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Conformable Bilateral Laplace Transform on Time Scales

SVETLIN G. GEORGIEV', SNEHA M. CHHATRABAND?, AND TUKARAM G. THANGE?

ABSTRACT. In this paper, we define the conformable bilateral Laplace transform on arbitrary time scales.
We proved the decay property of the generalized exponential function as ¢ € T asymptotically approaches
minus infinity. Then, the conditions for the absolute and uniform convergence of the conformable bilateral
Laplace transform are provided. We specify the class of functions for which the transform exists and provide an
inversion formula to reconstruct the original function on a time scale. Finally, the uniqueness theorem is proved
for the proposed transform.

1. INTRODUCTION

In 1763, Euler introduced the unilateral Laplace transform to solve differential equa-
tions. However, between 1779 and 1812, Laplace used this transform in extensive studies,
particularly in the field of probability theory. The bilateral Laplace transform is an in-
tegral transform that generalizes the standard unilateral Laplace transform to functions
defined across the entire real line and also shows a strong connection with the Fourier
transform. The p-multiplied version of the bilateral Laplace transform developed by Van
der Pol and Bremmer [24]. This transform unifies the unilateral Laplace and Fourier trans-
forms, providing a framework for Heaviside’s operational calculus. This version of the
bilateral Laplace transform was modified by Paley, Wiener, and Widder [16, 25], removing
the multiplicative p-factor and the application of Stieltjes integral. Their contribution has
solidified its significance beyond the unilateral Laplace transform.

Implemented by Hilger [15] in 1988, timescale theory provides a unified and extended
framework for discrete and continuous dynamic systems. A time scale, denoted as T, is
any non-empty closed subset of the real numbers that inherits the topological properties
of the real numbers. As dynamic equations are the core of time scale theory, integral trans-
form methods are crucial for solving them. Consequently, various integral transforms on
time scales have been generalized [5,7, 8,9, 12, 13,17, 18, 19, 20, 21, 22].

The concept of derivatives of non-integer order, known as fractional derivatives, first
appeared in the letter between L'Hopital and Leibniz in which the question of a halforder
derivative was posed. Since then, many formulations of fractional derivatives have ap-
peared. Recently, a new definition of fractional derivative, named “conformable fractional
derivative”, is introduced. This new fractional derivative is compatible with the classical
derivative and time scales derivative and it has attracted the attention in domains such as
mechanics, electronics and anomalous diffusion. If T is a time scaleand f : T — Ris a
given function for which the conformable fractional derivative f(®(¢), o € (0,1],¢ € T,
exists, then when o = 1 we get the time scale derivative f A(t), t € T, of the function f,
and if T = R and a = 1, we get the classical derivative f'(t), t € R, of the function f.
Thus, the results obtained in the framework of the conformable fractional calculus unify
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the results obtained in the framework of the classical calculus and time scales calculus.
Researchers have generalized the conformable fractional calculus on arbitrary time scales
using the principles of classical fractional calculus [1, 2, 3]. The main aim of this paper is
to define the bilateral Laplace transform in the framework of the conformable fractional
calculus, called conformable bilateral Laplace transform, and to develop some of its prop-
erties. Firstly, the decay property of the generalized exponential function is proved as
t € T asymptotically tends to minus infinity. Some conditions for absolute and uniform
convergence of the conformable bilateral Laplace transform are given. We determine the
function class for which the conformable bilateral Laplace transform exists and we pro-
vide an inversion formula to recover the original function. To the best of our knowledge
no such investigation in the existing references.

This paper is organized as follows. Section 2, we recall some basic concepts and no-
tions of the conformable fractional calculus. Section 3, we define the conformable bilat-
eral Laplace transform on time scales along with its absolute and uniform convergence.
Finally, the inversion formula for the proposed transform is formulated.

2. PRELIMINARIES

We assume that the reader is attentive to the basics of time scale calculus, details can
be found in [1, 4, 6, 10, 11, 14, 26, 27]. Here we compile definitions and theorems that
are be most relevant to our discussion. Here, we assume that the time scale T under
consideration is unbounded above and below and contain the origin as its component.

Definition 2.1. For t € T, the forward jump operator o : T — T is defined as o(t) = inf{s €
T : s > t}, and the backward jump operator p : T — T is defined as p(t) = sup{s € T : s < t}.

