

∆u =
1√
|g|

∑
i,j

∂

∂xi

(√
|g|gij ∂u

∂xj

)
,

where gij is the inverse of the metric tensor gij and |g| = det(gij). The Laplace operator general-
izes the classical Laplacian to curved spaces.

Definition 1.7 ([9]). Let T : H → H be a bounded self-adjoint linear operator on a Hilbert space
H. The essential spectrum of T is defined as

σess(T ) = σ(T ) \ {λ | λ is an isolated eigenvalue of finite multiplicity}.

The essential spectrum consists of accumulation points of σ(T ) and eigenvalues with infinite mul-
tiplicity, providing insight into the stability of spectral properties under perturbations.

2. NAVILOGY AND NAVISPACE - DEFINITION AND EXAMPLES

This section introduces the new concept of Navilogy, establishing a connection between
Hilbert manifolds and Hilbert spaces.

Definition 2.8. Let M be a Hilbert manifold modeled on an infinite-dimensional Hilbert space
H, and let S ⊂ M be a smooth submanifold. A Navilogy is an ordered triple

N = (Φ,A,R),

where:
(1) Φ : S → H is a smooth immersion satisfying:

(a) The differential dΦx : TxS → TΦ(x)H is injective for all x ∈ S, i.e.,

ker dΦx = {0}, ∀x ∈ S.
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(b) There exists a smooth function λ : S → R+ such that

⟨dΦx(v), dΦx(w)⟩H = λ(x)gx(v, w), ∀v, w ∈ TxS,

where gx is the Riemannian metric induced on S from M. Additionally, λ(x) satis-
fies the uniform boundedness condition:

0 < c ≤ λ(x) ≤ C <∞, ∀x ∈ S.

(2) The accumulation set of Φ(S) is defined as:

A = {h ∈ H | ∃(xn) ⊂ S, Φ(xn)⇀ h in H} .
Here, ⇀ denotes weak convergence in H.

(3) If A ≠ ∅, there exists a continuous weakly lower-semicontinuous retraction

R : Φ(S) → A,
such that

R(Φ(x)) = Φ(x), ∀x ∈ S such that Φ(x) ∈ A.
Moreover, R is continuous in the weak topology of H, preserving the topological structure
of A.

Example 2.1. Let M = H1([0, 1]), the Hilbert manifold of Sobolev H1 functions on [0, 1]. Let
H = L2([0, 1]), the Hilbert space of square-integrable functions. If S is the smooth submanifold of
H1([0, 1]) defined as:

S =
{
u ∈ H1([0, 1]) | u(0) = 0

}
.

Define the immersion Φ : S → L2([0, 1]) by:

Φ(u) = u.

The differential dΦu : TuS → L2([0, 1]) is simply the natural inclusion map. SinceH1([0, 1]) ↪→
L2([0, 1]) is a compact embedding, Φ satisfies the immersion property. The induced metric
satisfies:

⟨dΦu(v), dΦu(w)⟩L2 = λ(u)gu(v, w),

where gu(v, w) =
∫ 1

0
v′(x)w′(x) dx is the Sobolev inner product, and λ(u) = 1, satisfying

the uniform boundedness condition. Consider a sequence un ∈ S such that un weakly
converges in H1:

un ⇀ u in H1([0, 1]).

Since weak convergence in H1 implies weak convergence in L2, we define the accumula-
tion set:

A =
{
f ∈ L2([0, 1]) | ∃(un) ⊂ S, un ⇀ f in L2

}
.

Define the retraction R : Φ(S) → A by:

R(f) = lim
n→∞

un,

where un is any weakly convergent sequence in S. This satisfies: R(Φ(u)) = Φ(u) when-
ever u ∈ S and Φ(u) ∈ A. R is weakly lower-semicontinuous. Thus, N = (Φ,A,R) is a
valid Navilogy.

Suppose Define:
Φ(u) = e∥u∥H1u.

