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Bi-Univalent Functions Involving Error Function
Subordinating to Limacon Domain

SHARON ANCY JOSH 1 , THOMAS ROSY 2

ABSTRACT. By using the analytic structure of the error function, the geometric depth of limacon type domains,
the algebraic strength of the Hankel determinant and Fekete- Szegö functional we introduce in this study a new
subclass of bi-univalent functions. This subclass is defined by subordination to the normalized error function
and limacon mappings. Bounds for the initial Taylor- Maclaurin coefficients of functions in this subclass are
determined. Furthermore the Fekete–Szegö functional and Hankel determinant for this subclass is also ad-
dressed.

1. INTRODUCTION

Let D = {z ∈ C : |z| < 1} denote the open unit disk. A function V belongs to the classA
if it is analytic in D and satisfies the normalization conditions V (0) = 0 and V ′(0) = 1.
Every function V ∈ A admits the expansion of the form

(1.1) V (z) = z +

∞∑
ν=2

bνz
ν , z ∈ D.

The subclass S ∈ A comprises of analytic functions with one-one property in D. A
function V is said to be subordinate to another analytic function W denoted V ≺ W if
there exists a Schwarz function ω analytic in D with ω(0) = 0 and |ω(z)| < 1 such that
V (z) =W (ω(z)).
If W is univalent in D then subordination relation is equivalent to

(1.2) V (0) =W (0) and V (D) ⊂W (D).

By the principle of subordination [16] if V is univalent and maps a domain D1 onto an-
other domain D2 then the inverse function W = V −1 defined by

W (V (z)) = z,∀z ∈ D1

is analytic and univalent on D2.
Closely related to analytic subordination is the concept of differential subordination which
has been widely used in geometric function theory to investigate properties of analytic
functions involving their derivatives. Let ψ : C3 × D → C and let h be univalent in D. If
an analytic function p in D satisfies a second-order differential subordination of the form

ψ
(
p(z), zp′(z), z2p′′(z); z

)
≺ h(z), z ∈ D,

then p is said to be a solution of the corresponding differential subordination.
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The inverse function W can be written as

(1.3) W (w) = w − b2w
2 + (2b22 − b3)w

3 − (5b23 − 5b2b3 + b4)w
4 + · · · .

A function V ∈ S is called bi-univalent if both V and V −1 are univalent in D and we
denote by Σ the class of bi-univalent functions. While the results of univalent functions
exists bi-univalent functions present more challenges particularly in determining sharp
coefficient bounds. Lewin [12] initiated the study of coefficient problems for functions
in Σ focusing on estimating |b2|,|b3| and |b4|. Despite progress the problem of estimating
sharp bounds for higher order coefficients

|bν |, ν ≥ 4

remain unresolved [3, 17]. Typical examples of bi-univalent functions include

V1(z) =
z

1− z
, V2(z) =

1

2
log

(
1 + z

1− z

)
with corresponding inverses

V −1
1 (w) =

w

1 + w
, V −1

2 (w) =
e2w − 1

e2w + 1
.

In this context, the Hankel determinant serves as a powerful analytic tool for probing the
structure and growth of analytic functions. Given an analytic function V of the form (1.1)
the Hankel determinant defined by Noonan and Thomas [18] is given as

(1.4) Hl(ν) =

∣∣∣∣∣∣∣∣
bν bν+1 . . . bν+l−1

bν+1 bν+2 . . . bν+l

. . . . . . . . . . . .
bν+l−1 bν+l . . . bν+2l−2

∣∣∣∣∣∣∣∣ , [b1 = 1].

For l = 2 and ν = 1 (1.4) reduces to

(1.5) H2(1) =

∣∣∣∣b1 b2
b2 b3

∣∣∣∣ = b3 − b22 [∵ b1 = 1].

This determinant is widely studied due to its connection to Fekete- Szegö functional a
significant quantity in geometric function theory. Specifically, for a real paramater µ the
Fekete-Szegö functional is given by

|b3 − µb22|

with the special case as µ = 1.
The second Hankel determinant for l = 2 and ν = 2 from (1.4) is reduced as follows

(1.6) H2(2) =

∣∣∣∣b2 b3
b3 b4

∣∣∣∣ = b2b4 − b23.

