CREAT. MATH. INFORM. Online version athttps://creative-mathematics.cunbm.utcluj.ro/
Volume 35 (2026), No. 1, Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X
Pages 123-134 DOI https:/ /doi.org/10.37193 /CMI.2026.01.11

Bi-Univalent Functions Involving Error Function
Subordinating to Limacon Domain

SHARON ANCY JosH !, THOMAS ROSsY 2

ABSTRACT. By using the analytic structure of the error function, the geometric depth of limacon type domains,
the algebraic strength of the Hankel determinant and Fekete- Szegt functional we introduce in this study a new
subclass of bi-univalent functions. This subclass is defined by subordination to the normalized error function
and limacon mappings. Bounds for the initial Taylor- Maclaurin coefficients of functions in this subclass are
determined. Furthermore the Fekete-Szeg6 functional and Hankel determinant for this subclass is also ad-
dressed.

1. INTRODUCTION

LetD = {z € C: |z| < 1} denote the open unit disk. A function V belongs to the class A
if it is analytic in D and satisfies the normalization conditions V(0) =0 and V’(0) = 1.
Every function V' € A admits the expansion of the form

(1.1) V(z)=2+) bz’ zeD.
v=2

The subclass S € A comprises of analytic functions with one-one property in D. A
function V is said to be subordinate to another analytic function W denoted V' < W if
there exists a Schwarz function w analytic in D with w(0) = 0 and |w(z)| < 1 such that
V(z) = W(w(2)).

If W is univalent in ID then subordination relation is equivalent to

(1.2) V(0)=W(0) and V(D)cC W(D).

By the principle of subordination [16] if V' is univalent and maps a domain D; onto an-
other domain D, then the inverse function W = V~! defined by

W(V(z)) = 2z,Vz € Dy

is analytic and univalent on Ds.

Closely related to analytic subordination is the concept of differential subordination which
has been widely used in geometric function theory to investigate properties of analytic
functions involving their derivatives. Let ¢) : C* x D — C and let h be univalent in D. If
an analytic function p in D satisfies a second-order differential subordination of the form

¥ (p(2), 20/ (2), 20" (2); 2) < h(z), z€D,

then p is said to be a solution of the corresponding differential subordination.
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The inverse function W can be written as
(1.3) W(w) = w — byw? + (2b3 — bz)w® — (5b3 — 5babs + by)w* + - -

A function V' € S is called bi-univalent if both V and V! are univalent in D and we
denote by X the class of bi-univalent functions. While the results of univalent functions
exists bi-univalent functions present more challenges particularly in determining sharp
coefficient bounds. Lewin [12] initiated the study of coefficient problems for functions
in ¥ focusing on estimating |bz|,|bs| and |b4|. Despite progress the problem of estimating
sharp bounds for higher order coefficients

|b,],v >4

remain unresolved [3, 17]. Typical examples of bi-univalent functions include

Vi(s) = ——, wz)llog(”z)

2 1—=2

with corresponding inverses
w 1 e?v —1

=— VW =—.
1+w 2 (W) ew 41

In this context, the Hankel determinant serves as a powerful analytic tool for probing the
structure and growth of analytic functions. Given an analytic function V' of the form (1.1)
the Hankel determinant defined by Noonan and Thomas [18] is given as

V1_1(w)

by bl/—‘rl S bl/+l—1
by b, e by
(1.4) Hyv)=| " =1
bqulfl bl/Jrl ce bu+2l72

For! =2 and v = 1 (1.4) reduces to

by by
by by

This determinant is widely studied due to its connection to Fekete- Szego functional a
significant quantity in geometric function theory. Specifically, for a real paramater ;. the
Fekete-Szego functional is given by

(1.5) Hy(1) = =by—b3[. by =1].

|bs — Hb§|
with the special case as u = 1.
The second Hankel determinant for [ = 2 and v = 2 from (1.4) is reduced as follows

by by

(1.6) H(2) = by by

= byby — b2

One such approach to defining such subclasses is through analytic subordination to
special functions. Ma and Minda [13] introduced a unified technique for defining
subclasses like S*(¢) and C(¢) using analytic function ¢ with positive real part:

2V'(z) 2V (2)
V) v O
Numerous subclasses have emerged by selecting appropriate ¢ functions associated with
cassinian ovals[22], cresent shaped regions[20], Bernoulli lemniscates [14, 23], Booth
lemniscates [9], rational function [10], exponential maps [15], sigmoid- type curves[5] and
limacon type regions.