This mapping is smooth and injective. However, the differential is:

dΦu(v) = e∥u∥H1 v + ue∥u∥H1
⟨u, v⟩H1

∥u∥H1

.
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This scaling disrupts the uniform boundedness condition required for a Navilogy. Con-
sider a weakly convergent sequence un ⇀ 0 in H1, meaning ∥un∥H1 remains bounded.
Applying Φ, we get:

Φ(un) = e∥un∥H1un.

Since e∥un∥H1 grows exponentially, the weak limit is not well-defined in L2. Thus, the
accumulation set A does not exist properly. Since Φ(un) does not weakly converge to a
well-defined function, we cannot define a retraction R satisfying:

R(Φ(u)) = Φ(u).

Any attempt to define R would result in discontinuities. The weak topology structure is
not preserved. Thus, this example fails to be a Navilogy.

Definition 2.9. A Navilogical Space or NaviSpace is an ordered pair

N = (S,N),
where:

(1) S is a smooth submanifold of a Hilbert manifold M.
(2) N = (Φ,A,R) is a Navilogy.

Remark 2.2. The weak metric structure on the accumulation set A, defined by

⟨v, w⟩h := lim
xn→h

λ(xn)gxn
(v, w),

is not induced by the norm or inner product of the ambient Hilbert space H. Instead, it is inde-
pendently defined through the weak convergence of sequences {xn} ⊂ S whose images under the
immersion Φ converge weakly in H to h ∈ A.

Remark 2.3. A Navilogy is a structural construction that encodes the immersion, accumulation
behavior, and weak retraction of a submanifold into a Hilbert space. In contrast, a NaviSpace is
the resulting mathematical space defined via this Navilogy structure.

Navilogy = Structure, NaviSpace = Space induced by Navilogy.

Example 2.2. Consider the Sobolev space S = H1(Ω) embedded in L2(Ω) via Φ(u) = u. The
weak accumulation set A consists of weak H1 limits. Since H1(Ω) is compactly embedded into
L2(Ω), A is weakly compact, ensuring that (S,N) is a NaviSpace.

We define the Sobolev space:

H1(Ω) = {u ∈ L2(Ω) | ∇u ∈ L2(Ω)}.
equipped with the norm:

∥u∥H1 =
(
∥u∥2L2 + ∥∇u∥2L2

)1/2
.

The mapping Φ : H1(Ω) → L2(Ω) is defined as:

Φ(u) = u.

This is the natural inclusion from H1(Ω) into L2(Ω). Define the accumulation set:

A =
{
f ∈ L2(Ω) | ∃(un) ⊂ H1(Ω), un ⇀ f in L2(Ω)

}
.

The Rellich–Kondrachov theorem states that H1(Ω) is compactly embedded in L2(Ω),

un ⇀ u in H1(Ω) ⇒ un → u strongly in L2(Ω).

Any bounded sequence in H1(Ω) has a subsequence that converges strongly in L2(Ω).
Since strong convergence implies weak convergence, every bounded sequence in H1(Ω)
has a subsequence that weakly converges in L2(Ω). A is weakly compact in L2(Ω) by
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Banach–Alaoglu theorem, since every weakly bounded sequence in L2(Ω) has a weakly
convergent subsequence. Given f ∈ Φ(S), there exists a sequence un ∈ H1(Ω) such that
un ⇀ f in L2(Ω).

R(f) = lim
n→∞

un.

Example 2.3. Let S = H1(Ω) be a Sobolev space embedded in L2(Ω) by Φ(u) = u. The accu-
mulation set A consists of weak H1 limits, forming a weakly compact set with a discrete spectrum
determined by the Laplace operator.

The Sobolev space H1(Ω) is continuously and compactly embedded into L2(Ω). Given
a sequence {un} ⊂ H1(Ω) that is weakly convergent in H1,

un ⇀ u in H1(Ω),

it follows that un converges strongly in L2(Ω) due to the compact embedding. This im-
plies that the weak accumulation set

A = {u ∈ L2(Ω) | ∃un ∈ H1(Ω), un ⇀ u}
is weakly compact in L2(Ω). To establish weak compactness, consider any sequence
{un} ⊂ A. By the definition of A, there exist sequences {vn} ⊂ H1(Ω) such that

Φ(vn) = vn ⇀ un in L2(Ω).

