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Quantitative estimates by linear and non-linear
Bernstein-Chlodowsky-Kantorovich Operators

ECEM ACAR1 AND SEVILAY KIRCI SERENBAY2

ABSTRACT. Bernstein polynomials were introduced by Bernstein in 1912 and possess many interesting prop-
erties. These properties have led to the discovery of new applications and developments. These generalizations
aim to provide adequate and powerful tools for applications such as numerical analysis, computer-aided geo-
metric design, and differential equation solutions. With these applications, the importance of Bernstein poly-
nomials increased and became an important topic in approximation theory. Classical approximation theory
is concerned with the representation of continuous functions by simpler functions such as polynomials and
trigonometric functions. In the last century, significant attention has been given to the realization that linearity
is not a necessary condition for approximation operators. The positive nonlinear operators with maximum and
product were presented by Bede. The Choquet integral has a wide range of applications in finance, the study
of cooperative games, statistical mechanics, and potential theory. Approximation of max-product operators
and Choquet integral operators, which can generate better approximation estimates than their classical coun-
terparts, has been developed in recent years. In this study, firstly we introduce the Choquet integral in relation
to Bernstein-Chlodowsky-Kantorovich operators and obtain quantitative estimates in uniform and pointwise
approximation using these operators. Then the max-product type of these operators is denoted, and their ap-
proximation properties are investigated.

1. INTRODUCTION

In recent years, two significant study lines in function approximation have emerged;
one of them is approximation with max-product operators and the other one is approxi-
mation using Choquet integral operators. Both research directions develop nonlinear ap-
proximation operators that may provide preferable approximation estimates compared to
their linear (classical) equivalents. The Korovkin type theorems are formulated based on
linear positive approximating operators or functionals in the field of approximation the-
ory. In [1] and [2], B. Bede et al. introduced the concept of constructing nonlinear positive
operators through the use of discrete linear approximating operators. In [11], S.G. Gal pre-
sented an open problem and introduced the max-product type Bernstein operators (Open
Problem 5.5.4, pp. 324-326). The order of approximation of nonlinear approximating op-
erators was examined in [4]-[12] as a result of this open problem.

The open problem formulated by S.G. Gal is directly relevance to the present work.
In their work, the authors construct nonlinear, non-polynomial operators by replacing
the conventional pair of operations (addition and multiplication) with alternative pairs
inspired by fuzzy set theory and techniques from image processing. While the original
problem addressed the approximation properties of nonlinear max-product type Bern-
stein operators, this study proposes a natural extension by introducing a new class of
nonlinear operators, namely the Bernstein–Chlodowsky–Kantorovich operators of Cho-
quet type. These operators are constructed by incorporating the Bernstein–Chlodowsky
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basis with Kantorovich-type modifications, and utilizing the Choquet integral with re-
spect to monotone and submodular set functions. In this framework, our approach con-
tributes to the present study of Gal’s open problem by expanding the class of nonlinear
approximation operators and improving the theory with Choquet-type structures.

The generalization of the Bernstein polynomials, known as the Bernstein-Chlodowsky
polynomials, are denoted by

Bh(f)(x) =

h∑
k=0

sh,k(x)f

(
kbh
h

)
, x ∈ [0, bh],

where bh → ∞ as h → ∞, limh→∞
bh
h = 0 and sh,k(x) =

(
h
k

) (
x
bh

)k (
1− x

bh

)h−k

. Univari-
ate and bivariate continuous functions were studied for their approximation properties in
[8], [13], [14]. Operators of max-product–Choquet and Kantorovich–Choquet type have
attracted significant attention due to their applicability in various real-world problems
where classical linear approximation methods are inadequate. In particular, they have
been effectively employed in signal and image reconstruction, especially in scenarios in-
volving uncertainty or incomplete information. Furthermore, their integration with Cho-
quet integrals allows for modeling non-additive phenomena, which is particularly rele-
vant in fields such as fuzzy decision-making, multi-criteria analysis, and neural network
approximation. The combination of these operator types enhances both the theoretical
approximation framework and its practical versatility.

In this work, we define linear and nonlinear Bernstein-Chlodowsky-Kantorovich oper-
ators based on the Choquet integral and provide quantitative estimates for their uniform
and pointwise approximation properties. This paper is structured as follows. Section 2
provides preliminary information regarding the Choquet integral. In Section 3, we first
present the linear and non-linear Bernstein-Chlodowsky-Kantorovich operators of Cho-
quet types and provide quantitative estimates for uniform and pointwise approximation.