< ¢(2), or 1+
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A notable limacon domain is the bean-shaped region introduced by Yunus et al. [24]
bounded by
QD) = {u=z+iy: (42° + 4y* — 8z — 5)* + 8(4z* + 4y* — 122 — 3) = 0} .
and mapped by

(1.7) L(z) =1+ V2z+ %zz.

Such mappings serve as powerful tools in defining function classes through
subordination.

Among many special functions the error function and imaginary error function play
an important role in various scientific fields including probability, statistics partial
differential equations and other engineering applications. The classical error function erf
[1] and the imaginary error function erfi [2, 4] are defined as

u2y+1
f(z  dt =
r f/ fz QHU,,
21/+1
\fz 2v+ 1!

respectively. Ramachandran et al. [21] introduced the normalized variant,

Erf(z) = \/;?Zerf(f =z+ Z 21/11);(1/2111)

erfi(z

which preserves normalization and analyticity in ]D and maps onto domains suitable for
subordination.

Closely related is the convolution product (or Hadamard product), which is used to
generate new subclasses by combining two power series term-wise. For functions

f(z) =02 sa,2”and g(z) = Y 2, b,z", the convolution is:

(f*9)(z Zal,bz

Using this operation, one defines function farmhes such as:

1/ 1C
and using the normalized analytic imaginary error funct1on
— V —
(1.8) Brfi(z) = Y Cerf(yv/z z—l-z & e )
(1.9) EV(z) = (Erfix V)(z —z+z 21/__1 1/—1)!'

The theory of second order differential subordmatlon has been developed extensively by

Kanas and Studzinski [7] as well as Kanas and Owa [8] who investigated the connection
V(z)

between differential subordination and subordination relations involving expressions

V'(z)and 1 + = V,((Z))
The subclasses defined through linear combinations of functions and its first two derivatives
in [8] served as the motivation to extend this framework by incorporating convolution

operators associated with imaginary error function. Furthermore, the resulting expressions




126 Sharon Ancy Josh, Thomas Rosy

are subordinated to limacon type regions thereby introducing a new subclass of bi-univalent
functions as follows

Definition 1.1. A function V € ¥ given by (1.1) is said to be in the family Ts(t, i1, x) if it satisfies
the two conditions given below:

EV(z)

(1-k) + k(EV(2)) + pz(EV(2))" < L(t, 2)

and

(1-r) + K(EW (w))" + pw(EW (w))" < L(t, w),

where z,w € D, k, > 0, € (%, 1] , and the function W = V=1 is given by (1.3).

2. MAIN RESULTS

2.1. Coefficient estimates of the class 7x(t, i, x). In this section, we provide bounds for
the initial Taylor-Maclaurin coefficients for functions belonging to the class T (t, s &)
using the following lemma

Lemma 2.1. [19] Let P be the class of all analytic function q(z) of the form
(2.10) q(z) =1+ Z qz”
v=1

with R(q(z)) > 0 forall z € D. Then, |q,| < 2 foreveryv =1,2,....

Theorem 2.1. Let the function V(z) € Tx(t, u, ). Then

@) bal < 6vi0
\/|18ﬂ(1 + 2K + 64) + 5v2(1 + K + 2u)2(2v/2 + 1))
18 10v/2
2.12 bs| <
212) |3|_(1+n+2u)2+(1+2n+6p)
and
2.13) byl < 126(1 + 2v/2) 300

S (T+3k+120)  (1+r—+2u)(1+ 25+ 6p)°

Proof. Let V(z) be in the class Tx(t, i1, 5). We have two analytic functions ¢ and r defined
in the unit disk D such that

EV(z)

(2.14) (1-r) + 5 (BEV(2) + pz(EV(2))") < L(t, q(2))

and

EW (w)

