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Conformable Bilateral Laplace Transform on Time Scales

SVETLIN G. GEORGIEV1, SNEHA M. CHHATRABAND2 , AND TUKARAM G. THANGE3

ABSTRACT. In this paper, we define the conformable bilateral Laplace transform on arbitrary time scales.
We proved the decay property of the generalized exponential function as t ∈ T asymptotically approaches
minus infinity. Then, the conditions for the absolute and uniform convergence of the conformable bilateral
Laplace transform are provided. We specify the class of functions for which the transform exists and provide an
inversion formula to reconstruct the original function on a time scale. Finally, the uniqueness theorem is proved
for the proposed transform.

1. INTRODUCTION

In 1763, Euler introduced the unilateral Laplace transform to solve differential equa-
tions. However, between 1779 and 1812, Laplace used this transform in extensive studies,
particularly in the field of probability theory. The bilateral Laplace transform is an in-
tegral transform that generalizes the standard unilateral Laplace transform to functions
defined across the entire real line and also shows a strong connection with the Fourier
transform. The p-multiplied version of the bilateral Laplace transform developed by Van
der Pol and Bremmer [24]. This transform unifies the unilateral Laplace and Fourier trans-
forms, providing a framework for Heaviside’s operational calculus. This version of the
bilateral Laplace transform was modified by Paley, Wiener, and Widder [16, 25], removing
the multiplicative p-factor and the application of Stieltjes integral. Their contribution has
solidified its significance beyond the unilateral Laplace transform.

Implemented by Hilger [15] in 1988, timescale theory provides a unified and extended
framework for discrete and continuous dynamic systems. A time scale, denoted as T, is
any non-empty closed subset of the real numbers that inherits the topological properties
of the real numbers. As dynamic equations are the core of time scale theory, integral trans-
form methods are crucial for solving them. Consequently, various integral transforms on
time scales have been generalized [5, 7, 8, 9, 12, 13, 17, 18, 19, 20, 21, 22].

The concept of derivatives of non-integer order, known as fractional derivatives, first
appeared in the letter between L’Hopital and Leibniz in which the question of a halforder
derivative was posed. Since then, many formulations of fractional derivatives have ap-
peared. Recently, a new definition of fractional derivative, named “conformable fractional
derivative”, is introduced. This new fractional derivative is compatible with the classical
derivative and time scales derivative and it has attracted the attention in domains such as
mechanics, electronics and anomalous diffusion. If T is a time scale and f : T → R is a
given function for which the conformable fractional derivative f (α)(t), α ∈ (0, 1], t ∈ T,
exists, then when α = 1 we get the time scale derivative f∆(t), t ∈ T, of the function f ,
and if T = R and α = 1, we get the classical derivative f ′(t), t ∈ R, of the function f .
Thus, the results obtained in the framework of the conformable fractional calculus unify
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the results obtained in the framework of the classical calculus and time scales calculus.
Researchers have generalized the conformable fractional calculus on arbitrary time scales
using the principles of classical fractional calculus [1, 2, 3]. The main aim of this paper is
to define the bilateral Laplace transform in the framework of the conformable fractional
calculus, called conformable bilateral Laplace transform, and to develop some of its prop-
erties. Firstly, the decay property of the generalized exponential function is proved as
t ∈ T asymptotically tends to minus infinity. Some conditions for absolute and uniform
convergence of the conformable bilateral Laplace transform are given. We determine the
function class for which the conformable bilateral Laplace transform exists and we pro-
vide an inversion formula to recover the original function. To the best of our knowledge
no such investigation in the existing references.

This paper is organized as follows. Section 2, we recall some basic concepts and no-
tions of the conformable fractional calculus. Section 3, we define the conformable bilat-
eral Laplace transform on time scales along with its absolute and uniform convergence.
Finally, the inversion formula for the proposed transform is formulated.

2. PRELIMINARIES

We assume that the reader is attentive to the basics of time scale calculus, details can
be found in [1, 4, 6, 10, 11, 14, 26, 27]. Here we compile definitions and theorems that
are be most relevant to our discussion. Here, we assume that the time scale T under
consideration is unbounded above and below and contain the origin as its component.