Definition 2.2. The forward graininess function v : T — [0, 00) is defined as u(t) = o(t) — t.

Definition 2.3. Lett € T. Ifo(t) = tand t < sup T, then t is said to be right-dense. If o(t) > t,
then t is said to be right-scattered. Similarly, if p(t) = t and t > infT, then t is said to be
left-dense. If p(t) < t, then t is said to be left-scattered.

Definition 2.4. If supT = m is left-scattered, then define T* = T\{m}. Otherwise, define
Tr = T.

Definition 2.5. Assume that g : T — R, t € T%, and o € (0,1]. If g{®)(t) is the number,
provided it exists, with the property that, given any € > 0, there exists a neighbourhood U C T of
t, with 6 > 0, such that

(9(@(t)) = g(s)E ™ = g (E)(a(t) = 8)| < elo(t) — 5]
forall s € U. We call g (t) the conformable fractional derivative of g of order o at t.

Definition 2.6. Assume that g : T — R is a regulated function. Then, the conformable o-
fractional integral of g, for o € (0,1, is given by

/g(t)Aat: /g(t)|t|a_1At.

Definition 2.7. If a function g : T — R is continuous at the right-dense points in T, and has a
finite limit at the left-dense points in T, then g is said to be rd-continuous. We denote the set of all
rd-continuous functions by C.q (T, R).

Definition 2.8. A function g : T — R is said to be ‘a-regressive’ provided

L+ u(t)g@®))t|*~ #0, forall t € T,



Conformable Bilateral Laplace Transform on Time Scales 15

holds. Similarly, g : T — R is said to be ‘a-positively regressive” provided
L+ pu(t)g@®)|t|* ™ >0, forall t € T*

holds. We denote the set of all a-regressive and rd-continuous functions g : T — R by R®. The
set R is the subset of R containing all a-positively regressive functions.

Definition 2.9. In R* ‘a-circle plus’ addition @, is defined as below
(91 ©a 92)() = g1(t) + g2(t) + ()91 (1) g2 (V) [t|* ", forall t € T,
The set R® forms an abelian group under @, .

For g € R, the inverse of g is given as

—g(t)
Oag = , forallt € T".
T et
Definition 2.10. For R?, ‘a-circle minus’ substraction ©,, is defined as
g1(t) — g2(t)
L+ p(t)ga(t)[t|o—t

Definition 2.11. Let g € R®, then the generalized exponential function is defined by

(91 ©a 92)(t) = forall t € T*".

(2.1) g(t,s) =exp /fu(T )|7|*” I)AT) forallt,s € T.

Following the concept of the cylindrical transformation, [4, Definition 2.21] Equation 2.1 can be
rewritten as

! 1 a—1
(2.2) Ey(t,s) = eacp(/ mLog(l + p(1)g(T)|7] )AT), forallt,s € T.

Next theorem collects some important properties of the generalized exponential func-
tion.

Theorem 2.1. If g1, g2 € R®, then forall s,t € T,
(1) Eo(t,s) =1and Eg, (¢,t) = 1.
2 IEg1 (t, s)Eg, (s, ) Eg, (¢, 7).
B) Ey, (t,5) = E, (5 Dl =Eg,g,(5,1).
(4) Egl (t s) ( ) EQlEBagz (t7 s)

Ey, (t,s
(5) o (t s; Egleagz (tv s)~

©) E, 1( (t),s) = (1 +uE(t)91Et)l)t|“‘1)Egl (t, ).

() Eo.g(a(t),s) = oo mima=—r-
(8) By, (£ 5) = 1 () By, (1, 5)[t]*~".
©) By (t5) = 91(t) B, (1, 5).
Definition 2.12. For h > 0, the Hilger complex numbers, and the Hilger real axis are defined as

Ch={2€C:z2#—3}and, Ry, = {2 € Cp : 2 € Rand, z > —1+} respectively. For h = 0,
we have Cy := Cand Ry := R

Definition 2.13. Let h > 0, and z € Cy,. The Hilger real part of z is defined as

|hz +1] -1

Rep(z) == o
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3. THE CONFORMABLE BILATERAL LAPLACE TRANSFORM