(2.15) (1— k) + 1 (EW(w)) + pw(EW(w))") < L(t, r(w)),
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where ¢(z) = Y7 ¢2” and r(w) = > 7, r,w” for all z,w € U. Then,we have

(z—’_Zu 2 (2v— 1)1/ 1)')

(1—k) . +n(z+22y_1y_1)!>/

3 2

@ 1 Gy, 4,2, @\, 0 @ s
= 1 r— r— _— —_ — — — —_— —_ —
+\/§z+[\/§(qQ 5) T 5| \/(3 Qaz + ) + a2 — 5|2
and
byw”
, (w +200, (2u—1;1(u—1)!) 0 b, w" /
(1=r) w +“(“’+sz2(21/—1)(1/—1)!>
oo b ’LUV "
+’“‘w<w+yz_:2 I 1)!)
_q4 L, Myt L L OIS W | B
_1+\/§w+{ﬁ(2 2)—|— w? + \f(rg r1r2+4)—|—4(r2 5 |W
Now, equating the coefficients we get
1+Kk+2u Q1
2.16 ——— b= —
216) s =T
14254 6u 1 @ @
(2.17) For 3= ﬂ(q 5 ) T g
1+3x+4+12 1 3 2
(2.18) #@L = {\@((IB —qiq2 + %) + %(% - 6121)}
I+r+2p),
(2.19) 1] by = 7
(1+26+6p)(205 —bs) 1 2. 7
(2.20) 5 ol = \/5(7‘2 -5 )+ 5
—(1 4 3k + 12u)(by + 5b3 — b3b 1 r3 r r2
eay DRl | =t T+ e = )|
It follows from (2.16) and (2.19)
(222) g1 =T
2 1
(2.23) “(1+ K +2p)%03 = = (qf +713).

9 2

Subtracting (2.16) and (2.19)
(1 + K+ QM)QbQ Q1"
3.1! G
(2.24) by = SAL=T)
2v2(1 + kK + 2p)

Adding (2.17) and (2.20) we get

2o (1+r+2u) 1 (@ +r)\ | @& +rf
(2.25) o =% (g2 +12) +
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Substituting the value of (¢ 4 712) from (2.23) in the right- hand side of (2.25), we
deduce that

2(1+2 6 2(1 2u)? 2(1 2u)?
(2.26) {f( +5/<c+ u)Jr ( +f<;9+ 1) +\f( +1,;+ 1) }bQQ(qwﬂz)
Hence,
(227) b22 — (QQ + T?)

[\/5(1+§~+6u) + \/5(1+1f;+2u)2 [Qﬁ + 1]}
Using lemma 2.1 in (2.26), we get
6v10

\/|18\/§(1 + 2K+ 6p) + 5v2(1 + £ +20)2(2v2 + 1)
Subtracting (2.20) and (2.17) yields,

(2.28) lba| <

21+25+6p) ,, o0 1 o1 5, o, (¢t =)
(2.29) S T (b3 —b3) = \/i((h T2) \/5(% ri) + — =5
Substituting (2.22) in (2.29) we get
_ 2 2
(2.30) by — 5(q2 — 7o) 9qr? +r1”%)

V2(1+ 26+ 6p) 41+ K+ 2p0)2
And in view of (2.29) we obtain

10v2 18
(tr2n+6p2  (I+rtop?
Subtracting equations (2.18) and (2.21)

(1 + 3k + 1241)(2bg + 5b3 — 5b3by)
7.3! B

(2.31) bs] <

3*7’3 — rr 3*7’
(232) %((qg—m)—(qu—ﬁw)—F ((h 1 1) + (Q1112 1 1 2) _ ((h < 3)) )

Equating (2.24) and (2.30) gives
21v2(gs —3) | 21(1 = 2V2)(qugz —mir2) | 21(v2 - 1)¢}

2.33 by =
233 T 21+ 3k + 12p) 2(1 + 3k + 12p) 4(1 + 3k + 12p)
n 75¢1(q2 — 72)
20 +26+6p)(1 + K +2u)
126(1 + 2v/2 300
(2.34) |bs| < (+2v2)