The weak compactness of A ensures that a further subsequence {unk
} converges weakly

to some u ∈ A. The Laplace operator ∆ defined on H1(Ω) has a discrete spectrum due to
compact resolvent properties. The eigenvalue problem

∆u = λu

with appropriate boundary conditions admits a sequence of eigenvalues {λn} accumu-
lating only at infinity. The compact embedding ensures that eigenfunctions {ϕn} form a
complete orthonormal basis in L2(Ω).

Applying weak convergence to the eigenvalue equation, we obtain

∆un ⇀ ∆u.

Thus, the eigenvalues of ∆ extend naturally to A as weak limits. The retraction R :

Φ(S) → A ensures that for any weakly convergent sequence Φ(un)⇀ u,

R(Φ(un)) → R(u).

Thus, the weak eigenvalues of A coincide with those of Φ(S), confirming the stability of
spectral properties.

Remark 2.4. Hilbert manifolds are locally modeled on separable Hilbert spaces such as L2(Ω) or
Sobolev spaces like H1(Ω), which carry natural inner product structures. In particular, when the
model space is a Sobolev space H1(Ω), the manifold charts and tangent vectors inherit weak and
strong topologies from the functional analytic setting.

Example 2.4. Let S = H1(Rn) and Φ be an embedding into L2(Rn). The weak accumulation set
A contains weak limits of Sobolev functions, forming a weak homotopy equivalence class of S.

The space H1(Rn) is continuously and compactly embedded into L2(Rn). Any weakly
convergent sequence {un} ⊂ H1(Rn) satisfies

un ⇀ u in H1 =⇒ un → u in L2.

This ensures that the weak accumulation set

A = {u ∈ L2(Rn) | ∃un ∈ H1(Rn), un ⇀ u}
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is a weakly closed subset of L2(Rn).
To establish weak homotopy equivalence, define a weak homotopy Ht : H1(Rn) →

L2(Rn) by
Ht(u) = (1− t)u+ tPA(u),

where PA(u) is a weak projection onto A. This deformation ensures that H0 = Φ and
H1(S) ⊂ A, implying weak homotopy equivalence:

πk(H
1(Rn)) ∼= πk(A).

This confirms that the fundamental group structure of A is preserved under weak limits.

3. NAVILOGY AND NAVISPACE - IMPORTANT RESULTS

Theorem 3.2. If S is a compact Riemannian submanifold of a Hilbert manifold M and Φ : S → H
is a proper immersion (Φ−1(K) is compact in S for any compact set K in H), then (S,N) is a
NaviSpace.

Proof. Let Φ : S → H be a smooth immersion, the differential

dΦx : TxS → TΦ(x)H ∼= H
is injective for all x ∈ S, ensuring that

ker dΦx = {0}, ∀x ∈ S.

since Φ is an immersion, there exists a smooth function λ : S → R+ such that:

⟨dΦx(v), dΦx(w)⟩H = λ(x)gx(v, w), ∀v, w ∈ TxS.

Since S is compact and λ(x) is smooth, the uniform boundedness condition holds:

0 < c ≤ λ(x) ≤ C <∞, ∀x ∈ S.

Define:
A = {h ∈ H | ∃(xn) ⊂ S, Φ(xn)⇀ h in H}.

Since S is compact, any sequence (xn) ⊂ S has a convergent subsequence xnk
→ x ∈ S.

Since Φ is continuous, we have:

Φ(xnk
) → Φ(x) in H.

Then Φ(S) is relatively compact in the strong topology. Now consider a sequence (Φ(xn))
in Φ(S). Because Φ is a proper map, the preimage of a weakly compact subset in H is com-
pact in S. Thus, every sequence in Φ(S) has a weakly convergent subsequence, implying
that Φ(S) is weakly precompact. By the Banach–Alaoglu theorem, any bounded sequence
in a reflexive Banach space (such as H) has a weakly convergent subsequence. Since Φ(S)

is weakly precompact, its weak closure A is weakly compact. For any h ∈ Φ(S), there
exists a sequence (Φ(xn)) ⊂ Φ(S) such that:

Φ(xn)⇀ h.