Definition 2.1. For t ∈ T, the forward jump operator σ : T → T is defined as σ(t) = inf{s ∈
T : s > t}, and the backward jump operator ρ : T → T is defined as ρ(t) = sup{s ∈ T : s < t}.

Definition 2.2. The forward graininess function µ : T → [0,∞) is defined as µ(t) = σ(t)− t.

Definition 2.3. Let t ∈ T. If σ(t) = t and t < supT, then t is said to be right-dense. If σ(t) > t,
then t is said to be right-scattered. Similarly, if ρ(t) = t and t > inf T, then t is said to be
left-dense. If ρ(t) < t, then t is said to be left-scattered.

Definition 2.4. If supT = m is left-scattered, then define Tκ = T\{m}. Otherwise, define
Tκ = T.

Definition 2.5. Assume that g : T → R, t ∈ Tκ, and α ∈ (0, 1]. If g(α)(t) is the number,
provided it exists, with the property that, given any ϵ > 0, there exists a neighbourhood U ⊂ T of
t, with δ > 0, such that

|(g(σ(t))− g(s))|t|1−α − g(α)(t)(σ(t)− s)| ≤ ϵ|σ(t)− s|

for all s ∈ U . We call g(α)(t) the conformable fractional derivative of g of order α at t.

Definition 2.6. Assume that g : T → R is a regulated function. Then, the conformable α-
fractional integral of g, for α ∈ (0, 1], is given by∫

g(t)∆αt =

∫
g(t)|t|α−1∆t.

Definition 2.7. If a function g : T → R is continuous at the right-dense points in T, and has a
finite limit at the left-dense points in T, then g is said to be rd-continuous. We denote the set of all
rd-continuous functions by Crd(T,R).

Definition 2.8. A function g : T → R is said to be ‘α-regressive’ provided

1 + µ(t)g(t)|t|α−1 ̸= 0, for all t ∈ Tκ,
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holds. Similarly, g : T → R is said to be ‘α-positively regressive’ provided

1 + µ(t)g(t)|t|α−1 > 0, for all t ∈ Tκ

holds. We denote the set of all α-regressive and rd-continuous functions g : T → R by Rα. The
set Rα+ is the subset of Rα containing all α-positively regressive functions.

Definition 2.9. In Rα ‘α-circle plus’ addition ⊕α is defined as below

(g1 ⊕α g2)(t) = g1(t) + g2(t) + µ(t)g1(t)g2(t)|t|α−1, for all t ∈ Tκ.

The set Rα forms an abelian group under ⊕α.
For g ∈ Rα, the inverse of g is given as

⊖αg =
−g(t)

1 + µ(t)g(t)|t|α−1
, for all t ∈ Tκ.

Definition 2.10. For Rα, ‘α-circle minus’ substraction ⊖α is defined as

(g1 ⊖α g2)(t) =
g1(t)− g2(t)

1 + µ(t)g2(t)|t|α−1
, for all t ∈ Tκ.

Definition 2.11. Let g ∈ Rα, then the generalized exponential function is defined by

(2.1) Eg(t, s) = exp
(∫ t

s

ξµ(τ)
(
g(τ)|τ |α−1

)
∆τ

)
, for all t, s ∈ T.

Following the concept of the cylindrical transformation, [4, Definition 2.21] Equation 2.1 can be
rewritten as

(2.2) Eg(t, s) = exp
(∫ t

s

1

µ(τ)
Log(1 + µ(τ)g(τ)|τ |α−1)∆τ

)
, for all t, s ∈ T.

Next theorem collects some important properties of the generalized exponential func-
tion.

Theorem 2.1. If g1, g2 ∈ Rα, then for all s, t ∈ T,
(1) E0(t, s) = 1 and Eg1(t, t) = 1.
(2) Eg1(t, s)Eg1(s, r) = Eg1(t, r).
(3) Eg1(t, s) =

1
Eg1 (s,t)

= E⊖αg1(s, t).

(4) Eg1(t, s)Eg2(t, s) = Eg1⊕αg2(t, s).

(5) Eg1 (t,s)

Eg2
(t,s) = Eg1⊖αg2(t, s).