(14+3c+121)  (1+rk+2u)(1+25+6p)

By taking different values for 1 we obtain the following corollaries

Corollary 2.1. For ju = 0, we have Tx(t,0, k) = Tx(t, ) then

|ba| < 6v10
VII8VE(L + 26) +5V3(1L + K)2(2V2 + 1)
Iby| < 18 10v2

(1+r)?  (1+2k)
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and

e 126(1 + 2v/2) 300
=1+ 3k) (1+2r)(1+k)

Corollary 2.2. For ju = 0 and x = 1, we have Tx(t,0,1) = Tx(t, 1) then

1 27 4 20V/2
e oVI0 AP ALLE
\/\54\/5 +20v2(2v2 + 1)|
and
163 + 1261/2
‘b4‘§f-

Corollary 2.3. For i = 0 and x = 0, we have Tx(t,0,0) = Tx(t) then
6v5

VI18V2 + 5vE(2v3 + 1)

lbs| < 18+ 10v/2

|ba| <

and
|ba| < 426 + 252/2.

2.2. Fekete-Szegd functional of the class 75(t, i, k). The results of this section depend
on the following lemma which is well-known and useful in establishing the Fekete-Szego
functional results.

Lemma 2.2. [11] Let v,l € Rand p,q € C. If |p| < rand |g| <r

20vlr, i [ = |l

(v +1p+ (v—1)q| < {2|l|7’ if |v] < |

We consider the Fekete- Szeg6 functional for the functions in the class T (t, py K).

Theorem 2.2. Let the function V(z) € Tx(t, u, ). Then, for some a € R,

10 5
(2.35) by — aby?| < | Traersy 0 H(@) < e
2|H(a)|u H(a) > [(ESTEGmE

Proof. For some real number «, using equation (2.30), we have

5 [(qz —r2) (@ -7 (g —ri)

by — aby” =
ST T Uyt V2 V2(1 + 26 +6p)  8(1+ 2k + 6p)

} + (1 — a)bs.

Substituting (2.27), we have

> 5 (g2 —r2) (¢F—7]) | (¢f —1D)
o b (1+2f<+6u){ V2 vz s }
+(1-a) 90(g> + )

18v2(1 + 26 4 61) + 5v2(1 + K + 211)2(2V2 4+ 1)
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(2.36)

B 90 5

A Hlsﬂ(l ¥ 2t 6 1 5VE(L Rt 20P@V2 1) | (14 26+ 6p)

* {18\/5(1—5-2/1—1-6#) +5vV2(1 + K +2u)2(2vV2+1) (1426464

Jo

90 - 5 )] m]

- [l + Joo + [H0) ~ )]

(142K + 6p) (1+2/-£—|—6u)]

where,
90

H(a) = .
(@) 18V2(1 + 2k + 6) + 5v2(1 + K + 211)2(2v2 + 1)
Thus, the desired inequality is obtained by applying Lemma 2.2 .

Corollary 2.4. Let the function V(z) € Ts(t,0, k) = Tx(t, &). Then, for some o € R

—0 _5
(2.37) |b3 _ Oéb22| < (1+2k) 0= H(a) §5 (1+2r)
M (0] H(a) > i

Corollary 2.5. Let the function V(z) € Tx(t,0,1) = Tx(t,1). Then, for some o € R

10 5
(2.38) by — aby?] < {3 0< H““g =3
2|H(e)| ,H(a) > 3.

Corollary 2.6. Let the function V(z) € Ts(t,0,0) = Tx(t). Then, for some a € R
10 0<H <5
(2.39) by — abo?| < 0 Hla) <
2|H(a)| ,H(a) > 5.
2.3. Hankel determinant. We use the following lemma to find the second Hankel
determinant for the set of all bi-univalent functions in the class 7s(t, i, &)
Lemma 2.3. [6] If a function q € P, then
(2.40) 2q2 = ¢i + (4 — i)k
(241) Ags = a7 + 21 (4 — gk — @1 (4 = g1)k* + 2(4 — g7) (1 = [k[*)m,
for some k,m with |k| < 1and |m| < 1.
Theorem 2.3. Let V(z) given by (1.1) be in the class Tx(t, 1, ). Then we have

