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Essential Conditions for Subclasses of Spiral-Like

Functions and Their Univalent Derivatives associated with
Poisson distribution series

PRATHVIRA] SHARMA! AND S. SIVASUBRAMANIAN?

ABSTRACT. In this article, we investigate the necessary and sufficient conditions for specific functions that
involve Poisson distribution series to be in few subclasses of analytic functions, where both i and A’ are uni-
valent in the open unit disc E. We also consider an integral operator associated with Poisson distribution series
and discuss several mapping properties of integral operator. Furthermore, we point out certain corollaries and
consequences of the main results. In addition, we determine the necessary conditions for specific subclasses of
analytic functions linked to Poisson distribution series to belong to subclasses of spiral-like univalent functions.

1. OVERVIEW AND KEY CONCEPTS

We define A as the class of analytic functions h(z) that are defined on the open unit
disk, E := {z : |z| < 1}, which takes the normalized form:

(1.1) h(z) =z + i hpz™.
n=2

Additionally, we use S to refer to the family of univalent functions (i.e., analytic and
injective) within 4. Geometric Function Theory focuses on the geometric characteristics
of functions that belong to S or a specific subset of it. Let S; illustrate the subfamily of S
that encompasses functions h for which both h and its derivative h’ are univalent in E. A
function h(z) expressed in the form (1.1) belongs to S,, if both h and its first u derivatives
are univalent in E. For any function i € A presented in the form (1.1), and if f € Ais
given by

F@) =24 fa?",
n=2

we define the Hadamard product (or Convolution) of 4 and f as

(hx f)(z) =2+ Z hnfnz", z€R.
n=2
Let S*(n) and K(n) be defined as the subclasses of S that contain functions which are
starlike of order n and convex of order 7, under the condition that 0 < 5 < 1. The analytic
characterizations of these two classes are given by:
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K(n) := {h cA:R (1 + Z;é?) > n}.

Additionally, £ = K(0) and $* = §*(0), the well-recognized standard class of convex and
starlike functions. It is a confirmed fact that

zh'(2) € §*(n) < h € K(n).
Let 7 signify the class of all functions characterized by

and

(1.2) h(z)=2= hnz", hy >0,
n=2

normalized according to the conditions h(0) = A/(0) — 1 = 0, which are analytic in E.
The subclasses of 7 are represented by 7*(n) and C(n), which correspond to starlike of
order n and convex of order 7, respectively. Silverman [23] explored functions in the
classes 7*(n) = T NS*(n) and C(n) = T N K(n). Moreover, let 7; denote the subfamily
of 7 comprising functions % such that both % and its derivative i’ are univalent in E. It
is obvious that the second coefficient of a2function in 77 cannot be zero. Thus, the class

T1 is non-empty since the function z — % is included in 7;. A function h(z) presented

in the form (1.1) is considered to be in 7, if h and its first n derivatives are univalent in
E. If h belongs to 7, then it is said to be in the class 7., which represents the limiting
or extremal class obtained as the parameter n tends to infinity. In this sense, 7 collects
all functions of the class 7 that satisfy the defining condition of 7,,, for every admissible
value of n, or equivalently, that remain invariant under the strongest form of the imposed
constraint. Thus, membership of  in 7, implies that / also belongs to the broader class
Too-

A function h € A belongs to the UCV class of uniformly convex functions within the
unit disk E if it meets the criteria of being a normalized convex function in [E. Additionally,
it has the property that for any circular arc €2 located in E, with its center ¢ also within E,
the resulting image curve h(2) is a convex arc. The idea of uniformly convex functions,
referred to as UCV, was first presented by Goodman [8]. Renning [21] demonstrated that
a function h(z) expressed in the format (1.1) belongs to ¢/CV if and only if

h// (Z)

— > .

R(14 (=050 ) 20, (O cExE

He further introduced the concept of uniformly starlike functions, and the analytic criteria
is expressed as follows: h € UST if and only if

Q) — h(z)

%((C—z)h’(z)) >0, (2 €ExE.