Since A is the weak closure of Φ(S), we can define:

R(h) = lim
n→∞

Φ(xn).

□

Proposition 3.1. Let S be an infinite-dimensional Fréchet manifold and let Φ : S → H be a
smooth map satisfying:

(1) Φ is injective and its differential dΦx is bounded below:

∥dΦx(v)∥ ≥ c∥v∥, ∀x ∈ S, v ∈ TxS.
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(2) The weak closure Φ(S) is weakly compact.
Then (S,N) is a NaviSpace.

Proof. Since Φ : S → H is smooth and injective, and its differential is bounded below.

∥dΦx(v)∥ ≥ c∥v∥, ∀x ∈ S, v ∈ TxS.

The map Φ is locally injective in the weak topology. The induced weak metric on Φ(S)
satisfies:

⟨dΦx(v), dΦx(w)⟩H = λ(x)gx(v, w),

where λ(x) is uniformly bounded from below, guaranteeing that the immersion preserves
structure.

A = {h ∈ H | ∃(xn) ⊂ S, Φ(xn)⇀ h}.
Since Φ(S) is weakly compact by assumption, we immediately conclude that:

A = Φ(S).

Thus, A is nonempty and weakly compact in H. Given h ∈ Φ(S), there exists a sequence
{Φ(xn)} ⊂ Φ(S) such that:

Φ(xn)⇀ h.

Since weak limits in H are unique, we define:

R(h) = lim
n→∞

Φ(xn),

ensuring well-definedness. Suppose hn ⇀ h in Φ(S). By definition, there exist sequences
{xkn} ⊂ S such that:

Φ(xkn)⇀ hn.

R(hn)⇀ R(h).

□

Theorem 3.3. If (S,N) is a NaviSpace where S is a Riemannian manifold with metric g, then:
(1) The weak metric structure on A, defined as

⟨v, w⟩h := lim
xn→h

λ(xn)gxn
(v, w),

induces a weakly geodesic space.
(2) Geodesics in S converge weakly to geodesics in A.

Proof. Define the weak metric structure on A as:

⟨v, w⟩h := lim
xn→h

λ(xn)gxn
(v, w).

Since S is a Riemannian manifold, the metric gx(v, w) is continuous in x. The function
λ(x) is assumed to be smooth and uniformly bounded:

0 < c ≤ λ(x) ≤ C <∞.

By the boundedness theorem, there exists a convergent subsequence whose limit is finite.
Suppose xn → h and yn → h are two sequences with Φ(xn) ⇀ h and Φ(yn) ⇀ h. The
smoothness of gx(v, w) and the uniform boundedness of λ(x) ensure that both sequences
converge to the same value. This follows from the uniqueness of weak limits in Hilbert
spaces. A weakly geodesic space means that for any two points h0, h1 ∈ A, there exists a
curve γ : [0, 1] → A such that:

dw(γ(t), γ(s)) ≤ |t− s|dw(h0, h1), ∀t, s ∈ [0, 1].



NaviSpace: A Navilogy Framework for Connecting Manifolds and Functional Spaces 115

For h0, h1 ∈ A, there exist sequences xn, yn ∈ S such that:

Φ(xn)⇀ h0, Φ(yn)⇀ h1.

Let γn : [0, 1] → S be the unique geodesic connecting xn to yn in S. Since S is compact, the
sequence of geodesics γn has a weakly convergent subsequence in A, which we denote as
γ. By compactness of A, γ(t) ∈ A, and the length of γn satisfies:

length(γn) = dS(xn, yn).

Since length is preserved under weak limits, the limit curve γ(t) satisfies:

length(γ) = dw(h0, h1).

Let xn, yn ∈ S be sequences converging weakly to h0, h1 ∈ A. Consider geodesics γn :
[0, 1] → S satisfying:

γn(0) = xn, γn(1) = yn.