One such approach to defining such subclasses is through analytic subordination to
special functions. Ma and Minda [13] introduced a unified technique for defining
subclasses like S∗(ϕ) and C(ϕ) using analytic function ϕ with positive real part:

zV ′(z)

V (z)
≺ ϕ(z), or 1 +

zV ′′(z)

V ′(z)
≺ ϕ(z).

Numerous subclasses have emerged by selecting appropriate ϕ functions associated with
cassinian ovals[22], cresent shaped regions[20], Bernoulli lemniscates [14, 23], Booth
lemniscates [9], rational function [10], exponential maps [15], sigmoid- type curves[5] and
limacon type regions.
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A notable limacon domain is the bean-shaped region introduced by Yunus et al. [24]
bounded by

Ω(D) =
{
u = x+ iy : (4x2 + 4y2 − 8x− 5)2 + 8(4x2 + 4y2 − 12x− 3) = 0

}
.

and mapped by

(1.7) L(z) = 1 +
√
2z +

1

2
z2.

Such mappings serve as powerful tools in defining function classes through
subordination.

Among many special functions the error function and imaginary error function play
an important role in various scientific fields including probability, statistics partial
differential equations and other engineering applications. The classical error function erf
[1] and the imaginary error function erfi [2, 4] are defined as

erf(z) =
2√
π

∫ z

0

e−t2 dt =
2√
π

∞∑
ν=0

(−1)νz2ν+1

(2ν + 1)ν!
,

erfi(z) =
2√
π

∞∑
ν=0

z2ν+1

(2ν + 1)ν!

respectively. Ramachandran et al. [21] introduced the normalized variant,

Erf(z) =

√
πz

2
erf(

√
z) = z +

∞∑
ν=2

(−1)ν−1zν

(2ν − 1)(ν − 1)!
.

which preserves normalization and analyticity in D and maps onto domains suitable for
subordination.
Closely related is the convolution product (or Hadamard product), which is used to
generate new subclasses by combining two power series term-wise. For functions
f(z) =

∑∞
ν=2 aνz

ν and g(z) =
∑∞

ν=2 bνz
ν , the convolution is:

(f ∗ g)(z) =
∞∑
ν=2

aνbνz
ν .

Using this operation, one defines function families such as:

Erf ∗ S = (Erf ∗ V )(z) =
{
G(z) = z +

∞∑
ν=2

(−1)ν−1cν
(2ν − 1)(ν − 1)!

zν : V ∈ S
}
.

and using the normalized analytic imaginary error function

Erfi(z) =

√
πz

2
erf(

√
z) = z +

∞∑
ν=2

zν

(2ν − 1)(ν − 1)!
(1.8)

EV (z) = (Erfi ∗ V )(z) = z +

∞∑
ν=2

cνz
ν

(2ν −−1)(ν − 1)!
.(1.9)

The theory of second order differential subordination has been developed extensively by
Kanas and Studziński [7] as well as Kanas and Owa [8] who investigated the connection
between differential subordination and subordination relations involving expressions V (z)

z ,
V ′(z) and 1 + z V ′′(z)

V ′(z) .
The subclasses defined through linear combinations of functions and its first two derivatives
in [8] served as the motivation to extend this framework by incorporating convolution
operators associated with imaginary error function. Furthermore, the resulting expressions
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are subordinated to limacon type regions thereby introducing a new subclass of bi-univalent
functions as follows

Definition 1.1. A function V ∈ Σ given by (1.1) is said to be in the family T̂Σ(t, µ, κ) if it satisfies
the two conditions given below:

(1− κ)
EV (z)

z
+ κ(EV (z))′ + µz(EV (z))′′ ≺ L(t, z)

and

(1− κ)
EW (w)

w
+ κ(EW (w))′ + µw(EW (w))′′ ≺ L(t, w),

where z, w ∈ D, κ, µ ≥ 0, t ∈
(
1
2 , 1

]
, and the function W = V −1 is given by (1.3).

2. MAIN RESULTS

2.1. Coefficient estimates of the class T̂Σ(t, µ, κ). In this section, we provide bounds for
the initial Taylor-Maclaurin coefficients for functions belonging to the class T̂Σ(t, µ, κ)
using the following lemma

Lemma 2.1. [19] Let P be the class of all analytic function q(z) of the form

(2.10) q(z) = 1 +

∞∑
ν=1

qνz
ν

with ℜ(q(z)) > 0 for all z ∈ D. Then, |qν | ≤ 2 for every ν = 1, 2, . . . .