Suppose that T is a time scale with forward jump operator and delta differentiation

operator o and A, respectively, and inf T = —oo, sup T = oco. For s € T, define
pe(s) = inf p(),
t€[s,00)
pi(s) = sup p(t),
te(—o0,s]
I = inf t).
fi(s) te(lfloo,s]“( )

For s,t € T and A € R*(T), set

MA(t,S):/S i
¢ 14+ Au(r)

Lemma 3.1. Let s € T, A € R*"((—o0, s]). Then

(1) M{(t,s) < 0forallt € (—oo,s), where the differentiation is with respect to t.
(2) limy—y o M(t,s) = 0.

Proof. (1) By the definition of the function M), it follows

t|a—1
ey =
A (t:9) 1+ Au(t)
< 0, te(—oo,s].
(2) Because we will investigate the behaviour when ¢t — —oo, without loss of gener-
ality, assume that ¢ < 0. We will consider two cases.
(a) Let sup;e(_oo,s) #(t) < 00. Then

L+Ap() < 14 [Ap()

IN

L4 sup plt), e (—oos]
te(—o0,s]

Hence,

Mi(t,s) = /STH_1 A
S A Vo

C e
> AT
t 1+ |>‘| SUPte(—o0,s] M(t)

(i) Let s > 0. Then

[
I+ ‘)‘| SUP¢e(—o0,s] ,U,(t)

t
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0
|a 1 / |T|a 1
= AT + AT
/ I+ |)‘| SUP¢e(—o0,s] lu’(t) 0 1+ ‘)" SUP¢e(—o0,s] :u’(t)

(e}

S P S
= T T
) 1+ |/\| SUP¢e(—o00,s] /U’(t) 0 1+ ‘)‘| SUP¢e(—o0,s] ,U,(t)

a—1(_ Y a—1
_ ) B I A

1+ |)‘| Supte(—oo,s] /’L(t) 1+ I/\| SuPtE(—oo,s] /J/(t)

— 00, as t— —oo.
(ii)) Let s < 0. Then

S

e e
AT > AT
) 1+ ‘)" SUP¢e (—o0,s] :U’(t) ) 1+ |)‘| SUP¢e(—o0,s] /’L(t)

[t (s — 1)
1+ |/\‘ Supte(—oo,s] /J/(t)

— o0, as t— —oo.

(b) Suppose that sup,c(_, 4 u(t) = cc. Because A € R**((—00, s]), we have that
A>0.If A\ =0, then
/ |7|* AT
t

(i) Let s > 0. Then

0 s
My(t,s) = /|T|a71AT+/|T|a71AT
t 0

1 / rjtAr

— 00, as t— —oo.

Y

(ii) Let s < 0. Then
S
Mi(ts) > /|t|a*1m

t

)

— o0, as t— —oo.

Assume that A > 0. Since sup;¢(_ 5 #(t) = 0o, there exists a decreasing
and divergent sequence {&; } ren C (—00, 5] of right-scattered points such that
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{p(&x)|€k]* " Hren is an increasing and divergent sequence. Hence, we get
S
e - [
’ ¢ L+ Au(r)

o (&)

Z / ' |T|a71AT

o (&) >t,Ep<s &

= > ww)lg* !

(k) >t €k <s

%

— o0, as t— —oo.

This completes the proof.
O

Theorem 3.2 (Decay of the Generalized Exponential Function). Let s € T, A € R**((—o0, s])
and

@M*(S)(A) = {Z eC: Reu*(s)(z) < )\} .
Then, for any z € C,,« (5 (X), we have the following properties.

(1)
[Exeaz(t s)| < ]Ex\eaReu*(s)(Z)(tv s), te€(—o0,s],
2)
t—ljr_noo ExeaRe, (. (2) (t:8) = 0,
(3)

til{noo Exe,z(t,s) = 0.