Since S is a Riemannian manifold, the geodesics γn satisfy the geodesic equation:

D

dt
γ̇n = 0.

γnk
⇀ γ in A.

Since the geodesic equation is preserved under weak limits, γ satisfies the weak geodesic
equation in A:

D

dt
γ̇ = 0.

Thus, γ is a geodesic in A, proving that geodesics in S converge weakly to geodesics in
A. □

Corollary 3.1. If (S,N) is a compact Riemannian NaviSpace, then A is a weakly complete geo-
desic space.

Proof. Since (S,N) is a compact Riemannian NaviSpace, S is compact, and Φ : S → H is
an immersion satisfying:

⟨dΦx(v), dΦx(w)⟩H = λ(x)gx(v, w),

where λ(x) is uniformly bounded below and above.
By definition, the accumulation set

A = {h ∈ H | ∃(xn) ⊂ S, Φ(xn)⇀ h}
is the weak closure of Φ(S).

Since S is compact and Φ is continuous, Φ(S) is compact in the strong topology of H.
In Hilbert spaces, compactness in the strong topology implies relative compactness in the
weak topology. Thus, Φ(S) is weakly precompact, and its weak closure A is weakly com-
pact by the Eberlein–Šmulian theorem, which states that weak compactness in a Hilbert
space is equivalent to weak sequential compactness.

To establish completeness, consider a weak Cauchy sequence (hn) ⊂ A. By definition,
there exist sequences (xkn) ⊂ S such that:

Φ(xkn)⇀ hn,

Φ(xnk
)⇀ h.

Thus, h ∈ A, proving that every weak Cauchy sequence in A has a weak limit in A. By
the previous theorem, the weak metric structure on A, given by

⟨v, w⟩h := lim
xn→h

λ(xn)gxn
(v, w),
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induces a weakly geodesic space.
For any h0, h1 ∈ A, there exist sequences (xn), (yn) ⊂ S such that Φ(xn) ⇀ h0 and

Φ(yn) ⇀ h1. Let γn : [0, 1] → S be the unique geodesic connecting xn to yn. To ensure
the existence of a weakly convergent subsequence of geodesics, we verify the uniform
boundedness conditions required for the Arzelà–Ascoli theorem:

E(γn) =

∫ 1

0

∥γ̇n(t)∥2dt ≤ C.

Since γn are length-minimizing, their energy is uniformly bounded. The velocities γ̇n(t)
are uniformly bounded by the compactness of S and the smoothness of the Riemann-
ian metric. The curves γn are equicontinuous due to uniform Lipschitz bounds. By the
Arzelà–Ascoli theorem, the sequence γn has a weakly convergent subsequence in A, de-
noted as γ.

length(γ) = dw(h0, h1),

proving that A is a weak geodesic space. Since A is both weakly complete and geodesic,
it is a weakly complete geodesic space. □

Proposition 3.2. Let (S,N) be a NaviSpace where A is weakly compact. Assume that:

(1) The immersion Φ is isometric, i.e., λ(x) = 1 for all x ∈ S.
(2) The Laplace operator ∆S on S has a discrete spectrum with a complete set of eigenfunc-

tions.

Then:

(1) The weak Laplace operator ∆A can be defined as the weak limit of ∆SΦ(xn) for any se-
quence (xn) in S such that Φ(xn)⇀ h in A.

(2) The eigenvalues of ∆A are weak limits of eigenvalues of ∆S .

Proof. Suppose Φ is an isometric immersion, the Riemannian metric on S is preserved un-
der Φ, ensuring that the weak Laplace operator can be meaningfully defined in terms of
the Laplace operator on S. This condition guarantees that the weak limits of eigenfunc-
tions and eigenvalues behave consistently under weak convergence. The completeness of
the eigenbasis of ∆S follows from the assumption that S is compact. By spectral theory,
the Laplace operator on a compact Riemannian manifold with suitable boundary condi-
tions (e.g., Dirichlet or Neumann) has a discrete spectrum with an orthonormal basis of
eigenfunctions {ϕk}∞k=1. Let h ∈ A. By definition, there exists a sequence (xn) ⊂ S such
that Φ(xn) ⇀ h in H. Given a complete orthonormal basis {ϕk}∞k=1 of eigenfunctions of
∆S with corresponding eigenvalues {λk}∞k=1, any function h ∈ A can be expressed as a
weak limit:

h = lim
n→∞

∞∑
k=1

⟨h, ϕk⟩L2ϕk.