Theorem 2.1. Let the function V (z) ∈ T̂Σ(t, µ, κ).Then

|b2| ≤
6
√
10√

|18
√
2(1 + 2κ+ 6µ) + 5

√
2(1 + κ+ 2µ)2(2

√
2 + 1)|

(2.11)

|b3| ≤
18

(1 + κ+ 2µ)2
+

10
√
2

(1 + 2κ+ 6µ)
(2.12)

and

(2.13) |b4| ≤
126(1 + 2

√
2)

(1 + 3κ+ 12µ)
+

300

(1 + κ+ 2µ)(1 + 2κ+ 6µ)
.

Proof. Let V (z) be in the class T̂Σ(t, µ, κ). We have two analytic functions q and r defined
in the unit disk D such that

(2.14) (1− κ)
EV (z)

z
+ κ ((EV (z))′ + µz(EV (z))′′) ≺ L(t, q(z))

and

(2.15) (1− κ)
EW (w)

ω
+ κ ((EW (w))′ + µw(EW (w))′′) ≺ L(t, r(w)),



Bi-Univalent Functions Involving Error Function Subordinating to Limacon Domain 127

where q(z) =
∑∞

n=1 qνz
ν and r(w) =

∑∞
n=1 rνw

ν for all z, w ∈ U. Then,we have

(1− κ)

(
z +

∑∞
ν=2

bνz
ν

(2ν−1)(ν−1)!

)
z

+ κ

(
z +

∞∑
ν=2

bνz
ν

(2ν − 1)(ν − 1)!

)′

+ µz

(
z +

∞∑
ν=2

bνz
ν

(2ν − 1)(ν − 1)!

)′′

= 1 +
q1√
2
z +

[
1√
2
(q2 −

q21
2
) +

q21
8

]
z2 +

[
1√
2
(q3 − q1q2 +

q31
4
) +

q1
4
(q2 −

q21
2

]
z3 . . .

and

(1− κ)

(
w +

∑∞
ν=2

bνw
ν

(2ν−1)(ν−1)!

)
w

+ κ

(
w +

∞∑
ν=2

bνw
ν

(2ν − 1)(ν − 1)!

)′

+ µw

(
w +

∞∑
ν=2

bνw
ν

(2ν − 1)(ν − 1)!

)′′

= 1 +
r1√
2
w +

[
1√
2
(r2 −

r21
2
) +

r21
8

]
w2 +

[
1√
2
(r3 − r1r2 +

r31
4
) +

r1
4
(r2 −

r21
2

]
w3 . . . .

Now, equating the coefficients we get
1 + κ+ 2µ

3.1!
b2 =

q1√
2

(2.16)

1 + 2κ+ 6µ

5.2!
b3 =

1√
2
(q2 −

q21
2
) +

q21
8

(2.17)

(1 + 3κ+ 12µ)

7.3!
b4 =

[
1√
2
(q3 − q1q2 +

q31
4
) +

q1
4
(q2 −

q21
2
)

]
(2.18)

− (1 + κ+ 2µ)

3.1!
b2 =

r1√
2

(2.19)

(1 + 2κ+ 6µ)(2b22 − b3)

5.2!
=

1√
2
(r2 −

r21
2
) +

r21
8

(2.20)

−(1 + 3κ+ 12µ)(b4 + 5b32 − b3b2)

7.3!
=

[
1√
2
(r3 − r1r2 +

r31
4
) +

r1
4
(r2 −

r21
2
)

]
.(2.21)

It follows from (2.16) and (2.19)

q1 = −r1(2.22)
2

9
(1 + κ+ 2µ)2b22 =

1

2
(q21 + r21).(2.23)

Subtracting (2.16) and (2.19)

(1 + κ+ 2µ)2b2
3.1!