As a further point, we identify two essential subclasses of S, known as s — U/CV and
» — 8T which comprise functions that are sc—uniformly convex and s — starlike in E,
respectively. The analytic representations of these two classes are given as

5 —UCY = {he&?}%(Hz’ZEZ)) > Z:ES) , (zEEandO§%<oo)}
and
- ST = {heS:%(z}]z;S)) > Z}’Z(S) —1], (zEEand0§%<oo)}.

The s — UCV class was introduced by Kanas and Wisniowska [12], where its geometric
definition and its connections to conic domains were examined. The » — ST class was
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explored in [11]. Indeed, it is associated with the s»x — U/CV class through the well-known
Alexander equivalence that links the standard classes of convex and starlike functions;
for additional developments concerning both the s —UCV and s — ST classes, refer to the
work of Kanas and Srivastava [10]. Specifically, when » = 1, we derive

1-UCY =UCY and 1—-8T =8P,

where UCV and SP denote the well-known classes of uniformly convex functions and
parabolic starlike functions in E, respectively (see details in [8, 9, 21, 25, 26]). Furthermore,
utilizing a specific fractional calculus operator, Srivastava and Mishra [28] conducted a
comprehensive and unified analysis of the Z/CV and SP classes. A function h belonging
to the class A is said to be spiral-like if

R (e—m ZZ;S)) >0, zcE,

for some o in C such that |o| < g The concept of spiral-like functions was first introduced

in [27]. Furthermore, a function h is defined as convex spiral-like if zh/(z) exhibits spiral-
like properties. According to Murugusundramoorthy [15, 16], we examine the following
subclasses of spiral-like functions as outlined below:

For0<d§<1,0<n<1,and |a| < g, we define the class S(a, 7, 0) as follows:
; zh (z)
0):=<h : e E;.
S(a,n,0) { eA ?R(e (1—5)h(z)+5zh’(z)> >ncosa, z € }
Based on Alexander’s relation (refer to [7]), we introduce the following subclass KC(«, 77, 9).
For0<d<1,0<np<1,and |o| < g, we define the class K(a, 7, 0) as follows:

o W(2) + 20 (2)

K(a,n, ) = {hGA:%(e 32k (2) + 1 (2)

) >ncosq, z EE}.
. . . 4
The class M (5) consists of starlike functions where 1 < 8 < 3’

M(B) = {h AR (i’;é?) <B, zc E}

and the class V/(3) consists of convex functions where 1 < 3 <

Wl >

N(B) = {heA:?IE(lJrZZ/;S)) < B, ze]E},

was introduced by Uralegaddi et al. [29] (refer to [5, 6]). Additionally, let M*(3) be
defined as M(3) N T and N*(j3) defined as N'(8) N T. We present two new subclasses of
S, specifically M(¢, 3) and N (€, ), to explore certain inclusion properties.

For specific values of 5 (1 < 8 < g and £ (0 < ¢ < 1), we consider M(¢,3) and

N (&, B), as two new subclasses of S that include functions of the form (1.1) which meet
the analytic criteria

Mie = (e (gt Ve ) <5 2<Ef-

Ve = {rearn(KOEHCY 5 g,

and
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Note that M*(¢,8) = M(&,6) N'T and N*(§,5) = N (& B) N T. It is important to ob-
serve that M*(0,8) = M*(8) and N*(0,3) = N*(8); M*(8) and N*(3) represent the
subclasses examined by Uralegaddi et al. [29].

1.1. Poisson distribution series. It is widely recognized that special functions (series) are
crucial in the field of geometric function theory, particularly in de Branges” proof of the
renowned Bieberbach conjecture. The unexpected application of special functions (hyper-
geometric functions) has sparked a resurgence of interest in function theory over the past
few decades. There exists a vast body of literature addressing the geometric characteris-
tics of various types of special functions, notably the generalized Gaussian hypergeomet-
ric functions [4, 13, 14, 24], as well as the Bessel functions [1, 2, 3, 20].

A variable y is considered to follow a Poisson distribution if it can assume the values
0,1,2,3,... with probabilities
—k

—k
ok 2€ 3€
kT’k 2',k TR

respectively, where k is referred to as the parameter. Consequently

fm —k
Ply=m)= ﬂj' , m=0,1,2,3,....