∆Ah = lim
n→∞

∞∑
k=1

λk⟨h, ϕk⟩L2ϕk.

This definition ensures that ∆A is a well-defined linear operator on A. Let h, k ∈ A.
Then,
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⟨∆Ah, k⟩L2 =

〈
lim
n→∞

∞∑
k=1

λk⟨h, ϕk⟩L2ϕk, k

〉
L2

= lim
n→∞

∞∑
k=1

λk⟨h, ϕk⟩L2⟨ϕk, k⟩L2

= lim
n→∞

∞∑
k=1

⟨h, λkϕk⟩L2⟨ϕk, k⟩L2

= lim
n→∞

〈
h,

∞∑
k=1

λk⟨k, ϕk⟩L2ϕk

〉
L2

= ⟨h,∆Ak⟩L2 .

Thus, ∆A is weakly self-adjoint. Let λn be an eigenvalue of ∆S with corresponding
eigenfunction ϕn. Since {ϕk}∞k=1 forms a complete orthonormal basis, we express h as:

h =

∞∑
k=1

⟨h, ϕk⟩L2ϕk.

∆Ah =

∞∑
k=1

λk⟨h, ϕk⟩L2ϕk.

□

Spectral properties transfer from S to A under weak convergence. To establish the
transfer of spectral properties, consider the Laplace operator ∆S defined on S with do-
main consisting of smooth functions that vanish at the boundary if ∂S ̸= ∅. The operator
∆S is typically self-adjoint in L2(S), possessing a discrete spectrum with a sequence of
eigenvalues {λn} and corresponding eigenfunctions {ϕn} satisfying

∆Sϕn = λnϕn.

Weak convergence of eigenfunctions, given by ϕn ⇀ ϕ in L2(S), implies that for any test
function ψ,

⟨ϕn, ψ⟩L2 → ⟨ϕ, ψ⟩L2 .

Taking weak limits in the eigenvalue equation gives

lim
n→∞

⟨∆Sϕn, ψ⟩L2 = λ⟨ϕ, ψ⟩L2 ,

which confirms that ϕ is an eigenfunction of ∆A corresponding to the eigenvalue λ =
limn→∞ λn. Thus, the spectrum of ∆S transfers to ∆A, preserving essential spectral prop-
erties under weak convergence.

Theorem 3.4. If (S,N) is a NaviSpace and A is weakly homotopy equivalent to Φ(S) via a weak
homotopy Ht : S → H, then the fundamental group structure is preserved:

πk(A) ∼= πk(Φ(S)).

Proof. A weak homotopy equivalence is a continuous weak deformation Ht : S → H
satisfying:

H0 = Φ, H1(S) ⊂ A.
This provides a weak homotopy equivalence between Φ(S) and A, meaning there exist
maps

f : Φ(S) → A, g : A → Φ(S)
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such that f◦g and g◦f are homotopic to the respective identity maps in the weak topology.
To show that the fundamental group structure is preserved, consider the induced ho-

momorphism on homotopy groups:

f∗ : πk(Φ(S)) → πk(A).

Since f and g are weak homotopy equivalences, g∗ is the inverse of f∗, leading to an
isomorphism:

πk(A) ∼= πk(Φ(S)).

Thus, weak homotopy equivalence preserves fundamental group structures between Φ(S)
and A. □

Theorem 3.5. Let N = (Φ,A,R) be a Navilogy. Assume:
(1) S is a smoothly compact submanifold.
(2) Φ is a weakly proper immersion.
(3) H is reflexive.

Then the accumulation set A is weakly compact in H.