=
q1 − r1√

2

b2 =
3(q1 − r1)

2
√
2(1 + κ+ 2µ)

.(2.24)

Adding (2.17) and (2.20) we get

(2.25)
2b2

2(1 + κ+ 2µ)

10
=

1√
2

(
(q2 + r2)−

(q21 + r21)

2

)
+
q21 + r21

8
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Substituting the value of (q12 + r1
2) from (2.23) in the right- hand side of (2.25), we

deduce that

(2.26)
[√

2(1 + 2κ+ 6µ)

5
+

2(1 + κ+ 2µ)2

9
+

√
2(1 + κ+ 2µ)2

18

]
b2

2 = (q2 + r2)

Hence,

(2.27) b2
2 =

(q2 + r2)[√
2(1+2κ+6µ)

5 +
√
2(1+κ+2µ)2

18 [2
√
2 + 1].

]
Using lemma 2.1 in (2.26), we get

(2.28) |b2| ≤
6
√
10√

|18
√
2(1 + 2κ+ 6µ) + 5

√
2(1 + κ+ 2µ)2(2

√
2 + 1)

.

Subtracting (2.20) and (2.17) yields,

(2.29)
2(1 + 2κ+ 6µ)

10
(b3 − b22) =

1√
2
(q2 − r2)−

1√
2
(q21 − r21) +

(q21 − r21)

8

Substituting (2.22) in (2.29) we get

(2.30) b3 =
5(q2 − r2)√

2(1 + 2κ+ 6µ)
+

9(q1
2 + r1

2)

4(1 + κ+ 2µ)2

And in view of (2.29) we obtain

(2.31) |b3| ≤
10
√
2

(1 + 2κ+ 6µ)2
+

18

(1 + κ+ 2µ)2
.

Subtracting equations (2.18) and (2.21)

(1 + 3κ+ 12µ)(2b4 + 5b32 − 5b3b2)

7.3!
=[

1√
2
((q3 − r3)− (q1q2 − r1r2) +

(q31 − r31)

4
+

(q1q2 − r1r2)

4
− (q31 − r3)

8
)

]
.(2.32)

Equating (2.24) and (2.30) gives

b4 =
21
√
2(q3 − r3)

2(1 + 3κ+ 12µ)
+

21(1− 2
√
2)(q1q2 − r1r2)

2(1 + 3κ+ 12µ)
+

21(
√
2− 1)q31

4(1 + 3κ+ 12µ)
(2.33)

+
75q1(q2 − r2)

2(1 + 2κ+ 6µ)(1 + κ+ 2µ)

|b4| ≤
126(1 + 2

√
2)

(1 + 3κ+ 12µ)
+

300

(1 + κ+ 2µ)(1 + 2κ+ 6µ)
.(2.34)

□

By taking different values for µ we obtain the following corollaries

Corollary 2.1. For µ = 0, we have T̂Σ(t, 0, κ) = T̂Σ(t, κ) then

|b2| ≤
6
√
10√

|18
√
2(1 + 2κ) + 5

√
2(1 + κ)2(2

√
2 + 1)|

|b3| ≤
18

(1 + κ)2
+

10
√
2

(1 + 2κ)
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and

|b4| ≤
126(1 + 2

√
2)

(1 + 3κ)
+

300

(1 + 2κ)(1 + κ)
.

Corollary 2.2. For µ = 0 and κ = 1, we have T̂Σ(t, 0, 1) = T̂Σ(t, 1) then

|b2| ≤
6
√
10√

|54
√
2 + 20

√
2(2

√
2 + 1)|

, |b3| ≤
27 + 20

√
2

6

and

|b4| ≤
163 + 126

√
2

2
.

Corollary 2.3. For µ = 0 and κ = 0, we have T̂Σ(t, 0, 0) = T̂Σ(t) then

|b2| ≤
6
√
5√

|18
√
2 + 5

√
2(2

√
2 + 1)|

|b3| ≤ 18 + 10
√
2

and

|b4| ≤ 426 + 252
√
2.

2.2. Fekete-Szegö functional of the class T̂Σ(t, µ, κ). The results of this section depend
on the following lemma which is well-known and useful in establishing the Fekete-Szegö
functional results.

Lemma 2.2. [11] Let ν, l ∈ R and p, q ∈ C. If |p| < r and |q| < r

|(ν + l)p+ (ν − l)q| ≤

{
2|ν|r, if |ν| ≥ |l|
2|l|r if |ν| ≤ |l|

We consider the Fekete- Szegö functional for the functions in the class T̂Σ(t, µ, κ).