Proof. Let ¥,(z, \) be the following function

%10g‘ﬁﬁi" if h>0
\Ijh(za /\) =
A—Re(z) if h=0.
(1) Asin [23], we have
qlh(za )‘) = \Ijh(Reh(Z)7 /\)
and

[Exeoz(t:8)] < Exg.Re,((t5), T € (=005

(2) For z € C,(5)(A), we have
A— Rew(s)(z)

1+ p(t)Reys (o) (2) [t
A— Reu*(s)(z)
L+ Ap(t) [t

A Oq Rem(s) (Z) =

> 0, te(—o0,4,
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and
. L () 1]
1+ u(t) (A ©a Re,,- et =
ult) ( e ()(2)) [t] 1+ p(t)Re, e (o) (2) 101
L+ Au(t)[t*?
S ST ARORE -
L+ Ap(t)[t[=1
= 1, t 6 (_007 S]
Thus,
A O, Reﬂ*(s)(z) S Ra+((_oo7 S])
and

¢ ‘T‘a—l

e(/\fRe‘”(‘”(z)) Je TR e T A

ExcuRe () (t:8) =

e(ReM* (S)(z)_A)MRe“*(S>(z)ITI"‘*1 (t,s)

— 0, as t— —o0.
(3) By 1 and 2, we obtain

|EA9a2(t7s)| < E)\eaReM*(s>(z) (ta S)

— 0, as t— —o0.

This completes the proof.
O

Definition 3.14. Suppose that s € T, f : T — R is requlated. Then the conformable bilateral
Laplace transform of f is defined by

L) = [ IOR L 9an

for z € C for which 1 + u(t)z[t|*=* # 0 for any t € T* and the improper integral exists.
Definition 3.15 (Conformable Double Exponential Order). Let s € T. A function f €
Cra(T) has conformable double exponential order (8,~) on T if

(1) p e R*"([s,00)), 7 € R*T((—00, 5]),
(2) there exist positive constants K g, K., such that

lf@®) < KgEg(t,s), tels,00),

Hol

IN

K.\E,(t,s), te€(—o0,s].

Example 3.1. Let v > 0. Consider the function
f(t) =E,(t,s), teT.
Ifs<t thenB=~.1Ifs>t then0< f(t) < land Eg_.(t,s) > 1. Thus,
F() < Eo s (t,s).
Therefore f is of double exponential order (77, ©47).
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Lemma 3.2. Let s € T and f € Crq(T) be a function of conformable double exponential order
(8,7). Then

(1) limg o f(t)Eg,=(t,s) = 0 forany z € C,,_ (4 (B).
(2) lim—,—oo f(t)Ea, - (t,s) = 0 forany z € C(5)(7).

Proof. Since f is of double exponential order (3, ), there exist positive constants Kz, K,
such that

£ ()]

IN

KgEg(t,s), te€ s, 00),

fO)] < K\E,(ts), t€(—ooc,s].

(1) The first statement follows by Lemma 3.4 in [23].
(2) By Theorem 3.2, we have

|[f(DEe,:(ts)] < Ky[Eys,:(t s)|
< K’yE'yeaReM(s)(z) (ta 8)

— 0, as t— —oo.

This completes the proof.

For z € C, denote
fi(s) = 1 (s) if Repgs)(2) <0
and
a(s) =T(s) if Reg)(z) > 0.

Definition 3.16. Let s € T, 8 € R*"([s,00)), v € R*T((—o0, s]). We say that (s, 3,7) is an
admissible triple if

Cspry = {z cC: Reu*(s)(z) <", Reu*(s)(z) > 03,
1+ ﬁ(s)Reﬁ(s)(z) # 0}.

Theorem 3.3 (Absolute Convergence of the Conformable Bilateral Laplace Transform).
Let (s,(,7) be an admissible triple, f € C,q(T) be of double exponential order (3,v). Then
LE(f) (-, s) exists on Cs g -, and converges absolutely.

Proof. Since f is of double exponential order (3, ), there exist positive constants K, K,
such that

f®)] < KgEg(t,s), tE€ls,00),
|f(t)‘ S K’YE’Y(t7 3)7 te (—OO, 8]'
Next, for t < s, we have
14 p(®)z[t]*7 = 1+ p(t)Reyq) ()]t

> 1+ ﬁ(s)Reﬁ(s) (Z)|t|a_1.
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For z € C, 3, we find

‘Eb zs|f/f VEq,. 2 (o( T+/ f(T)Eg,2(o(T),s)A%T
< [ 1H0Ee (o)) A% + / F()Be,-(o(r). )| A%
= Jy+ Jo.
By the proof of Theorem 3.2 in [23], we have

Kp
ST < g——F—, 2€C50,.
'S Rew (5 - B o
Consider the integral

= /fS |f(T)Eg, .(c(7),8)| A%T, t<s.