(6) Eg1(σ(t), s) = (1 + µ(t)g1(t)|t|α−1)Eg1(t, s).

(7) E⊖αg1(σ(t), s) =
E⊖αg1

(t,s)

1+µ(t)g1(t)|t|α−1 .

(8) E∆
g1(t, s) = g1(t)Eg1(t, s)|t|α−1.

(9) E(α)
g1 (t, s) = g1(t)Eg1(t, s).

Definition 2.12. For h > 0, the Hilger complex numbers, and the Hilger real axis are defined as
Ch =

{
z ∈ C : z ̸= − 1

h

}
and, Rh =

{
z ∈ Ch : z ∈ R and, z > − 1

h

}
respectively. For h = 0,

we have C0 := C and R0 := R.

Definition 2.13. Let h > 0, and z ∈ Ch. The Hilger real part of z is defined as

Reh(z) :=
|hz + 1| − 1

h
.
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3. THE CONFORMABLE BILATERAL LAPLACE TRANSFORM

Suppose that T is a time scale with forward jump operator and delta differentiation
operator σ and ∆, respectively, and inf T = −∞, supT = ∞. For s ∈ T, define

µ∗(s) = inf
t∈[s,∞)

µ(t),

µ∗(s) = sup
t∈(−∞,s]

µ(t),

µ(s) = inf
t∈(−∞,s]

µ(t).

For s, t ∈ T and λ ∈ Rα(T), set

Mλ(t, s) =

∫ s

t

|τ |α−1

1 + λµ(τ)
∆τ.

Lemma 3.1. Let s ∈ T, λ ∈ Rα+((−∞, s]). Then

(1) M∆
λ (t, s) < 0 for all t ∈ (−∞, s), where the differentiation is with respect to t.

(2) limt→−∞ Mλ(t, s) = ∞.

Proof. (1) By the definition of the function Mλ, it follows

M∆
λ (t, s) = − |t|α−1

1 + λµ(t)

< 0, t ∈ (−∞, s].

(2) Because we will investigate the behaviour when t → −∞, without loss of gener-
ality, assume that t < 0. We will consider two cases.
(a) Let supt∈(−∞,s] µ(t) < ∞. Then

1 + λµ(t) ≤ 1 + |λ|µ(t)

≤ 1 + |λ| sup
t∈(−∞,s]

µ(t), t ∈ (−∞, s].

Hence,

Mλ(t, s) =

∫ s

t

|τ |α−1

1 + λµ(τ)
∆τ

≥
∫ s

t

|τ |α−1

1 + |λ| supt∈(−∞,s] µ(t)
∆τ

(i) Let s > 0. Then

s∫
t

|τ |α−1

1 + |λ| supt∈(−∞,s] µ(t)
∆τ
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=

0∫
t

|τ |α−1

1 + |λ| supt∈(−∞,s] µ(t)
∆τ +

s∫
0

|τ |α−1

1 + |λ| supt∈(−∞,s] µ(t)
∆τ

≥
0∫

t

|t|α−1

1 + |λ| supt∈(−∞,s] µ(t)
∆τ +

s∫
0

|τ |α−1

1 + |λ| supt∈(−∞,s] µ(t)
∆τ

=
|t|α−1(−t)

1 + |λ| supt∈(−∞,s] µ(t)
+

s∫
0

|τ |α−1

1 + |λ| supt∈(−∞,s] µ(t)
∆τ

→ ∞, as t → −∞.

(ii) Let s ≤ 0. Then
s∫

t

|τ |α−1

1 + |λ| supt∈(−∞,s] µ(t)
∆τ ≥

s∫
t

|t|α−1

1 + |λ| supt∈(−∞,s] µ(t)
∆τ

=
|t|α−1(s− t)

1 + |λ| supt∈(−∞,s] µ(t)

→ ∞, as t → −∞.

(b) Suppose that supt∈(−∞,s] µ(t) = ∞. Because λ ∈ Rα+((−∞, s]), we have that
λ ≥ 0. If λ = 0, then

Mλ(t, s) =

s∫
t

|τ |α−1∆τ.