Theorem 2.2. Let the function V (z) ∈ T̂Σ(t, µ, κ). Then, for some α ∈ R,

(2.35) |b3 − αb2
2| ≤

{
10

(1+2κ+6µ) , 0 ≤ H(α) ≤ 5
(1+2κ+6µ)

2|H(α)|, H(α) ≥ 5
(1+2κ+6µ) .

Proof. For some real number α, using equation (2.30), we have

b3 − αb2
2 =

5

(1 + 2κ+ 6µ)

[
(q2 − r2)√

2
− (q21 − r21)√

2(1 + 2κ+ 6µ)
+

(q21 − r21)

8(1 + 2κ+ 6µ)

]
+ (1− α)b22.

Substituting (2.27), we have

b3 − αb2
2 =

5

(1 + 2κ+ 6µ)

[
(q2 − r2)√

2
− (q21 − r21)√

2
+

(q21 − r21)

8

]
+ (1− α)

90(q2 + r2)

18
√
2(1 + 2κ+ 6µ) + 5

√
2(1 + κ+ 2µ)2(2

√
2 + 1)
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b3 − αb2
2 =

[[
90

18
√
2(1 + 2κ+ 6µ) + 5

√
2(1 + κ+ 2µ)2(2

√
2 + 1)

+
5

(1 + 2κ+ 6µ)

]
q2

(2.36)

+

[
90

18
√
2(1 + 2κ+ 6µ) + 5

√
2(1 + κ+ 2µ)2(2

√
2 + 1)

− 5

(1 + 2κ+ 6µ)

]
r2

]

=

[[
H(α) +

5

(1 + 2κ+ 6µ)

]
q2 + [H(α)− 5

(1 + 2κ+ 6µ)

]
r2

]
where,

H(α) =
90

18
√
2(1 + 2κ+ 6µ) + 5

√
2(1 + κ+ 2µ)2(2

√
2 + 1)

.

Thus, the desired inequality is obtained by applying Lemma 2.2 . □

Corollary 2.4. Let the function V (z) ∈ T̂Σ(t, 0, κ) = T̂Σ(t, κ). Then, for some α ∈ R

(2.37) |b3 − αb2
2| ≤

{
10

(1+2κ) , 0 ≤ H(α) ≤ 5
(1+2κ)

2|H(α)| , H(α) ≥ 5
(1+2κ) .

Corollary 2.5. Let the function V (z) ∈ T̂Σ(t, 0, 1) = T̂Σ(t, 1). Then, for some α ∈ R

(2.38) |b3 − αb2
2| ≤

{
10
3 , 0 ≤ H(α) ≤ 5

3

2|H(α)| , H(α) ≥ 5
3 .

Corollary 2.6. Let the function V (z) ∈ T̂Σ(t, 0, 0) = T̂Σ(t). Then, for some α ∈ R

(2.39) |b3 − αb2
2| ≤

{
10 , 0 ≤ H(α) ≤ 5

2|H(α)| , H(α) ≥ 5.

2.3. Hankel determinant. We use the following lemma to find the second Hankel
determinant for the set of all bi-univalent functions in the class T̂Σ(t, µ, κ)

Lemma 2.3. [6] If a function q ∈ P , then

2q2 = q21 + (4− q21)k(2.40)

4q3 = q31 + 2q1(4− q21)k − q1(4− q21)k
2 + 2(4− q21)(1− |k|2)m,(2.41)

for some k,m with |k| ≤ 1 and |m| ≤ 1.

Theorem 2.3. Let V (z) given by (1.1) be in the class T̂Σ(t, µ, κ). Then we have

(2.42) |b2b4 − b23| ≤
1008 + 252

√
2

(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

324

(1 + κ+ 2µ)4
.