2. PRELIMINARIES

This section introduces fundamental principles and findings about the Choquet inte-
gral, which will be utilized throughout the principle part of the paper.

Definition 2.1. Suppose that Ω is a nonempty set and that C is a σ-algebra of subsets in Ω.
i. Assume that µ : C → [0,+∞]. µ is a monotone set function (or capacity) when µ(∅) = 0

and X,Z ∈ C, where X ⊂ Z, meaning µ(X) ≤ µ(Z). If the value of µ (X ∪ Z) +
(X ∩ Z) is less than or equal to the value of µ(X) + µ(Z), for every X and Z ∈ C,
then µ is referred to be submodular. When the value of µ(C) is equal to 1, µ is said to as
normalized.

ii. Let µ be a monotone, normalized set function on C. The Choquet integral is characterized
as

(C)

∫
X

gdµ =

∫ +∞

0

µ
(
Fβ(g)

⋂
X
)
dβ +

∫ 0

−∞

[
µ
(
Fβ(g)

⋂
X
)
− µ(X)

]
dβ,

where Fβ(g) = {ω ∈ Ω; g(ω) ≥ β} . Let (C)
∫
X
gdµ be a real number, then g is said to

be Choquet integrable on set A. Observe that if g ≥ 0 on X , then in the above formula we
obtain

∫ 0

−∞ = 0.

The Choquet integral (C)
∫
X
gdµ simplifies to the Lebesgue integral if µ is the Lebesgue

measure.

Here we present a few well-known characteristics of the Choquet integral.
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Remark 2.1 (Properties of the Choquet Integral). Let µ : C → [0,+∞] be a monotone set
function. Then, the Choquet integral satisfies the following properties:

i. For any positive value of a, we have:

(C)

∫
X

ag dµ = a · (C)

∫
X

g dµ.

ii. For any c ∈ R and arbitrary measurable functions g, l, we have:

(C)

∫
X

(g + l) dµ ≤ (C)

∫
X

g dµ+ (C)

∫
X

l dµ,

implying that the Choquet integral is sublinear.
iii. For each g ≤ l on X then

(C)

∫
X

g dµ ≤ (C)

∫
X

l dµ.

iv. Let g ≥ 0 and X ⊂ Z. Then

(C)

∫
X

g dµ ≤ (C)

∫
Z

g dµ.

Moreover, if µ is finitely subadditive,

(C)

∫
X∪Z

g dµ ≤ (C)

∫
X

g dµ+ (C)

∫
Z

g dµ.

v. It is an immediate consequence of the Choquet integral that

(C)

∫
X

1 dµ = µ(X).

vi. If µ(X) = γ(M(X)), where γ : [0, 1] → [0, 1] is an increasing concave function with
γ(0) = 0, γ(1) = 1, and M is a probability measure on a σ-algebra over Ω, then µ is a
monotone and submodular set function.

Example 2.1. Let X = {x1, x2, x3} and consider a function f : X → R+ given by

f(x1) = 2, f(x2) = 5, f(x3) = 3.

Let µ : 2X → [0, 1] be a set function defined as:

µ(∅) = 0, µ({x1}) = 0.2, µ({x2}) = 0.4, µ({x3}) = 0.3,

µ({x2, x3}) = 0.7, µ(X) = 1.

It is easy to verify that µ is both monotone and submodular.
Ordering the values of f in decreasing order:

f(x(1)) = 5, f(x(2)) = 3, f(x(3)) = 2,

with corresponding sets A1 = {x2}, A2 = {x2, x3}, and A3 = X .
Then, the discrete Choquet integral is given by:

(C)

∫
f dµ = (5− 3) · µ(A1) + (3− 2) · µ(A2) + (2− 0) · µ(A3),

= 2 · 0.4 + 1 · 0.7 + 2 · 1 = 3.5.

This example illustrates the application of the Choquet integral using a monotone, submodular
set function over a finite set.
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3. CONSTRUCTION OF THE OPERATORS

The sigma algebra of all Borel measurable subsets in P (I) which represents the class of
all subsets of I is denoted by BI . Here, (Γh,x)h∈N,x∈I denotes a collection of families Γh,x =

{µh,k,x}hk=0 , comprising monotone, submodular, and strictly positive set functions on BI ,
where I = [0, bh] for Bernstein-Chlodowsky-Kantorovich polynomials. A set function on
BI is considered strictly positive if, for any open subset X ⊂ R with X∩I = ∅, it holds that
µ(X ∩ I) > 0. In this section, we introduce Bernstein-Chlodowsky-Kantorovich operators
of Choquet types and investigate some approximation properties of our new operator.