(i) Let s > 0. Then

Mλ(t, s) =

0∫
t

|τ |α−1∆τ +

s∫
0

|τ |α−1∆τ

≥ |t|α−1(−t) +

s∫
0

|τ |α−1∆τ

→ ∞, as t → −∞.

(ii) Let s ≤ 0. Then

Mλ(t, s) ≥
s∫

t

|t|α−1∆τ

= |t|α−1(s− t)

→ ∞, as t → −∞.

Assume that λ > 0. Since supt∈(−∞,s] µ(t) = ∞, there exists a decreasing
and divergent sequence {ξk}k∈N ⊂ (−∞, s] of right-scattered points such that
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{µ(ξk)|ξk|α−1}k∈N is an increasing and divergent sequence. Hence, we get

Mλ(t, s) =

∫ s

t

|τ |α−1

1 + λµ(τ)
∆τ

≥
∑

σ(ξk)≥t,ξk≤s

∫ σ(ξk)

ξk

|τ |α−1∆τ

=
∑

σ(ξk)≥t,ξk≤s

µ(ξk)|ξk|α−1

→ ∞, as t → −∞.

This completes the proof.
□

Theorem 3.2 (Decay of the Generalized Exponential Function). Let s ∈ T, λ ∈ Rα+((−∞, s])
and

Cµ∗(s)(λ) =
{
z ∈ C : Reµ∗(s)(z) < λ

}
.

Then, for any z ∈ Cµ∗(s)(λ), we have the following properties.
(1)

|Eλ⊖αz(t, s)| ≤ Eλ⊖αReµ∗(s)(z)(t, s), t ∈ (−∞, s],

(2)
lim

t→−∞
Eλ⊖αReµ∗(s)(z)(t, s) = 0,

(3)
lim

t→−∞
Eλ⊖αz(t, s) = 0.

Proof. Let Ψh(z, λ) be the following function

Ψh(z, λ) =


1
h log

∣∣∣ 1+hλ
1+hz

∣∣∣ if h > 0

λ− Re(z) if h = 0.

(1) As in [23], we have
Ψh(z, λ) = Ψh(Reh(z), λ)

and

|Eλ⊖αz(t, s)| ≤ Eλ⊖αReµ∗(s)(z)(t, s), t ∈ (−∞, s].

(2) For z ∈ Cµ∗(s)(λ), we have

λ⊖α Reµ∗(s)(z) =
λ− Reµ∗(s)(z)

1 + µ(t)Reµ∗(s)(z)|t|α−1

>
λ− Reµ∗(s)(z)

1 + λµ(t)|t|α−1

> 0, t ∈ (−∞, s],
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and

1 + µ(t)
(
λ⊖α Reµ∗(s)(z)

)
|t|α−1 =

1 + λµ(t)|t|α−1

1 + µ(t)Reµ∗(s)(z)|t|α−1

>
1 + λµ(t)|t|α−1

1 + λµ(t)|t|α−1

= 1, t ∈ (−∞, s].

Thus,
λ⊖α Reµ∗(s)(z) ∈ Rα+((−∞, s])

and

Eλ⊖αReµ∗(s)(z)(t, s) = e
(λ−Reµ∗(s)(z))

∫ t
s

|τ|α−1

1+µ(τ)Reµ∗(s)(z)|τ|α−1 ∆τ

= e
(Reµ∗(s)(z)−λ)MReµ∗(s)(z)|τ|α−1 (t,s)

→ 0, as t → −∞.

(3) By 1 and 2, we obtain

|Eλ⊖αz(t, s)| ≤ Eλ⊖αReµ∗(s)(z)(t, s)

→ 0, as t → −∞.

This completes the proof.
□

Definition 3.14. Suppose that s ∈ T, f : T → R is regulated. Then the conformable bilateral
Laplace transform of f is defined by

Lb(f)(z, s) =

∫ ∞

−∞
f(t)Eσ

⊖αz(t, s)∆
αt

for z ∈ C for which 1 + µ(t)z|t|α−1 ̸= 0 for any t ∈ Tκ and the improper integral exists.