(2.42) Ibabs — 12] < 1008 + 252v/2 324 .
BT A+ m+2u)(1+3k+120) (1 + K+ 2pu)

Proof. Using (2.24), (2.30) and (2.33) we get

boby — 2 — 63¢1(g3 — r3) 63(1 — 2v/2)qi (g2 — 72)
P (I r+20) (1436 +120)  V2(1+ K+ 20) (1 + 3k + 12p)
63(v2 — 1)q} 135¢7 (g2 — 12)

2V2(1 4k +2u)(1 4+ 3k +121)  2V2(1 + K + 21)2(1 4 3k + 12p)

8lgi  25(ga —12)?
414k +2u)*  2(1 42Kk +6p)2"
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According to Lemma 2.3 and (2.22) we obtain

4—qt 4—qf
(2.43) G —T9 = 2‘]1(k—l), G2+r2=q; + 2%(k+l),
and

3 _ 2 _ 2

sy = Gy G e g

2 2 1

4—q2
(2.44) + 5 [ = [B)m — (1= [i*)n],

for some k,l,m, and n with |k| < 1, |l| < 1, |m| < 1 and |n| < 1. Since ¢ € P we have
lg1] < 2. Letting ¢; = ¢ we may assume without loss of generality that ¢ € [0, 2].

Ibobs — 12] < 63} 63¢7 (k +1)(4 — qi)
20+ k+2)(1+3c+12u) 20+ kK +2p)(1+ 3k +12p)
63¢7 (4 — g7)(K* +1?) 63(1 —2v2)gi(4 — q7)(k — 1)
404w +2u) (1436 +121)  2v2(1 + k4 2u)(1 + 3k + 12p)
63(v2 —1)qi N 135¢7 (4 — ¢7)(k — 1)

2V2(1 + K +2u)(1 4 35 4 6p)  4v2(1 + k4 2u) (1 + 3k + 12)

81¢i 25(4 — ¢i)*(k = 1)
A1+ r+2u)*  8(1+2k+6p)2

Substituting (2.43) and (2.44) and setting n = |k|, p = |I| we apply the triangle inequality
and standard bounds for analytic functions in D to estimate |bab, —b3| yielding the required
inequality.

babs — 12| < ( 63 63(v2+1)
SN2+ s +2u)(1 436+ 120) T 2v2(1 + K+ 2u)(1 + 3K + 6p)

81 . 63¢°(4 — ¢%)
g+
41+ Kk +2p) 20+ rk+2u)(1 +3x + 12p)

63(1 — 2v2¢2(4 — ¢%) 135¢*(4 — ¢°) >( )
W21+ r+20)(1+3k+120) 421 +r+202(1+3r+120) )
63¢°(4 — ¢*)(p* + 1) 25(4 = ¢*)*(p +n)?

414+ k+2p)(1 + 3k + 12u) 8(1 4 2k + 6u)?
< Hy + Hy(n + p) + Hs(n* + p°) + Ha(n + p)* = H(n, p)

where
126v/2 + 63 81
H, = ( V2t + 4>q4 >0
2v2(1 + k4 2u)(1 + 3k +12u)  4(1 + K +2p)
_ < 63(1 +3v2)¢°(4 — ¢°) 135¢%(4 — ¢%) > S
2TV h+20) (14 3K+ 1200) | AV2(1 + 5+ 20)2(1 + 3k + 120) ) ©
2 2
H, = 63¢°(4 — ¢°) >0
414 £+ 2u)(1 + 3k + 12p)
24(4 — ¢?
Hy = (4—q°)

i S
8(1+2k+6p)% —
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Let ¢ = 0. Since H1(0, u, k) = H2(0, pt, k) = H3(0, u, k) = 0 and
50
(14 2K+ 6u)?
the function ¥(p, ) is written as follows:
50
Ve = Ao 162

It is obvious that the function ¥ reaches its maximum near the closed-square
boundary A. Now, differentiating the function ¥(p, n) we have