Definition 3.2 (Bernstein–Chlodowsky–Kantorovich Operators of Choquet Type). Let Γh,x =

{µh,k,x}hk=0 be a sequence of monotone and submodular set functions defined on the Borel σ-
algebra BI , with I = [0, bh].

Then, the Bernstein–Chlodowsky–Kantorovich operators of Choquet type (Choquet BC-Kantorovich
operator)are defined as:

CKh,Γh,x
(g)(x) =

h∑
k=0

sh,k(x) ·
(C)

∫ bh(k+1)/(h+1)

bhk/(h+1)
g(t) dµh,k,x(t)

µh,k,x

([
bhk
h+1 ,

bh(k+1)
h+1

]) ,

where sh,k(x) are given by:

sh,k(x) =

(
h

k

)(
x

bh

)k (
1− x

bh

)h−k

.

Here, the function g : I → R+ is assumed to be BI -measurable and bounded on I , ensuring
that the Choquet integral is well-defined on each subinterval.

Remark 3.2. For all h, k, and x, if µh,k,x = M , which M is the Lebesque measure, then the
operators mentioned above are considered classical. Additionally, given that µh,k,x = δbhk/h

(the Dirac measures), and considering that bhk
h ∈

[
bhk
h+1 ,

bh(k+1)
h+1

]
, it follows immediately that

CKh,Γh,x
(g)(x) are the classical Bernstein-Chlodowsky polynomials.

The following represents, for simplicity, any of the operators CKh,Γh,x
(g) by Lh(g).

Theorem 3.1. Let I = [0, bh] and let Cb
+(I) denote the space of all continuous, bounded, and

positive-valued functions on I . Consider the operator CKh,Γh,x
acting on g ∈ Cb

+(I), and define
the auxiliary function φx(t) := |t− x|.

Then, for every g ∈ Cb
+(I), x ∈ I , and h ∈ N, the following estimate holds:

(3.1) |Lh(g)(x)− g(x)| ≤ 2ω1 (g;Lh(φx)(x))I ,

where the modulus of continuity is defined by

ω1(g; δ)I := sup {|g(x)− g(y)| : x, y ∈ I, |x− y| ≤ δ} .

Proof. For x ∈ I , h, k ∈ N, let us take Th,k,x : Cb
+(I) → R+ describe by

Th,k,x(f) = (C)

∫
Ik,h

g(t)dµh,k,x(t), f ∈ Cb
+(I),

where Ik,h =
[

bhk
h+1 ,

bh(k+1)
h+1

]
for CKh,Γh,x

(g)(x). Lemma 3.1 in [5] and its proof show that
since Th,k,x is positively homogeneous, sublinear, and monotonically increasing, we ob-
tain

| Th,k,x(g)− Th,k,x(l) |≤ Th,k,x (| g − l |) .
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This implies that Lh(λg) = λLh(g), Lh(g + l) ≤ Lh(g) + Lh(l), g ≤ l on I implies Lh(g) ≤
Lh(l) on I, ∀ λ ≥ 0, g, l ∈ Cb

+(I), h ∈ N, x ∈ I and that

(3.2) | Lh(g)(x)− Lh(l)(x) |≤ Lh (| g − l |) (x).
By denoting e0(t) = 1 for all t ∈ I , and by considering the characteristic in Remark 2.1, (i)
and Remark 3.2 we obtain the following for any fixed x,

(3.3) | Lh(g)(x)− g(x) |=| Lh (g(t)) (x)− Lh (g(x)) (x) |≤ Lh (| g(t)− g(x) |) (x).
However, by considering the characteristics of the modulus of continuity, we can conclude
that for all t, x ∈ I and δ > 0, the following is hold

(3.4) | g(t)− g(x) |≤ ω1 (g; ∥ t− x ∥)I ≤
[
1

δ
∥ t− x ∥ +1

]
ω1 (g; δ)I .

From (3.3) and applying Ln to (3.4), utilizing the features of Ln referenced following in-
equality (3.2), we obtain

| Lh(g)(x)− g(x) |≤
[
1

δ
Lh(φx)(x) + 1

]
ω1(g; δ)I .