Definition 3.15 (Conformable Double Exponential Order). Let s ∈ T. A function f ∈
Crd(T) has conformable double exponential order (β, γ) on T if

(1) β ∈ Rα+([s,∞)), γ ∈ Rα+((−∞, s]),
(2) there exist positive constants Kβ , Kγ such that

|f(t)| ≤ KβEβ(t, s), t ∈ [s,∞),

|f(t)| ≤ KγEγ(t, s), t ∈ (−∞, s].

Example 3.1. Let γ > 0. Consider the function

f(t) = Eγ(t, s), t ∈ T.
If s ≤ t, then β = γ. If s > t, then 0 ≤ f(t) ≤ 1 and E⊖αγ(t, s) > 1. Thus,

f(t) ≤ E⊖αγ(t, s).

Therefore f is of double exponential order (γ,⊖αγ).
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Lemma 3.2. Let s ∈ T and f ∈ Crd(T) be a function of conformable double exponential order
(β, γ). Then

(1) limt→∞ f(t)E⊖αz(t, s) = 0 for any z ∈ Cµ∗(s)(β).
(2) limt→−∞ f(t)E⊖αz(t, s) = 0 for any z ∈ Cµ∗(s)(γ).

Proof. Since f is of double exponential order (β, γ), there exist positive constants Kβ , Kγ

such that

|f(t)| ≤ KβEβ(t, s), t ∈ [s,∞),

|f(t)| ≤ KγEγ(t, s), t ∈ (−∞, s].

(1) The first statement follows by Lemma 3.4 in [23].
(2) By Theorem 3.2, we have

|f(t)E⊖αz(t, s)| ≤ Kγ |Eγ⊖αz(t, s)|

≤ KγEγ⊖αReµ∗(s)(z)(t, s)

→ 0, as t → −∞.

This completes the proof.
□

For z ∈ C, denote
µ(s) = µ∗(s) if Reµ(s)(z) ≤ 0

and
µ(s) = µ(s) if Reµ(s)(z) > 0.

Definition 3.16. Let s ∈ T, β ∈ Rα+([s,∞)), γ ∈ Rα+((−∞, s]). We say that (s, β, γ) is an
admissible triple if

Cs,β,γ =

{
z ∈ C : Reµ∗(s)(z) < γ, Reµ∗(s)(z) > β,

1 + µ(s)Reµ(s)(z) ̸= 0

}
.

Theorem 3.3 (Absolute Convergence of the Conformable Bilateral Laplace Transform).
Let (s, β, γ) be an admissible triple, f ∈ Crd(T) be of double exponential order (β, γ). Then
Lb(f)(·, s) exists on Cs,β,γ and converges absolutely.

Proof. Since f is of double exponential order (β, γ), there exist positive constants Kβ , Kγ

such that

|f(t)| ≤ KβEβ(t, s), t ∈ [s,∞),

|f(t)| ≤ KγEγ(t, s), t ∈ (−∞, s].

Next, for t ≤ s, we have

|1 + µ(t)z|t|α−1| = 1 + µ(t)Reµ(t)(z)|t|α−1

≥ 1 + µ(s)Reµ(s)(z)|t|α−1.
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For z ∈ Cs,β,γ , we find∣∣Lb(f)(z, s)
∣∣ = ∣∣∣∣∫ ∞

s

f(τ)E⊖αz(σ(τ), s)∆
ατ +

∫ s

−∞
f(τ)E⊖αz(σ(τ), s)∆

ατ

∣∣∣∣
≤

∫ ∞

s

|f(τ)E⊖αz(σ(τ), s)|∆ατ +

∫ s

−∞
|f(τ)E⊖αz(σ(τ), s)|∆ατ

= J1 + J2.

By the proof of Theorem 3.2 in [23], we have

J1 ≤ Kβ

Reµ∗(s)(z)− β
, z ∈ Cs,α,γ .

Consider the integral

J =

∫ s

t

|f(τ)E⊖αz(σ(τ), s)|∆ατ, t ≤ s.