Proof. Using (2.24), (2.30) and (2.33) we get

b2b4 − b23 =
63q1(q3 − r3)

(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

63(1− 2
√
2)q21(q2 − r2)√

2(1 + κ+ 2µ)(1 + 3κ+ 12µ)

+
63(

√
2− 1)q41

2
√
2(1 + κ+ 2µ)(1 + 3κ+ 12µ)

+
135q21(q2 − r2)

2
√
2(1 + κ+ 2µ)2(1 + 3κ+ 12µ)

− 81q41
4(1 + κ+ 2µ)4

− 25(q2 − r2)
2

2(1 + 2κ+ 6µ)2
.
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According to Lemma 2.3 and (2.22) we obtain

q2 − r2 =
4− q21

2
(k − l), q2 + r2 = q21 +

4− q21
2

(k + l),(2.43)

and

q3 − r3 =
q31
2

+
(4− q21)q1

2
(k + l)− (4− q21)q1

4
(k2 + l2)

+
4− q21

2

[
(1− |k|2)m− (1− |l|2)n

]
,(2.44)

for some k, l,m, and n with |k| ≤ 1, |l| ≤ 1, |m| ≤ 1 and |n| ≤ 1. Since q ∈ P we have
|q1| ≤ 2. Letting q1 = q we may assume without loss of generality that q ∈ [0, 2].

|b2b4 − b23| ≤
63q41

2(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

63q21(k + l)(4− q21)

2(1 + κ+ 2µ)(1 + 3κ+ 12µ)

+
63q21(4− q21)(k

2 + l2)

4(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

63(1− 2
√
2)q21(4− q21)(k − l)

2
√
2(1 + κ+ 2µ)(1 + 3κ+ 12µ)

+
63(

√
2− 1)q41

2
√
2(1 + κ+ 2µ)(1 + 3κ+ 6µ)

+
135q21(4− q21)(k − l)

4
√
2(1 + κ+ 2µ)(1 + 3κ+ 12µ)

− 81q41
4(1 + κ+ 2µ)4

− 25(4− q21)
2(k − l)

8(1 + 2κ+ 6µ)2
.

Substituting (2.43) and (2.44) and setting η = |k|, ρ = |l| we apply the triangle inequality
and standard bounds for analytic functions in D to estimate |b2b4−b23| yielding the required
inequality.

|b2b4 − b23| ≤
(

63

2(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

63(
√
2 + 1)

2
√
2(1 + κ+ 2µ)(1 + 3κ+ 6µ)

+
81

4(1 + κ+ 2µ)4

)
q4 +

(
63q2(4− q2)

2(1 + κ+ 2µ)(1 + 3κ+ 12µ)

+
63(1− 2

√
2q2(4− q2)

2
√
2(1 + κ+ 2µ)(1 + 3κ+ 12µ)

+
135q2(4− q2)

4
√
2(1 + κ+ 2µ)2(1 + 3κ+ 12µ)

)
(ρ+ η)

+
63q2(4− q2)(ρ2 + η2)

4(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

25(4− q2)2(ρ+ η)2

8(1 + 2κ+ 6µ)2

≤ H1 +H2(η + ρ) +H3(η
2 + ρ2) +H4(η + ρ)2 = H(η, ρ)

where

H1 =

(
126

√
2 + 63

2
√
2(1 + κ+ 2µ)(1 + 3κ+ 12µ)

+
81

4(1 + κ+ 2µ)4

)
q4 ≥ 0

H2 =

(
63(1 + 3

√
2)q2(4− q2)

2
√
2(1 + κ+ 2µ)(1 + 3κ+ 12µ)

+
135q2(4− q2)

4
√
2(1 + κ+ 2µ)2(1 + 3κ+ 12µ)

)
≥ 0

H3 =
63q2(4− q2)

4(1 + κ+ 2µ)(1 + 3κ+ 12µ)
≥ 0

H4 =
24(4− q2)

8(1 + 2κ+ 6µ)2
≥ 0.
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(1) Let q = 0. Since H1(0, µ, κ) = H2(0, µ, κ) = H3(0, µ, κ) = 0 and

H4(0, µ, κ) =
50

(1 + 2κ+ 6µ)2

the function Ψ(ρ, η) is written as follows:

Ψ(ρ, η) =
50

(1 + 2κ+ 6µ)2
(ρ+ η)2, (ρ, η) ∈ ∆.

It is obvious that the function Ψ reaches its maximum near the closed-square
boundary ∆. Now, differentiating the function Ψ(ρ, η) we have

Ψρ(ρ, η) =
50

(1 + 2κ+ 6µ)2
(ρ+ η)

for each η ∈ [0, 1].
The function Ψ(ρ, η) is an increasing function and reaches its maximum at ρ = 1
since Ψρ(ρ, η) ≥ 0. Therefore

max{Ψ(ρ, η) : η ∈ [0, 1]} = Ψ(1, η) =
50

(1 + 2κ+ 6µ)2
(1 + η)2, η ∈ [0, 1].