We are able to acquire the appropriate estimate by selecting the equation δ = Lh(φx)(x)).
□

Remark 3.3. The proof of Theorem 3.1 relies on the positive homogeneity property of the Choquet
integral. Consequently, the function g is required to be non-negative, i.e., g ∈ Cb

+(I). Theorem
3.1 can be restated with the slightly modified operator described by

L∗
h(g)(x) = Lh(g −m)(x) +m

, where m ∈ R represents a lower constraint for g, namely g(x) ≥ m, for all x ∈ I , if g is
of arbitrary sign on I . Indeed, this may be deduced directly from the relation ω1 (g −m; δ)I =
ω1 (g; δ)I and

L∗
h(g)(x)− g(x) = Lh(g −m)(x)− (g(x)−m).

Remark 3.4. It is important to emphasize that, owing to the nonlinearity of the Choquet inte-
gral as discussed in Remarks 2.1, (i) and 3.2, the Lh operators in Theorem 3.1 are nonlinear, in
contrast to classical situations. Particularly, when Γh,x decreases to one element, we will denote
CKh,Γh,x

(g) := Ch,µ(g). Subsequently, the estimate in (3.1) allows us to obtain concrete quanti-
tative results for certain specific choices of Γh,x.

Corollary 3.1. Assume that the set function µh,k,x is given by µ :=
√
M for all h, k ∈ N and

x ∈ I , where M denotes the Lebesgue measure on I .
Then, for every g ∈ Cb

+(I), x ∈ I , and h ∈ N, we have:

|Ch,µ(g)(x)− g(x)| ≤ 2ω1

(
g;

√
x(bh − x)√

h
+

bh
h

)
I

.

Proof. Based on Remark 2.1(vi) µ =
√
M is a monotone and submodular set function.

Furthermore, it is obvious that µ is strictly positive. To evaluate CKh,µ(φx)(x), let us
indicate

Ch,k(x) =
(C)

∫ bh(k+1)/(h+1)

bhk/(h+1)
| t− x | dµh,k,x(t)

µh,k,x

([
bhk
h+1 ,

bh(k+1)
h+1

])
=

√
h+ 1√
bh

(C)

∫ bh(k+1)/(h+1)

bhk/(h+1)

| t− x | dµh,k,x(t).
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Three possibilities: 1. x ∈
[

bhk
h+1 ,

bh(k+1)
h+1

]
, 2. 0 ≤ x < bhk

h+1 , 3. bh(k+1)
h+1 < x

Case 1. Since | t− x |≤ bh
h+1 , for all t, x ∈ Ih,k =

[
bhk
h+1 ,

bh(k+1)
h+1

]
from Remark 2.1 (ii), we

get

Ch,k ≤
√
h+ 1√
bh

bh
h+ 1

(C)

∫ bh(k+1)/(h+1)

bhk/(h+1)

1.dµ <
bh
h
.

Case 2. We have | t− x |= t− x and denoting

M(h, k, x, β) := µ ({t ∈ Ih,k : t ≥ x+ β}) ,

we obtain

Ch,k(x) =

√
h+ 1√
bh

∫ ∞

0

M(h, k, x, β)dβ

=

√
h+ 1√
bh

∫ bh(k+1)

h+1 −x

0

M(h, k, x, β)dβ

=

√
h+ 1√
bh

(∫ bhk

h+1−x

0

M(h, k, x, β)dβ +

∫ bh(k+1)

h+1 −x

bhk

h+1−x

M(h, k, x, β)dβ

)

=

(
bhk

h+ 1
− x

)
+

√
h+ 1√
bh

∫ bh(k+1)

h+1 −x

bhk

h+1−x

√
bh(k + 1)

h+ 1
− x− βdβ

=

(
bhk

h+ 1
− x

)
+

√
h+ 1√
bh

∫ bh(k+1)

h+1 −x

bhk

h+1−x

√
ηdη

=

(
bhk

h+ 1
− x

)
+

2

3

bh
h+ 1

=
h

h+ 1

(
bhk

h
− x

)
+

2bh − 3x

3(h+ 1)

≤ h

h+ 1

∣∣∣∣bhkh − x

∣∣∣∣+ 2bh
3(h+ 1)

≤
∣∣∣∣bhkh − x

∣∣∣∣+ 2bh
3(h+ 1)