Using Theorem 3.2, 1, 2, we obtain

J ≤ Kγ

∫ s

t

|Eγ⊖αz(τ, s)|
|1 + µ(τ)z|τ |α−1|

∆ατ

= Kγ

∫ s

t

|Eγ⊖αz(τ, s)|
1 + µ(τ)Reµ(τ)(z)|τ |α−1

∆ατ

≤ Kγ

∫ s

t

Eγ⊖αReµ(τ)(z)(τ, s)

1 + µ(τ)Reµ(τ)(z)|τ |α−1
∆ατ

= Kγ

∫ s

t

1

γ − Reµ(τ)(z)
E(α)
γ⊖αReµ(τ)(z)

(τ, s)∆ατ

≤ Kγ

γ − Reµ(τ)(z)

(
1− Eγ⊖αReµ(τ)(z)(t, s)

)
Therefore

J2 ≤ Kγ

γ − Reµ∗(s)(z)

and ∣∣Lb(f)(z, s)
∣∣ ≤ Kβ

Reµ∗(s)(z)− β
+

Kγ

γ − Reµ∗(s)(z)
.

Consequently the conformable bilateral Laplace transform of the function f converges
absolutely on Cs,β,γ . This completes the proof. □

Corollary 3.1. Let (s, β, γ) be an admissible triple, f ∈ Crd(T) be of conformable double expo-
nential order (β, γ). Then

lim
|z|→∞

Lb(f)(z, s) = 0.

Proof. Note that |z| → ∞ implies Reµ∗(s)(z) → ∞, Reµ∗(s)(z) → ∞ and Reµ(s)(z) → ∞.
This completes the proof. □

Theorem 3.4 (Uniform Convergence of the Bilateral Laplace Transform). Let (s, β, γ) be an
admissible triple, f ∈ Crd(T) be of conformable double exponential order (α, γ). Then Lb(f)(·, s)
converges uniformly in Cs,β,γ .
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Proof. Let ϵ > 0 be arbitrarily chosen. By [23], we have that there exists an r ∈ [s,∞) such
that ∣∣∣∣∫ ∞

t

f(τ)E⊖αz(σ(τ), s)∆
ατ

∣∣∣∣ ≤ ϵ, t ∈ [r,∞), z ∈ Cs,α,γ .

Let t ∈ (−∞, s] and a ≤ t. By [23], we get∣∣∣∣∫ t

a

f(τ)E⊖αz(σ(τ), s)∆
ατ

∣∣∣∣ ≤ Kγ

γ − Reµ∗(s)(z)

(
Eγ⊖αReµ(τ)(z)(t, s)− Eγ⊖αReµ(τ)(z)(a, s)

)
≤ Kγ

γ − Reµ∗(s)(z)
Eγ⊖αReµ(τ)(z)(t, s)

≤ Kγ

γ − Reµ∗(s)(z)
Eγ⊖αReµ∗(s)(z)(t, s).

Thus, there exists an r1 ∈ (−∞, s], such that∣∣∣∣∫ t

−∞
f(τ)E⊖αz(σ(τ), s)∆

ατ

∣∣∣∣ ≤ ϵ, t ∈ (−∞, r1], z ∈ Cs,β,γ .

This completes the proof. □

Theorem 3.5 (Inverse of the transform). Let (s, α1, γ1) be an admissible triple and f ∈ Crd([s,∞))
be of conformable double exponential order (α1, γ1). Consider Lb(f)(·, s) on Cs,α1,γ1

and suppose
that it has finitely many regressive poles of finite order {z1, z2, . . . , zn} and F̃ b

R(z) is the bilateral
Laplace transform of the function f̃ on R that corresponds to the transform Lb(f)(z, s) of f on T.
If ∫ c+i∞

c−i∞

∣∣∣F̃ b
R(z)

∣∣∣ |dz| < ∞,

then

f(t) =

n∑
i=1

resz=ziEz(t, s)Lb(f)(z, s)

has conformable bilateral Laplace transform Lb(f)(z, s) for all z ∈ Cs,α1,γ1

⋂
C.

Proof. Without loss of generality, suppose that s = 0. We have that Lb(f)(·) converges
uniformly on Cs,α1,γ1

⋂
C and hence, it is analytic in this region. Next, we have that

lim
|z|→∞

Lb(f)(z) = 0.