Using Theorem 3.2, 1, 2, we obtain

S

E
e, [ Bl .
, T u(r)freT]

) |Ero,z(T,9)]
K/ SASCEANS AYT
T Je 14 u(r)Rey ) (2) 7]

2(7,8)
< K '\/eaReu(T)( ) Aa
= / Lt u(r)Repin ()" "

1 ()
7 /t Y — Relt(T) (Z) ’Y@aReM(T)(z) (7—7 S) T

K,
—  _(1-E A (t,
7~ Rey(n(2) ( voaeun () s))
Therefore K
Jp < —— 0
2= Y= Reu*(s)(z)
and

Kp N K,
Re,. (5)(2) =B 7 —Rey(5)(2)
Consequently the conformable bilateral Laplace transform of the function f converges
absolutely on C; g . This completes the proof. O

|1£°(f)(z.8)| <

Corollary 3.1. Let (s, 3,) be an admissible triple, f € C,q(T) be of conformable double expo-
nential order (3,~). Then

lim L°(f)(z,s) = 0.

|z|—00
Proof. Note that |z| — oo implies Re,, (5)(2) — 00, Re,-(5)(2) — 0o and Rey(s)(2) — oo.
This completes the proof. O

Theorem 3.4 (Uniform Convergence of the Bilateral Laplace Transform). Let (s, 3,) be an
admissible triple, f € C,.q(T) be of conformable double exponential order (cv,~). Then Lb(f)(-, s)
converges uniformly in Cs g .
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Proof. Let € > 0 be arbitrarily chosen. By [23], we have that there exists an r € [s, 00) such
that

<e te [T’, OO), PSS (Cs,a,'y-

/ " (") Eo,(0(r), ) AT

Lett € (—o0, s] and a < t. By [23], we get

K K
e} 2l —
/a f(T)]EeuZ<O-(T)7 S)A T "}/ _ Reu*(é) (Z) (]E’YGQRQM(T)(Z) (t) S) EW@QREM(T>(2’) (a/7 S))
K
< —* _E t
T 7 —Reu(5)(2) 70aReyin () (1 5)
< y

'V—TM(S)(,@EVGQR%*(MZ) (t,s).

Thus, there exists an r; € (—o0, 5], such that

t
‘/ f(T)Eg, -(o(7),8)A%T| <€, te(—oo,r1], z€Csp,.
This completes the proof. O

Theorem 3.5 (Inverse of the transform). Let (s, a1, v1) be an admissible triple and f € C,q([s, 00))
be of conformable double exponential order (a1, 1). Consider L°(f)(-, s) on Cs. o, ~, and suppose

that it has finitely many regressive poles of finite order {z1, zy, . . ., zn } and F{(z) is the bilateral
Laplace transform of the function f on R that corresponds to the transform L°(f)(z,s) of f on T.

I
ct+ioo
/ [F2(2)| 2] < oo,

—100

then
f) = Z res,—,E.(t, S)Eb(f)(z, s)

has conformable bilateral Laplace transform Lb(f)(z, s) forall z € Cg o, », (C.

Proof. Without loss of generality, suppose that s = 0. We have that £°(f)(-) converges
uniformly on C, ,, -, (] C and hence, it is analytic in this region. Next, we have that

lim £°(f)(z) = 0.

|z| =00
Let C be the collection of the bilateral Laplace transforms over R, D be the collection of
the conformable bilateral Laplace transforms over T, i.e., C = {fﬂg(z) }, D ={Lf)(2)},

where

F(z) = G,

L'(f)(z) = G(2)Ee,:(7,0)

for G a rational function and for 7 € T a constant. Let C},_.(R,R) denotes the space
of piecewise continuous functions of exponential order, Cp;q—.-(T,R) denotes the space
of piecewise right-dense continuous functions of conformable double exponential type in
which the exponential function coincides with a conformable Hilger exponential function.
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Eachof 6,7, 01,7~ map functions involving the continuous exponential to the time scale
conformable exponential and vice versa. For example, v maps the function