<

∣∣∣∣kbhh − x

∣∣∣∣+ 2bh
3h

Case 3. Since | t − x |= x − t, denoting M(h, k, x, β) := µ ({t ∈ Ih,k; t ≤ x− β}) and
reasoning as in the case (2), we get

Ch,k(x) =

√
h+ 1√
bh

∫ ∞

0

M(h, k, x, β)dβ

=

√
h+ 1√
bh

∫ x− bhk

h+1

0

M(h, k, x, β)dβ

=

√
h+ 1√
bh

(∫ x− bh(k+1)

h+1

0

M(h, k, x, β)dβ +

∫ x−bhk

h+1

x− bh(k+1)

h+1

M(h, k, x, β)dβ

)
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=

(
x− bh(k + 1)

h+ 1

)
+

√
h+ 1√
bh

∫ bh
h+1

0

√
ηdη

=

(
x− bh(k + 1)

h+ 1

)
+

2bh
3(h+ 1)

=
h

h+ 1

(
x− kbh

h

)
+

3x− bh
3(h+ 1)

≤ h

h+ 1

∣∣∣∣x− kbh
h

∣∣∣∣+ bh
h+ 1

≤
∣∣∣∣x− kbh

h

∣∣∣∣+ bh
h+ 1

<

∣∣∣∣x− kbh
h

∣∣∣∣+ bh
h

Collecting the estimates in the three cases (1), (2) and (3), then we obtain

Ch,k(x) ≤
∣∣∣∣kbhh − x

∣∣∣∣+ bh
h
,∀x ∈ [0, bh]

which immediately implies

CKh,µ(φx)(x) ≤
n∑

k=0

sh,k(x)

[∣∣∣∣kbhh − x

∣∣∣∣+ bh
h

]

≤
√
x(bh − x)√

h
+

bh
h
,

utilizing the estimate (3.1) from Theorem 3.1, we get the required estimate. In the final

row of inequalities, we applied the established inequality Ch(φx)(x) ≤
√

x(bh−x)√
h

, when
Ch denotes the classical Bernstein-Chlodowsky polynomials. □

Example 3.2. The Choquet integral is recognized for providing the right-skewed average for con-
vex functions, particularly when µ(E) =

√
m(E), the square root of the Lebesgue measure. The

selected test function is g(x) = ex, which is positive and convex, therefore illustrating the advan-
tages of the Choquet integral.

Indeed, while the classical Lebesgue mean is

Mnorm(a, b) =
ea + eb

2

the Choquet mean with capacity µ =
√
m is approximately

Mchoq(a, b) =
ea + eb + e

a+b
2

3

At this point, due to the convexity of ex, we have Mchoq(a, b) ≥ Mnorm(a, b), which provides a
closer approximation to the function’s orijinal behavior.

Consequently, the expression

CKh,Γh,x
(ex)(x) =

h∑
k=0

sh,k(x)Mchoq
(
Ik,h

)
,

converges uniformly to the function ex when h increases.

Remark 3.5. This example clearly demonstrates the improvement provided by the Choquet in-
tegral for convex functions. While the classical Kantorovich average exhibits a tendency toward
underestimation, the Choquet average reduces underestimation by evaluating around a+ 2

3 (b−a).
Thus, it has been confirmed by numerical results and graphs that the operator CKh,Γh,x

(ex)(x)
approaches the function ex more quickly, especially for small values of h.

Example 3.3 (Numerical Approaches). The table below shows the numerical values and errors
of the Choquet BC-Kantorovich operator for the function g(x) = ex on the interval [0, 0.4].
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FIGURE 1. CKh,Γh,x
(g)(x) approximation to ex on [0, 0.4]

TABLE 1. Approach values

x ex (true) h=5 h=10 h=20 h=50
0.00 1.00000 1.08942 1.04722 1.02429 1.00988
0.05 1.05127 1.13972 1.09814 1.07542 1.06111
0.10 1.10517 1.19186 1.15127 1.12897 1.11488
0.15 1.16183 1.24589 1.20670 1.18504 1.17131
0.20 1.22140 1.30186 1.26452 1.24376 1.23055
0.25 1.28403 1.35983 1.32483 1.30523 1.29271
0.30 1.34986 1.41984 1.38771 1.36958 1.35795
0.35 1.41907 1.48195 1.45326 1.43694 1.42641
0.40 1.49182 1.54622 1.52159 1.50744 1.49826