Recently, Porwal [17, 19] introduced a power series whose coefficients represent probabil-
ities of the Poisson distribution

> knl
kz—z—i—z (1! , z€kE.

The ratio test indicates that the rad1us of convergence for the series is infinite. In [19],
Porwal also defined the series

& n—1
O(ky2):=22—U(k,z) =2z — Z (:We_kzn, z € E.
n=2 ’

Presently, we are looking to the linear operator
J(k,z): A— A
defined through the convolution or Hadamard product

> knl

J(k,2)h =V(k,z)x h(z —Z+Z “Fapz", ze€L.

For the purpose of convenience in the sections that follow, we will refer to the following
identities

e knfl A
S
n=2 (n a 1)'

> Ln—1 .
Z (n—2)! = ke
n=2

e En—1 5 &
Z (n—3)! = e

We are now going to specify the sufficient conditions for the function & to be included in
the classes discussed above.
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Lemma 1.1. [22] Assume a function h(z) is expressed as in (1.1) where hy # 0 for n > 3. Then,
heS; lf

o0

> n(n = 1)|hn| < 2lhal.

n=3

Lemma 1.2. [22] Assume a function h(z) is expressed as in (1.1) where hy > 0. Then, h € T if
Z n(n — 1)h, < 2hs.
n=3

Additionally, the condition mentioned is sufficient for 0 < hy < 3

Lemma 1.3. [22] Assume a function h(z) is expressed as in (1.1) where H;"I; h, # 0. Then,
h € T if

Z (n=r)n—r+1)...nh, < (n+ )hyq1,
n=2+r
forr=1,2,...,m.
Lemma 1.4. [15, 16] Assume a function h(z) is expressed as in (1.1). Then, h € S(a, 1, d) if

(o9}

Z [(1=0)(n—1)seca+ (1 —=n)(1+nd—19)]|h.] < (1—n),

n=2
wher60§§<1,0§n<17and|a|<g.

Lemma 1.5. [15, 16] Assume a function h(z) is expressed as in (1.1). Then, h € K(«,n,9) if
Zn [(1=0)(n—1)seca+ (1 —=n)(1+nd—9)]|h.] < (1—n),

n=2
whereO§6<1,0§n<1,and|a|<g.

Lemma 1.6. [18] Assume a function h(z) is expressed as in (1.1). Then, h € M*(¢, B) if

o0

D = (1+nE— B |hal < B -1,

n=2
4
wherel<ﬁ§§and0§§<l.

Lemma 1.7. [18] Assume a function h(z) is expressed as in (1.1). Then, h € N*(&, B) if

> nln— (1 +nE— )] |hal < B -1,

n=2
4
wherel<5§§and0§§<1.

In this article, we investigate the necessary and sufficient conditions together with in-
clusion relations for certain functions involving Poisson distribution series to determine
their membership in specific subclasses of analytic functions, where both h and &’ are uni-
valent in the open unit disk E. We also consider an integral operator associated with Pois-
son distribution series and discuss several mapping properties. Furthermore, we point
out certain corollaries and consequences of the main results. In addition, we determine
the necessary conditions for specific subclasses of analytic functions linked to Poisson
distribution series to belong to subclasses of spiral-like univalent functions.



140 Prathviraj Sharma and S. Sivasubramanian

2. SUFFICIENT CONDITIONS FOR POISSON DISTRIBUTION SERIES
Theorem 2.1. A necessary condition for U(k, z) to belong to S, is that inequality

(2.3) ek +2) <4,

k
holds. If 0 < k < %, then condition (2.3) is necessary and also sufficient for ®(k, z) to be in Ty.

Proof. To establish that ¥(k, z) belongs to S; as mentioned in Lemma 1.1, it is enough to
prove that the inequality is fulfilled:

> n1 B i
(2.4) ;n(n—l)(nil)!e k< oke™F.

The left side of the inequality (2.4) could be denoted as

L(k):= Z n(n —1) (:il)' e

n=3

& kn—l e

When we express n? —n = (n — 2)(n - 1) +2(n — 1), we find

= 3 n?—n il ek
o] n—1
:n;)[(n —-2)(n—1)4+2(n—1)] e 1)!e_’C
:Z(n—2)(n— )(k"— ek +QZ :i_l)'e_k
n=3 ’
I > En—1 i e L1

=ke " [Z L +2 Z ”]

o (n—2)! = (n—1)!
—ke K [kek + 2% — 2]

Thus, we have

(2.5) L(k) = ke "[ke” 4 2¢eF — 2].