Let C be the collection of the bilateral Laplace transforms over R, D be the collection of
the conformable bilateral Laplace transforms over T, i.e., C =

{
F̃ b
R(z)

}
, D =

{
Lb(f)(z)

}
,

where

F̃ b
R(z) = G(z)e−zτ ,

Lb(f)(z) = G(z)E⊖αz(τ, 0)

for G a rational function and for τ ∈ T a constant. Let Cp−c0(R,R) denotes the space
of piecewise continuous functions of exponential order, Cprd−ez(T,R) denotes the space
of piecewise right-dense continuous functions of conformable double exponential type in
which the exponential function coincides with a conformable Hilger exponential function.
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Each of θ, γ, θ−1, γ−1 map functions involving the continuous exponential to the time scale
conformable exponential and vice versa. For example, γ maps the function

F̃ b
R(z) =

e−za

z

to the function

Lb(f)(z) =
E⊖αz(a, 0)

z
,

while γ−1 maps Lb(f)(z) back to F̃ b
R(z) in the obvious manner. If the representation of

Lb(f)(z) is independent of the exponential, that is τ = 0, then γ and its inverse γ−1 will
act as the identity. For example,

γ

(
1

1 + z2

)
= γ−1

(
1

1 + z2

)
=

1

1 + z2
.

The map θ will set the continuous exponential function to the time scale conformable
exponential function in the following manner: if we write f̃ ∈ Cp−c0(R,R) as

f̃(t) =

n∑
i=1

Resz=zie
ztF̃ b

R(z),

then

θ
(
f̃(t)

)
=

n∑
i=1

Resz=ziEz(t, 0)Lb(f)(z).

To go from F̃ b
R(z) to Lb(f)(z), we simply switch expressions involving the continuous

exponential in F̃ b
R with the time scale conformable exponential giving Lb(f)(z) as was

done for γ and its inverse θ−1 will then act on g ∈ Cprd−ez(T,R),

g(t) =

n∑
i=1

Resz=ziEz(t, 0)GT(z)

as

θ−1(g(t)) =

n∑
i=1

Resz=zie
ztG̃R(z).

For example, for the unit step function ũa(t) on R, we know from the continuous result
that we may write the step function as

ũa(t) = Resz=0e
zt e

−az

z
,

so that if a ∈ T, then

θ (ũa(t)) = Resz=0Ez(t, 0)
E⊖αz(a, 0)

z
.

Now, for a given time scale conformable bilateral Laplace transform Lb(f)(z), we begin
by mapping to F̃ b

R(z) via γ−1. We have that the inverse of F̃ b
R(z) exists for all z with

z ∈ Cs,α1,γ1

⋂
C and it is given by

f̃(t) =

n∑
i=1

Resz=zie
ztF̃ b

R(z).

Applying θ to f̃(t) to retrieve the time scale function, we get

f(t) =

n∑
i=1

Resz=ziEz(t, 0)Lb(f)(z),
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whereby (
γ ◦ F̃ b

R ◦ θ−1
)
(f(t)) = Lb(f)(z).

This completes the proof. □

Theorem 3.6 (Uniqueness of the inverse). If the functions f, g : T → R satisfy Theorem 3.5
and have the same conformable bilateral Laplace transform, then f = g a.e.

Proof. Suppose that ∫ ∞

−∞
Eσ
⊖αz(t, s)f(t)∆

αt =

∫ ∞

−∞
Eσ
⊖αz(t, s)g(t)∆

αt.

Hence, h = f − g has conformable bilateral Laplace transform zero and h ∈ kerLb. If we
denote by Lb−1 the inversion of Lb, then

Lb−1 ◦ Lb(h) = Lb−1(0) = 0 = h.

Therefore f = g a.e. This completes the proof. □

4. CONCLUSIONS

We generalized the conformable bilateral Laplace transform on time scales and estab-
lished several foundational results. We study the decay behaviour of the generalized
exponential function as t ∈ T tends to negative infinity. Additionally, the conditions nec-
essary for the absolute and uniform convergence of the proposed transform are provided
and the class of functions for which the transform is well-defined is identified. An ex-
plicit inversion formula was derived to recover the original function on given time scale.
Finally, we proved uniqueness theorem, ensuring the distinctiveness of the transform rep-
resentation.
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