TABLE 2. Error values

x |h = 5− true| |h = 10− true| |h = 20− true| |h = 50− true|
0.00 0.08942 0.04722 0.02429 0.00988
0.05 0.08845 0.04687 0.02415 0.00984
0.10 0.08669 0.04610 0.02380 0.00971
0.15 0.08406 0.04486 0.02321 0.00948
0.20 0.08046 0.04312 0.02236 0.00914
0.25 0.07580 0.04080 0.02120 0.00869
0.30 0.06998 0.03785 0.01972 0.00809
0.35 0.06289 0.03419 0.01787 0.00735
0.40 0.05440 0.02976 0.01561 0.00643

In [6], the max-product operators of the Bernstein–Kantorovich type, beginning with
classical linear operators were introduced and studied. In [4], the max-product Bernstein-
Kantorovich-Choquet operators, with regard to Γh,x = {µh,k,x}hk=0 is defined as

K
(M)
h,Γh,x

(g) (x) =

∨h
k=0

(
h
k

)
xk(1− x)h−k (C)

∫ (k+1)/(h+1)

k/(h+1)
g(t)dµh,k,x(t)

µh,k,x([k/(h+1),(k+1)/(h+1)])∨h
k=0

(
h
k

)
xk(1− x)h−k

.
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Now, we give the definition of Bernstein-Chlodowsky-Kantorovich operators of Choquet
types and investigate some approximation properties. Firstly, let us introduce the defini-
tion of Bernstein-Chlodowsky-Kantorovich-Choquet operators as follows

CK
(M)
h,Γh,x

(g) (x) =

∨h
k=0

(
h
k

) (
x
bh

)k
(1− x

bh
)h−k

(C)
∫ bh(k+1)/(h+1)

bhk/(h+1)
g(t)dµh,k,x(t)

µh,k,x([bhk/(n+1),bh(k+1)/(h+1)])∨h
k=0

(
h
k

) (
x
bh

)k
(1− x

bh
)h−k

.

If we assume that g : I → R+ is a BI -measurable function, bounded on I = [0, bh]

for CK
(M)
h,Γh,x

(g) (x) then this operator is well-defined. If µh,k,x = m for all h, k and x,
where m is the Lebesgue measure, the previous operators convert into the max-product
Kantorovich-type operators, as discussed in [7].

Let us now present the first result of this section, denoted by L
(M)
h (g) for simplicity, for

any of the operators CK
(M)
h,Γh,x

(g).

Theorem 3.2. Let I = [0, bh], and let Cb
+(I) denote the space of all bounded, continuous, and

non-negative real-valued functions defined on I . Then, for every g ∈ Cb
+(I), x ∈ I , and h ∈ N,

the following inequality holds:

(3.5)
∣∣∣L(M)

h (g)(x)− g(x)
∣∣∣ ≤ 2ω1

(
g; L

(M)
h (φx)(x)

)
, where φx(t) = |t− x|.

Here, ω1(g; δ) denotes the modulus of continuity of first order, defined by:

ω1(g; δ) = sup {|g(t)− g(s)| : t, s ∈ I, |t− s| ≤ δ} .

Proof. For x ∈ I, h, k ∈ N, now we can consider about Th,k,x : Cb
+(I) → R+ described by

Th,k,x(f) = C

∫
Ik,h

g(t)dµh,k,x(t)/µh,k,x(Ik,n), g ∈ Cb
+(I),

where Ik,h =
[

bhk
h+1 ,

bh(k+1)
h+1

]
for CKh,Γh,x

(g) (x).

Let us denote

sh,k(x) =

(
h

k

)(
x

bh

)k (
1− x

bh

)h−k

.

Taking into account the properties of the Choquet integral in Remark 2.1, we can say
that Th,k,x is positively homogeneous, sublinear, and monotonically increasing, multiply-
ing it by pn,k(x), passing to supremum after k and finially dividing by

h∨
k=0

sh,k(x),

we immediately get that
L
(M)
h (g)

shares the same properties, that is,

L
(M)
h (λg) = λL

(M)
h (g),

L
(M)
h (g + l) ≤ L

(M)
h (g) + L

(M)
h (l),

g ≤ l on I implies L
(M)
h (g) ≤ L

(M)
h (l) on I, for all λ ≥ 0, g, l ∈ Cb

+(I), h ∈ N, x ∈ I. Then
we get that

(3.6)
∣∣∣L(M)

h (g)(x)− L
(M)
h (l)(x)

∣∣∣ ≤ L
(M)
h (|g − l|)(x).
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Indicating e0(t) = 1, for all t ∈ I, since obviously Lh(e0)(x) = 1, for all x ∈ I and
considering the property in Remark 2.1 for any fixed x, we obtain∣∣∣L(M)

h (g)(x)− g(x)
∣∣∣ = ∣∣∣L(M)

h (g(t))(x)− L
(M)
h (g(x))(x)

∣∣∣
≤L

(M)
h (|g(t)− g(x)|) (x).