Note that, the value of expression (2.5) is bounded above by 2ke~* provided that (2.3) is
true. As stated in Lemma 1.2, condition (2.3) is enough for ®(k, z) to be part of 7;. This
essentially completes the proof of Theorem 2.1. O

Theorem 2.2. A necessary condition for U(k, z) to belong to Sy is that inequality
(2.6) eF(k+3) <6,
holds. The necessity of condition (2.6) is evident for ®(k, z) to exist in Ts.
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Proof. To establish that ¥(k, z) belongs to 7, as mentioned in Lemma 1.3, it is enough to
prove that the inequality below is fulfilled:

> n—1

(2.7) Z nn—1)(n—2) (:_ 1)!e_k < K%k,

n=4
The left side of the inequality (2.7) could be denoted as

n—1

:z:: n(n —1)(n — )( 1)!67]@
:nz:;[n?’ — 3n? + 2n] = 1)!e*k.

When we express n® — 3n2 + 2n = (n — 3)(n — 2)(n — 1) + 3(n — 2)(n — 1), we find
p

L(k) :2[713 302 + 20 e n_i)! e
o) n—1
=S (= 3)(n—2)(n—1) +3(n—2)(n—1)] (:_ et

n—1 i L1

o0 k i B
:2(n—3)(n—2)(n—1)(n71)!e k+37§(n—2)(n—1)(n71)!e k

x k,n—l _ e k.n 1
" ;1 et Z o=
o, 0 kn+1 0 Lntl
S s 1>!]
B e Ln—1 el Ln—1
—k2eF LZ:Q T + 31<:2T;:2 woT 1)!]

=k%e Flkek + 3¢F — 3].
Thus, we have
(2.8) L(k) = k2 e F[ke* + 3eF —3].
Note that, the value of expression (2.8) is bounded above by k?e~* provided that (2.6) is

true. As stated in Lemma 1.3, condition (2.6) is enough for ®(k, z) to be part of 75. This
essentially completes the proof of Theorem 2.2. O

Theorem 2.3. If0 <6 < 1,0<n < 1,and |a| < g, then a sufficient condition for ¥ (k, z) to
belong to S(«,n, 9) is that inequality

(2.9) keF[(1 — &) seca+ (1 —n)] + (1 —n)(e" —1) < (1 —1n),

holds.

Proof. To establish that ¥(k, z) belongs to S(a,n,0) as mentioned in Lemma 1.4, it is
enough to prove that the inequality below is fulfilled:

o0

(2.10) > (1 =68)(n—1)seca+ (1—n)(1+nd — o)

n=2

/{3"_1 A
me_ < (1 —1).
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The left side of the inequality (2.10) could be denoted as

o'} n—1
L(k,a,6,n) = Z [(1—=9)(n—1)seca+ (1 —n)(1+ nd—9)] (n— 1)16716

=2 (1= d)seca+d(1—m)(n—1)+ (1 -] —

. k! — kn!
=[(1 —d)seca + (1 — )] Z::(n - 1)(n 5 eF 4+ (1- n); o= 1)!e_k
S k" ! RN
=[(1=9¢)seca+d(1—n Z —n)e ,;(”_1)'
=[(1 = &) seca+ 6(1 —n)]e ™ x kek 4+ (1 —n)e F(ek —1).
Thus, we have
(2.11) L(k,a,8,m) = k[(1—8)seca+ (1 —n)] + (1 —n)e *(eF —1).

Note that, the value of expression (2.11) is bounded above by 1 — 7 provided that (2.9) is
true. As stated in Lemma 1.4, condition (2.9) is enough for ¥ (k, z) to be part of S(«, 1, 6).
This essentially completes the proof of Theorem 2.3. O

By establishing J = 0, we can refine the assertion of Theorem 2.3 as detailed below.