ﬁR?(z) =

z

to the function
E@Q 2 (a, 0)

z

L(f)(z) =

while v~! maps £°(f)(z) back to fﬂg(z) in the obvious manner. If the representation of
L%(f)(z) is independent of the exponential, that is 7 = 0, then v and its inverse y~! will
act as the identity. For example,

A B |
i 1+ 22 =7 1422) 1422

The map 6 will set the continuous exponential function to the time scale conformable
exponential function in the following manner: if we write f € Cp,_o(R,R) as

= Z Res,_, e** FY(2),

i=1

then

0(F1) = ZResz B (1,0)L°(f)(2):

To go from F2(z) to L(f)(z), we s1mply switch expressions involving the continuous

exponential in F? with the time scale conformable exponential giving £°(f)(z) as was
done for v and its inverse #~! will then act on g € Cprq—.-(T,R),

ZResz =B (t,0)Gr(2)
as n
0~ (g(t)) = ZResZ:ZieZtéR(z).

For example, for the unit step function u,(¢) on R, we know from the continuous result
that we may write the step function as

Ug(t) = Res,_ge"t &,
z
so thatif a € T, then
_ Eo. . (a,0
0 (tia(t)) = Res,_oE. (¢, 0)%.

Now, for a given time scale conformable bilateral Laplace transform £°(f)(z), we begin

by mapping to F(z) via y~!. We have that the inverse of F{(z) exists for all z with
z € Cy,0, v [1C and it is given by

t) = Z Res.—. e*' FY(2).

i=1

Applying 6 to f(t) to retrieve the time scale function, we get

ZResz B (4,0)£°(f)(2),
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whereby
(vo Fkoo™") () = £()(2).
This completes the proof. O

Theorem 3.6 (Uniqueness of the inverse). If the functions f,g : T — R satisfy Theorem 3.5
and have the same conformable bilateral Laplace transform, then f = g a.e.

Proof. Suppose that
/ EZ._.(t5)f(t)A°t = / EZ. . (t 5)g(1)A%t.

Hence, h = f — g has conformable bilateral Laplace transform zero and h € kerL’. If we
denote by £~ the inversion of £°, then

L o Lb(h) = L1 0)=0=h.
Therefore f = g a.e. This completes the proof. O

4. CONCLUSIONS

We generalized the conformable bilateral Laplace transform on time scales and estab-
lished several foundational results. We study the decay behaviour of the generalized
exponential function as ¢ € T tends to negative infinity. Additionally, the conditions nec-
essary for the absolute and uniform convergence of the proposed transform are provided
and the class of functions for which the transform is well-defined is identified. An ex-
plicit inversion formula was derived to recover the original function on given time scale.
Finally, we proved uniqueness theorem, ensuring the distinctiveness of the transform rep-
resentation.

REFERENCES

[1] Anderson, D. R.; Georgiev S. G., Conformable dynamic equations on time scales, Chapman and Hall/CRC.,
2020.
[2] Benkhettau, N.; Hassani, S.; Torres D. E. M., A conformable fractional calculus on arbitrary time scales, J.
King Saud Uni., 28 (2016), no. 28, 93-98.
[3] Bendouma, B.; Hammoudi, A., A nabla conformable fractional calculus on time scales, Electrn. J. Math.
Anal. Appl., 7 (2019), no.7, 202-216.
[4] Bohner, M.; Peterson, A., Dynamic equations on time scales : an introduction with applications, Birkhduser,
Bosten, Mass USA, 2001.
[5] Bohner M.; Peterson A., The Laplace transform and Z-transform: unification and extension, Methods Appl.
Anal., 9 (2002), no. 9, 151-158.
[6] Bohner, M.; Guseinov, G. Sh., The convolution on time scales, Abstr. Appl. Analy., 2007 (2007), no. 2007,
01-24.
[7] Bohner, M.; Guseinov G. Sh.; Karpuz B., Properties of the Laplace transform on time scales with arbitrary
graininess, Integral Transforms Spec. Funct., 22 (2011), no. 22, 785-800.
[8] Davis, J. M.; Gravagne, 1. A.; Jackson, B. J.; Marks II, R. J.; Ramos, A. A.; The Laplace transform on time
scales revisited, J. Mathe. Anal. Appl., 332 (2007), no. 332, 1291-1307.
[9] Davis, J. M.; Gravagne, I. A.; Marks II, R. ]., Bilateral Laplace transform on time scales : convergence, con-
volution, and the characterization of stationery stochastic time series, Circuits, Systems and Signal Processing,
29 (2010),no. 29, 1141-1165.
[10] Georgiev, S. G.; Zennir, K., Advances in fractional dynamic inequalities on time scales, World Scientific Publish-
ing, 2003.
[11] Georgiev, S. G., Fractional dynamic calculus and fractional dynamic equations on time scales, Springer Interna-
tional Publishing, 2018.
[12] Georgiev, S. G.; Darvish, V., The generalized Fourier convolution on time scales, Integral transform Spec.
Funct., 34 (2023), no. 34, 211-227.
[13] Georgiev, S. G.; Thange T. G.; Chhatraband S. M., Conformable Fourier Transform on Time Scales, Armenian
J. Mathematics, 17, (2025), no. 9, 1-15.