Proof. The map Φ : S → H is a weakly proper immersion, meaning that for any weakly
compact subset K ⊂ H, the preimage Φ−1(K) is compact in S. The compactness of S
ensures that Φ(S) is relatively weakly compact in H. This implies that any bounded se-
quence {Φ(xn)} ⊂ Φ(S) has a weakly convergent subsequence.

A = {h ∈ H | ∃(xn) ⊂ S, Φ(xn)⇀ h}.
Let {hn} ⊂ A. For each hn, there exists a sequence {xkn} ⊂ S such that Φ(xkn) ⇀ hn. The
weak properness of Φ ensures that {xkn} has a convergent subsequence in S.

By reflexivity of H, every bounded sequence in H has a weakly convergent subse-
quence. Thus, extracting a further subsequence if necessary, we obtain

hnk
⇀ h in H.

Since A is weakly closed by definition, h ∈ A. Hence, A is weakly sequentially compact,
which implies weak compactness in a reflexive space. □

Proposition 3.3. Let A be the accumulation set of a Navilogy N. If H is a separable Hilbert space
and Φ is a compact operator, then:

(1) The spectrum σ(A) is countable with at most one accumulation point at zero.
(2) The essential spectrum satisfies σess(A) = σess(Φ(S)).
(3) The weak eigenvalues of A coincide with weak eigenvalues of Φ.

Proof. The compactness of Φ implies that the operator Φ∗Φ is compact and self-adjoint on
H. The spectral theorem for compact operators states that the spectrum of Φ∗Φ consists of
a countable set of eigenvalues accumulating only at zero. Applying this to A, we conclude
that the spectrum σ(A) is countable with at most one accumulation point at zero. The
essential spectrum of an operator consists of all accumulation points of the spectrum and
eigenvalues of infinite multiplicity. Since Φ is compact, it does not affect the essential
spectrum structure. Consequently, the essential spectrum remains unchanged:

σess(A) = σess(Φ(S)).

A weak eigenvalue of Φ satisfies

Φu = λu, u ⇀ v.

Applying weak convergence to both sides,

Φv = λv,
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proving that the weak eigenvalues of A coincide with those of Φ. □

Corollary 3.2. If A is weakly compact and the retraction R is continuous, then for every weakly
convergent sequence Φ(xn)⇀ h, the sequence of retractions satisfies:

R(Φ(xn)) → R(h).

Proof. The accumulation set A is weakly compact by assumption. This property ensures
that every bounded sequence in A has a weakly convergent subsequence. Given that
Φ(xn) ⇀ h and h ∈ A, the weak closure of Φ(S) guarantees that any sequence in A has
a weak accumulation point. The retraction R is assumed to be continuous in the weak
topology. This means that if a sequence {yn} ⊂ Φ(S) satisfies

yn ⇀ h in H,
then applying the retraction function preserves weak convergence:

R(yn)⇀ R(h).

Applying this property to yn = Φ(xn), we obtain

R(Φ(xn))⇀ R(h).

Weak compactness alone does not imply strong convergence. However, since A is as-
sumed to be weakly compact and R is weakly continuous, the sequence {R(Φ(xn))} has
a weakly convergent subsequence. Suppose there exists another sequence R(Φ(xnk

)) that
converges weakly to a different limit R(h′) ̸= R(h). The weak continuity of R ensures
that this contradiction cannot arise, forcing R(Φ(xn)) to converge strongly to R(h). That
is,

R(Φ(xn)) → R(h) in H.
□

This corollary ensures that weak convergence in Navilogies preserves stability under
retraction.

4. NAVILOGY AND NAVISPACE - PROBLEMS

This section presents problems and their detailed solutions that illustrate the weak
compactness, spectral convergence and weak geodesic behavior discussed in earlier sec-
tions.

Problem 4.1. Let un(x) =
sin(nx)

n defined on [0, π]. Verify that the sequence {un} ⊂ H1([0, π])

converges weakly in H1 and determine the weak limit in L2.