Corollary 2.1. If0 < n < 1,and |a| < —, then a sufficient condition for V(k, z) to belong to
S(a,n) is that inequality

keFseca+ (1 —n)(ef —1) < eF(1 —n),
holds.

Theorem 2.4. If0 <0 < 1,0 <7 < 1,and |o| <Z , then a sufficient condition for ¥ (k, z) to
belong to K(«,n, 6) is that inequality

(2.12) k?e*[(1-6)sec a+d(1—n)]+[2(1—n)+(1—n)(25+1)]keF +(1—n)(e"—1) < e*(1-n),
holds.

Proof. To establish that U(k,z) belongs to K(«,n,d) as mentioned in Lemma 1.5, it is
enough to prove that the inequality below is fulfilled:

> k_n—l
2.1 1-6)(n—1 1—n)(1 - F< (1.
(2.13) nz::zn[( 8)(n—1)seca+ (1 —n)(1+nd —9)] (n—l)!e <(1-n)
The left side of the inequality (2.13) could be denoted as
Lk, a, 0, in d)(n—1)seca+ (1— )(1+n5—5)]£e’k
77 n=2 ! (’fl - 1)‘

fn—1 o L1

Z §)seca + 5(1 —n)](n* —n) (n_l)!e_k—i—Z(l—n)nme_k.

n=2

n=2
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When we express n? —n = (n—2)(n—1)+2(n—1)and n = (n — 1) + 1, we find

Lk, 8,7) ::i[(l — d)secar+6(1 = n)](n” - n)(fi_i)!e‘k + ni(l - n)”ﬁf’“
=[(1 - §)seca + 5(1 - )] i[(n ~2)(n—1) +2(n — 1)] (f"‘i)!e_k
#1311 e
=[(1 - &) seca +d(1—n i; Y —1 (::)!ek
42[(1 - §)seca+5(1 -1 i (n—1) ni_i) o
#1031+ 1] e

“*[(1 = ) seca+ 5(1 — )] 2 (:T;)'
e F[2(1 — &) seca + (26 + 1)(1 — n)] i (:n_;)' +e R —n) i (:n_i)'

=k?[(1 — &) seca+ 6(1 —n)] + k[2(1 — §) seca + (26 + 1)(1 — )] + (1 — n)(1 — €¥).

Thus, we have
(2.14)
Lk, a,8,m) = k*[(1—=8)seca+6(1—n)]+k[2(1—8)seca+ (26 +1)(1—n)]+ (1 —n)(1 —€¥).

Note that, the value of expression (2.14) is bounded above by 1 — n provided that (2.12) is
true. As stated in Lemma 1.5, condition (2.12) is enough for ¥(k, z) to be part of K(«, 7, ).
This essentially completes the proof of Theorem 2.4. O

By establishing 6 = 0, we can refine the assertion of Theorem 2.4 as detailed below.

Corollary 2.2. If0 < n < 1, and |a| < —, then a sufficient condition for U(k, z) to belong to
K(cv,n) is that inequality
k2e¥seca + 3(1 — n)ke® + (1 —n)(ef — 1) < eF(1 —n),
holds.
Theorem 2.5. If1 < 3 < g and 0 < & < 1, then a sufficient condition for U(k, z) to belong to
M*(&, B) is that inequality
(2.15) K1-€8)+ (1A - <B-1,
holds.

Proof. To establish that ¥(k, z) belongs to M*(¢, 5) as mentioned in Lemma 1.6, it is
enough to prove that the inequality below is fulfilled:

(2.16) Y - (1+ng - )8] (f”__i),e—k <p-1
n=2 '
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The left side of the inequality (2.16) could be denoted as

L(k,B) : i_o: n—(1+ng —€)f) (kn i)!e_k
=§ (0~ 1)1~ £8) + (1 - )] (,’fi_i)!e"“
:ni(n— 1)(1 - €8) (:nl *MZ n_i) k
(1 - ¢B) ;(n —1) (::)! +e (1 - ) ni; (:n_i),
(1 -¢p) ni (:i_;)! +e k1 -p) i (:n__i)!

—e F(1 — Pk + e 7F(1 — B)(eF —1).
Thus, we have
(217) L(k,EB)=k(1—€B)+(1—B)(1—eF).