Conformable Bilateral Laplace Transform on Time Scales 25

[14] Georgiev, S. G.; Thange T. G.; Chhatraband S. M., Conformable Generalized Convolution on Time Scales,
Discontinuity, Nonlinearity, and Complexity, (2025), Accepted.

[15] Hilger, S., Ein Maptkettenkalkiil mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universtat
Wiiurzburg, Germany, 1988.

[16] Paley, R.; Wiener, N.; Fourier transforms in the complex domain, American Mathematical Society, Providence,
RI, USA, 1934.

[17] Thange, T. G.; Chhatraband, S. M., Laplace-Sumudu integral transform on time scales, South East Asian |.
Math. Math. Sci., 19 (2023), no.19, 91-102.

[18] Thange, T. G.; Chhatraband, S. M., A New a—Laplace transform on time scales, [hanabha, 53 (2024), no. 53,
151-160.

[19] Thange, T. G.; Chhatraband, S. M., On Nabla Shahe transform and its applications, J. Fract. Calc. Appl., 15
(2024), no. 15, 1-13.

[20] Thange, T. G.; Chhatraband, S. M., New general integral transform on time scales, J. Math. Model., 12 (2024),
no. 12, 655-669.

[21] Thange, T.G.; Chhatraband, S. M., Double Shehu transform for time scales with applications, J. Classical
Anal., 25 (2025), no. 25, 75-94.

[22] Thange, T. G.; Chhatraband, S. M., On n-dimensional integral transform for time scales, Palest. |. Math., 14,
(2025), no. 2, 777-798.

[23] Thange, T. G.; Chhatraband, S. M.; Georgiev S. G., Conformable Laplace transform on time scales, submit-
ted.

[24] Van der Pol, B.; Bremmer, H., Operational calculus : based on the two-sided Laplace integral, Cambridge Univer-
sity Press, Cambridge, UK, 1950.

[25] Widder, D., The Laplace transform, Karreman Mathematics Research Collection, Princeton Mathematical Se-
ries, Princeton University Press, Princeton, NJ, USA, 1941.

[26] Younus, A.; Bukhsh, K., Alqudah, M. A.; Abdeljawad, T., Generalized exponential function and initial value
problem for conformable dynamic equations, AIMS Mathematics, 7 (2022), no. 7, 12050-12076.

[27] Zhao, D.; Li, T., On conformable delta fractional calculus on time scales, . Math. Comput. Sci., 16 (2016), no.
16, 324-335.

1 DEPARTMENT OF MATHEMATICS, SORBONNE UNIVERSITY, PARIS, FRANCE
Email address: svetlingeorgievl@gmail.com

2 DEPARTMENT OF MATHEMATICS, MIT ACADEMY OF ENGINEERING, ALANDI (D), PUNE, (M.S.), INDIA-
412105.
Email address: sneha.chhatraband@mitaoe.ac.in

3 DEPARTMENT OF MATHEMATICS, YOGESHWARI MAHAVIDYALAYA, AMBAJOGAI, (M. S.), INDIA-431517.
Email address: tgthange@gmail.com