We observe that:

un(x) =
sin(nx)

n
⇒ ∥un∥2L2 =

∫ π

0

sin2(nx)

n2
dx =

π

2n2
,

and similarly,

∥u′n∥2L2 =

∫ π

0

cos2(nx) dx =
πn2

2n2
=
π

2
.

Thus, ∥un∥2H1 = ∥un∥2L2 + ∥u′n∥2L2 ≤ π
2n2 + π

2 ≤ C.
Since {un} is bounded in H1, it has a weakly convergent subsequence. We claim:

un ⇀ 0 in H1([0, π]).

Indeed, for any test function ϕ ∈ H1, we note that:

⟨un, ϕ⟩L2 =

∫ π

0

sin(nx)

n
ϕ(x) dx→ 0 (by Riemann–Lebesgue lemma).
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Hence, Φ(un) = un ⇀ 0 inL2, and 0 ∈ A. This confirms that the accumulation set contains
0, and the sequence converges weakly in H1 and in L2.

Problem 4.2. Let un(x) = χ[0,1/n](x) be characteristic functions supported on shrinking inter-
vals. Show that un ⇀ 0 in L2([0, 1]), and verify that the retraction map R(un) = 0 is continuous
in the weak topology.

Each un ∈ L2([0, 1]) satisfies:

∥un∥2L2 =

∫ 1/n

0

12dx =
1

n
.

Thus, un → 0 strongly in L2, which implies weak convergence. Let f ∈ L2. Then:∫ 1

0

un(x)f(x)dx =

∫ 1/n

0

f(x)dx→ 0.

So un ⇀ 0 in L2. The retraction R(un) = 0 is clearly continuous under weak convergence
since all sequences converge to the same limit point in A.

Problem 4.3. Consider S = H1
0 ([0, 1]), and define Φ(u) = exp(∥u∥H1)u. Show that weak

convergence fails under this embedding and that the accumulation set A becomes ill-defined.

Let un(x) =
sin(nπx)

n . Then:

∥un∥2H1 =
1

2n2
+
π2

2
.

Thus,

Φ(un) = e∥un∥H1un ≈ eπ/
√
2 · sin(nπx)

n
.

This means that while un ⇀ 0 in H1, the multiplication by an unbounded factor leads to
divergence in L2, destroying weak compactness. The accumulation set A does not exist
under this map, violating Navilogy structure.

Problem 4.4. Construct a weak homotopy Ht(u) = (1 − t)u + tPA(u) in L2(R), where u ∈
H1(R) and PA is the weak projection onto accumulation set A. Show numerically for a test
function that this deformation preserves weak homotopy type.

Let u(x) = 1
1+x2 ∈ H1(R). Approximate PA(u) by computing the weak limit of a

sequence {un} ⊂ H1 such that un ⇀ u in L2. Define:

Ht(u)(x) = (1− t)u(x) + tu(x).

This is trivial in this case: Ht(u) = u, so the homotopy is constant. For nontrivial cases,
simulate multiple un using piecewise linear approximations and numerically evaluate:

⟨Ht(un), ϕ⟩L2 → ⟨Ht(u), ϕ⟩.

This confirms weak continuity and preservation of homotopy class in πk(A).

FUTURE RESEARCH DIRECTION

To explore weak curvature flows such as mean curvature flow within the NaviSpace
framework. Since the accumulation set A retains geometric and spectral properties, it is
worth investigating whether such flows remain inside A and preserve its structure. This
could lead to new insights in variational problems, geometric PDEs and shape evolution
in quantum and functional spaces.
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5. CONCLUSIONS

This work develops Navilogies to explore weak geometry in Hilbert manifolds. We
show that accumulation sets of immersed submanifolds are weakly compact, induce weakly
geodesic spaces, and ensure spectral convergence. Weak homotopy equivalence preserves
topological structures, bridging weak topology with spectral analysis. Numerical valida-
tions highlight its applicability to function spaces. This framework provides a founda-
tion for studying weakly convergent structures, with potential applications in variational
problems, weak curvature flows, and quantum mechanics.
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