Differentiating Ψ(1, η) we obtain

Ψ′(1, η) =
100

(1 + 2κ+ 6µ)2
(1 + η), η ∈ [0, 1].

Since Ψ′(1, η) > 0 the function Ψ(1, η) is an increasing function and the maximum
occurs at η = 1. Hence

max{Ψ(1, η) : η ∈ [0, 1]} = Ψ(1, 1) =
200

(1 + 2κ+ 6µ)2
=

(
10
√
2

1 + 2κ+ 6µ)

)2

.

Thus by taking q = 0 we obtain

Ψ(ρ, η) ≤ max{Ψ(ρ, η) : (ρ, η) ∈ [0, 1]2} = Ψ(1, 1) =

(
10

√
2

1 + 2κ+ 6µ

)2

.

We know that |b2b4 − b23| ≤ Ψ(ρ, η) so we can have

|b2b4 − b23| ≤
(

10
√
2

1 + 2κ+ 6µ

)2

.

(2) Now taking q = 2. Since H2(2, µ, κ) = H3(2, µ, κ) = H4(2, µ, κ) = 0 and

H1(2, µ, κ) =

(
126

√
2 + 63

(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

81√
2(1 + κ+ 2µ)4

)
4
√
2

=

(
1008 + 252

√
2

(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

324

(1 + κ+ 2µ)4

)
the function Ψ(ρ, η) is a constant as follows:

Ψ(ρ, η) = H1(2) =
1008 + 252

√
2

(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

324

(1 + κ+ 2µ)4
.

Thus, we obtain

|b2b4 − b23| ≤
1008 + 252

√
2

(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

324

(1 + κ+ 2µ)4
,

in the case of q = 2.
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Consequently, in light of these two instances we write

|b2b4 − b23| ≤ max

{(
10
√
2

1 + 2κ+ 6µ

)2

,
1008 + 252

√
2

(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

324

(1 + κ+ 2µ)4

}
.

Therefore,

(2.45) |b2b4 − b23| ≤
1008 + 252

√
2

(1 + κ+ 2µ)(1 + 3κ+ 12µ)
+

324

(1 + κ+ 2µ)4

□

The following remark is provided to demonstrate that the subclass T̂Σ(t, µ, κ) is non-
empty and that the function belonging to this class satisfy all the coefficient estimates, the
Fekete - Szegö inequality and the second Hankel determinant bounds obtained.

Remark 2.1. Let V (z) = z + εz2 where 0 < ε ≤ 1
2 . Then V ∈ Σ satisfies the defining subclass

conditions of T̂Σ(t, µ, κ). Moreover this function satisfies the coefficient estimates, the Fekete-
Szegö inequality and the second Hankel determinant bounds obtained in Theorem 2.1 -2.3 and
their corresponding corollaries.

Verification. For the function V (z) = z + εz2 with 0 < ε ≤ 1
2 we have b2 = ε and

b3 = b4 = 0.
Since all the right- hand side in the coefficient estimates obtained in Theorem 2.1 and
Corollaries 2.1-2.3 are positive for κ ≥ 0 and µ ≥ 0, it follows immediately that the
inequalities for b2, b3 and b4 are satisfied.
Further for any α ∈ R

|b3 − αb22| = |α|ε2,
which satisfies the Fekete - Szegö inequality given in Theorem 2.2 and Corollaries 2.4 -2.6
for admissible parameter values.
Finally the second Hankel determinant satisfies

|b2b4 − b23| = 0,

which trivially satisfies the bound obtained in Theorem 2.3. Hence the chosen example
satisfies the inequalities derived. □

3. CONCLUSION

We introduced a subclass of bi-univalent functions defined using the error function
subordinated to a limaçon domain. Coefficient estimates for the initial Taylor coefficients
were obtained, along with bounds for the Fekete- Szegö functional and the second Hankel
determinant. These results generalize several existing results. As a future work, one may
consider to extend these methods to higher order Hankel determinant and corresponding
q- analogues.
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