Note that, the value of expression (2.17) is bounded above by 8 — 1 provided that (2.15) is
true. As stated in Lemma 1.6, condition (2.15) is enough for ¥ (k, z) to be part of M*(&, ).
This essentially completes the proof of Theorem 2.5. O

By establishing £ = 0, we can refine the assertion of Theorem 2.5 as detailed below.

Corollary 2.3. If1 < 3 < %, then a sufficient condition for V(k, z) to belong to M* () is that
inequality
k+(1-8)1-e?)<B-1,
holds.
Theorem 2.6. If1 < 3 < % and 0 < & < 1, then a sufficient condition for W (k, z) to belong to
N*(&, B) is that inequality
(2.18) K2(1—€8) +k(3—26 - )+ (1 - f1—e ) < f -1,
holds.

Proof. To establish that ¥(k, z) belongs to N*(, 5) as mentioned in Lemma 1.6, it is enough
to prove that the inequality below is fulfilled:

> fn—1 3
(2.19) ;n[n—(1+n§—£)ﬁ] aomie <AL
The left side of the inequality (2.19) could be denoted as
0 Ln—1 B
£(k.& B ::n;[n— (1+n€ =B e

=3[0 = W1 = 69) (1 = ) hk
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When we express n? —n = (n—2)(n—1)+2(n—1)and n = (n — 1) + 1, we find

006 = 3 (0 =)0 = 9) 10 = )] e
:ikn—m(n—1><1—sm+<n—1><3—2€5—5>+<1‘5”(nkiﬂe_k
:i(n—Q)(n—l)(l—fﬁ)(jn_i) ‘k+Z”—1 (3-266 - ﬂ)(kn 1). -
+Z (15 kn 1)! -

k(1§5)§(n2)(n1>(:il). k(32§65)§;(n1)(::)!

> k,n—l > Ln— 1 0

n=2
=e "1 - €B)K%e" +e7F(3 - 268 — B)ker +e7F(1 - B)(eF - 1).
Thus, we have
(2.20) L(k,€,B) = k(1= €8) + k(38— 28— B) + (1 - B)(1 —e7").
Note that, the value of expression (2.20) is bounded above by 3 — 1 provided that (2.18) is

true. As stated in Lemma 1.7, condition (2.18) is enough for ¥ (k, z) to be part of N*(¢, ).
This essentially completes the proof of Theorem 2.6. O

n=2

By establishing £ = 0, we can refine the assertion of Theorem 2.6 as detailed below.

Corollary 2.4. If1 < f8 < , then a sufficient condition for V(k, z) to belong to N* () is that
inequality

B+EB-B)+(1-p)(1-e*)<B-1,
holds.

3. SUFFICIENT CONDITIONS FOR INTEGRAL FORM OF POISSON DISTRIBUTION SERIES

Let us examine the Integral operators G(k, z) and G; (k, z) defined as follows:

2y ® zn—1
g(k‘,z) ::/ MdZ:Z+ZLe—kZ71,’ s cE
0

z n!
n=2

and

k kn 1

91(kaz)5:/ 7( ° = —Z B z € E.
0

Theorem 3.7. A necessary condition for G(k, z) to belong to Sy is that inequality
(3.21) ek <4,

k
holds. If 0 < k < 2%, then condition (3.21) is necessary and also sufficient for G, (k, z) to be in
Ti.

-1

— _ k/,n
k(l—ﬁﬁ)Zm‘f‘ "3 268 - ﬂ)ZQW—Fe k(l—ﬁ)Zﬁ

1)



146 Prathviraj Sharma and S. Sivasubramanian

Proof. To establish that G(k, z) belongs to S; as mentioned in Lemma 1.1, it is enough to
prove that the inequality below is fulfilled:

> n—l

(3.22) Z n(n —1)

ek < ke ",

The left side of the inequality (3.22) could be denoted as

d knfl i
L(k) ::;n(n -1) e
_ i ke 1 ,
n=3 (’Il o
"2
e k= 1
—k
ke nz; (n—1)!
=ke F(ek —1).
Thus, we have
(3.23) L(k) = ke *(e* —1).