(3.7)

Considering the characteristics of the modulus of continuity, for all t, x ∈ I and δ > 0, we
obtain

(3.8) | g(t)− g(x) |≤ ω1 (g; ∥ t− x ∥)I ≤
[
1

δ
∥ t− x ∥ +1

]
ω1 (g; δ)I .

Now from (3.7) and applying L
(M)
h to (3.8), by the properties of L(M)

h given after the in-
equality (3.6), we immediately obtain∣∣∣L(M)

h (g)(x)− g(x)
∣∣∣ ≤ [1

δ
L
(M)
h (φx) (x) + 1

]
ω1 (g; δ)I .

Choosing here δ = L
(M)
h (φx) (x), we obtained the desired estimate.

□

Corollary 3.2. Let g ∈ Cb
+([0, bh]), x ∈ [0, bh], and h ∈ N. Assume that the monotone set

function µ is given by µ :=
√
m, where m denotes the Lebesgue measure on [0, bh].

Then, the following inequality holds:∣∣∣CK
(M)
h,µ (g)(x)− g(x)

∣∣∣ ≤ 2ω1

(
g; 6

bh√
h+ 1

+
1

h

)
[0,bh]

.

Proof. From Remark 2.1, µ =
√
m is a monotone and submodular set function. Addition-

ally, it is clear that µ is strictly positive. Indicate that sh,k(x) =
(
h
k

) (
x
bh

)k (
1− x

bh

)h−k

. To

estimate CK
(M)
h,µ (φx)(x), let us indicate

Ch,k(x) =
(C)

∫ bh(k+1)/(h+1)

bhk/(h+1)
| t− x | dµh,k,x(t)

µh,k,x

([
bhk
h+1 ,

bh(k+1)
h+1

]) .

As demonstrated in the proof of Corollary 3.1, we obtain

Ch,k(x) ≤
∣∣∣∣kbhh − x

∣∣∣∣+ bh
h

which immediately implies

CK
(M)
h,µ (φx)(x) ≤

∨h
k=0 sh,k(x)

(∣∣kbh
h − x

∣∣+ bh
h

)∨h
k=0 sh,k(x)

≤
∨h

k=0 ph,k(x)
(∣∣kbh

h − x
∣∣)∨h

k=0 sh,k(x)
+

bh
h

where the estimate has been applied (see [8])∨h
k=0 sh,k(x)

(∣∣kbh
h − x

∣∣)∨h
k=0 sh,k(x)

≤ 6bh√
h+ 1

.

The expected result is now also obtained by applying the estimate (3.5) in Theorem 3.2.
□
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4. CONCLUSIONS

Recent research has introduced two novel approaches for function approximation: max-
product operators and Choquet integral operators, introduce nonlinear approximation
operators which produce better estimates compared to linear methods.The max-product
operators are formally associated with conventional linear and positive operators by sub-
stituting the sum in their expressions with the maximum (supremum). The Choquet
integral operators are characterized by the substitution of the classical linear integral
with the nonlinear Choquet integral in the expressions of the integral operators. This
methodology has prospective applications in statistical mechanics, potential theory, co-
operative games, decision-making under risk and uncertainty, finance, economics, and
insurance.We present the Choquet integral in connection with Bernstein–Chlodowsky-
Kantorovich operators and establish quantitative estimates for uniform and pointwise
approximation utilizing these operators. The maximum product variant of these opera-
tors is defined and their approximation characteristics are examined.
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[7] Acar, E.; Özalp Güler, Ö.; Kırcı Serenbay, S. Approximation by nonlinear Bernstein-Chlodowsky operators
of Kantorovich type, Filomat 37 (2023), no.14, 4621–4627.

[8] Güngör Ş. Y.; İspir, N. Approximation by Bernstein-Chlodowsky operators of max-product kind, Mathemat-
ical Communications 23 (2018), no. 2, 205–225.
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