50
\I} = —
plp:m) (1 + 2 + 6)2

Hy(0,p, k) =

(p+n)?  (pm) €A

(p+mn)

for each n € [0, 1].
The function ¥(p, n) is an increasing function and reaches its maximum at p = 1
since ¥,(p,n) > 0. Therefore
50
U(p,n):nel0,1]}=V(1,n)=————(1 2 nelo1)].
max{¥(p,n) : n € [0,1]} = ¥(1,7) (1+2K+6M)2( +n)% nel0,1]
Differentiating ¥(1, ) we obtain
100
(142K 4 6p)?
Since ¥'(1, 1) > 0 the function ¥(1, ) is an increasing function and the maximum
occurs at n = 1. Hence

(1) = (I4+n), nel0,1].

max{¥(1,n):ne0,1]} = ¥(1,1) =

200 B 10v2 \°
(1+2k+6p)2 \1+2k+6p))
Thus by taking ¢ = 0 we obtain

10v2  \°
] < T : 0,1} =v(1,1) = (| —————— | .
(o) < max{W(pu) s (o) € 0,1} = w11) = (Y2 )
We know that |babs — b3| < ¥(p,n) so we can have
10v2 \?
boby — 03| < [ ———— ] .
[b2ba 3|_<1—|—2/@+6u>
Now taking ¢ = 2. Since H2(2, i, k) = H3(2, u, k) = Ha(2, p, k) = 0 and
126v/2 + 63 81
Hi(2, 1, 5) = ( v2+ + )m
(I+r+2u)(1+364+121) V21 + Kk +2u)4
_< 1008 + 252v/2 N 324 )
S\ +r+20) (1 +35+12u) (14K +2u)4

the function ¥(p, ) is a constant as follows:

1008 + 2522 N 324
(I4+r+2u)(1+3x+12u) (1 + K+ 2u)*

U(p,n) = Hi(2) =

Thus, we obtain

Ibabs — 2] < 1008 + 252v/2 N 324
AT U k201 +36+120) (1 + K+ 2u)%

in the case of ¢ = 2.
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Consequently, in light of these two instances we write

babs — 12 < max < 10v2 )2 1008 + 252v/2 N 324
2Tl = T+26+6p)  (I+r+20)(1+3c+12u)  (I4+r+2w)4 ("

Therefore,

1008 + 252v/2 324
245 boby — B3| < +
(2.45) |b2bs 3‘—(1+n+2u)(1+3n+12u) (14K +2p)*

O

The following remark is provided to demonstrate that the subclass 75(t, 1, ) is non-
empty and that the function belonging to this class satisfy all the coefficient estimates, the
Fekete - Szegt inequality and the second Hankel determinant bounds obtained.

Remark 2.1. Let V(z) = z + e2? where 0 < ¢ < &. Then V € X satisfies the defining subclass

conditions of Ts:(t, i1, ). Moreover this function satisfies the coefficient estimates, the Fekete-
Szego inequality and the second Hankel determinant bounds obtained in Theorem 2.1 -2.3 and
their corresponding corollaries.

Verification. For the function V(z) = z + €22 with 0 < ¢ < I we have b, = ¢ and

b3 = by =0. ’
Since all the right- hand side in the coefficient estimates obtained in Theorem 2.1 and
Corollaries 2.1-2.3 are positive for > 0 and p > 0, it follows immediately that the
inequalities for by, b3 and b, are satisfied.
Further for any o € R

|bs — ab3| = |afe?,
which satisfies the Fekete - Szego inequality given in Theorem 2.2 and Corollaries 2.4 -2.6
for admissible parameter values.
Finally the second Hankel determinant satisfies

\5254 - b§| =0,

which trivially satisfies the bound obtained in Theorem 2.3. Hence the chosen example
satisfies the inequalities derived. O

3. CONCLUSION

We introduced a subclass of bi-univalent functions defined using the error function
subordinated to a limagon domain. Coefficient estimates for the initial Taylor coefficients
were obtained, along with bounds for the Fekete- Szeg6 functional and the second Hankel
determinant. These results generalize several existing results. As a future work, one may
consider to extend these methods to higher order Hankel determinant and corresponding
g- analogues.
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