Note that, the value of expression (3.23) is bounded above by 2ke~* provided that (3.21)
is true. As stated in Lemma 1.2, condition (3.21) is enough for G; (k, z) to be part of T;.
This essentially completes the proof of Theorem 3.7. O

Theorem 3.8. A necessary condition for G(k, z) to belong to Sy is that inequality
(3.24) ek <2,

holds. The necessity of condition (3.24) is evident for G (k, z) to exist in Ts.

Proof. To establish that G(k, z) belongs to 7 as mentioned in Lemma 1.3, it is enough to
prove that the inequality below is fulfilled:

> n—1

(3.25) Z n(n—1)(n—2)

ek < k2ek
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The left side of the inequality (3.25) could be denoted as

Thus, we have
(3.26) L(k) = ke "k —1).

Note that, the value of expression (3.26) is bounded above by k?e~* provided that (3.24)
is true. As stated in Lemma 1.3, condition (3.24) is enough for G; (k, z) to be part of 7s.
This essentially completes the proof of Theorem 3.8. O

™

Theorem 3.9. If0 <6 < 1,0<n < 1,and |a| < 5" then a sufficient condition for G(k, z) to
belong to S(«,n, d) is that inequality

(3:27) [(1-4) Seca+6(1—77)](1—e_k)+(1—6)(1—77—seca)/0 <\I,(IZ’ 2 _ 1) dz < (1-n),

holds.

Proof. To establish that G(k, z) belongs to S(«,n,d) as mentioned in Lemma 1.4, it is
enough to prove that the inequality below is fulfilled:

(28) 3 [(1-8)(n—1)secat (1—n)(1 +nd—8) "

n=2
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The left side of the inequality (3.28) could be denoted as

o0

Lk, 6,m) =S (1= 8)(n—1)seca+ (1—n)(1 +nd — 8) k; =
_Z d)seca+ (1 —n)) kT;Tl e "

> 1n—-1
+(1—=6)(1 —n — seca) Z kn' ek

n=2

o0

k(1= 0d)seca+ (1 —n) Z

nf

X 7n—1
+e "1 = 6)(1 —n —seca) Z i

n=2

=[(1=¥8)seca+d(1—-n)]1—-e*)+1-n)

+(1 = 8)(1 - — seca) /01 (‘I’(k’z) - 1) dz.

n!

z

Thus, we have
(3.29)

L(k,a,6,m)=1[(1-9) seca+5(1—n)](1—e_k)—i—(l—é)(l—n—seca)/0 <\If(lz,z) - 1) dz.

Note that, the value of expression (3.29) is bounded above by 1 — 7 provided that (3.27) is
true. As stated in Lemma 1.4, condition (3.27) is enough for G(k, z) to be part of S(«, 1, 9).
This essentially completes the proof of Theorem 3.9. O

By establishing J = 0, we can refine the assertion of Theorem 3.9 as detailed below.

Corollary 3.5. If0 < n < 1, and |o| < g, then a sufficient condition for G(k, z) to belong to
S(a,n) is that inequality

U(k,z)

seca(lek)Jr(ln)Jr(l7]seca)/01< 1) dz < (1—mn),

holds.

Theorem 3.10. If0 <6 < 1,0 <n < 1,and |a <z , then a sufficient condition for G(k, z) to
belong to K(c,n, 6) is that inequality

(3.30) k(1 —8)seca+ké(1—n)+(1—n)(1—eF)<(1-mn),

holds.

Proof. To establish that G(k, z) belongs to (o, n,d) as mentioned in Lemma 1.4, it is
enough to prove that the inequality below is fulfilled:

oo

(3.31) > nl(1=6)(n—1)seca+ (1 —n)(l+nd—0)]

n=2

n—1
= e "< (1-n).
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The left side of the inequality (2.13) could be denoted as

L(k,a,6,n):= Zn [(1=08)(n—1)seca+ (1 —n)(1+nd—J)] k;: ek
n=2 !
0 L1 e 0 fn—1 o,
:Z[u —8)seca+3(1—n)n(n —1)=——e" + 3 (1=mn=—e
e Jn—1 e e Ln—1
=[(1 —0)seca + d(1 —n)] Zn(n -1 o + (1 —ne Zn "
=[(1 - 6)seca + (1 —n)] ; (:n:z)! F(1—p)e* ; (:":1)'
=k(1 —8)seca+kd(1—n)+(1—n)1—e").
Thus, we have
(3.32) L(k,a,8,n) = k(1 —d)seca+ks(1 —n)+ (1 —n)(1—e").

Note that, the value of expression (3.32) is bounded above by 1 — n provided that (3.30) is
true. As stated in Lemma 1.5, condition (3.30) is enough for G(k, z) to be part of K(«a, 7, d).
This essentially completes the proof of Theorem 3.10. O

By establishing 6 = 0, we can refine the assertion of Theorem 3.10 as detailed below.

Corollary 3.6. If 0 < n < 1,and |a| < g then a sufficient condition for G(k, z) to belong to
K(cv,n) is that inequality

kseca+ (1—n)(1—e ) < (1—n),
holds.

4
Theorem 3.11. If1 < 3 < 3 and 0 < & < 1, then a sufficient condition for G(k, z) to belong to
M*(&, B) is that inequality

U(k, z)

z

(3.33) (-t - - s-o [ ( —1) dz < (3 - 1),

holds.

Proof. To establish that G(k, z) belongs to M*(¢,8) as mentioned in Lemma 1.6, it is
enough to prove that the inequality below is fulfilled:

S n—1

(334) Sh-(tne-08 Y et g

n=2
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The left side of the inequality (3.34) could be denoted as

& n—1

L(k,¢&,B) '—Z = (14 n€ — )]~ e+

n!

n—1

n(1—€8) 51— &) et

—Z (T LA o FT Li
n=2

I MS I

711

0 knfl 7k 0 En—1
F1-€8) D n— BO-Y —
n=2 n=2 ’
e kn 1 7k: > Ln—1
k(1-¢B) Z BI-8D —
n—2 n=2 ’

k(1 €8)(eF — 1)e*B(1 - €) /01 (“P(’Zz) _ 1) i

Thus, we have

(335)  L(kEF) = e F(1—EB)( — e B —¢) /0 <‘I’(IZZ)1) dz.

Note that, the value of expression (3.35) is bounded above by 3 — 1 provided that (3.33) is
true. As stated in Lemma 1.6, condition (3.33) is enough for G(k, z) to be part of M*(&, 3).
This essentially completes the proof of Theorem 3.11. O

By establishing £ = 0, we can refine the assertion of Theorem 3.11 as detailed below.

Corollary 3.7. If1 < 8 < %, then a sufficient condition for G(k, z) to belong to M*(3) is that
inequality
1
@ -0-5 (“’“”—1) dz < H(B 1),
0

Theorem 3.12. If1 < 8 < g and 0 < & < 1, then a sufficient condition for G(k, z) to belong to
N*(&, B) if and only if inequality (2.15) is satisfied.

Proof. To establish that G(k, z) belongs to N* (€, ) as mentioned in Lemma 1.6, it is enough
to prove that the inequality below is fulfilled:

holds.

> n—1

(3.36) Y nn—(1+né—¢)p) u I

n=2
The left side of the inequality (3.36) could be denoted as

eh<p—1.

Lk, & B) = ni nln—(1+né—¢§)pa kj: et

= [+ = f ——

(
n=2

Utilizing the procedure from Theorem 2.5, we derive the required result. This essentially
completes the proof of Theorem 3.12. O
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4. CONCLUDING REMARKS AND OBSERVATIONS

In this research, we have identified the sufficient conditions for the functions ¥ (k, z)
to be classified within the classes S;, 71, So and 75. Furthermore, we have determined
the mapping properties of the integral operator G(k, z) as well as a finding related to the
particular integral operator acting on ¥ (%, z).

We established sufficient conditions and inclusion results for functions h € A to be
classified within the classes S(«, 7, 9), K(a,n,d), M*(&, ) and N*(&, 8), as well as infor-
mation concerning the images of functions when the convolution operator is applied with
Poisson distribution series.

The study also suggests that by employing g-calculus for values of 0 < ¢ < 1, along
with orthogonal polynomials and different kinds of operators, one may get interesting
results.
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