CREAT. MATH. INFORM. Online version athttps://creative-mathematics.cunbm.utcluj.ro/
Volume 35 (2026), No. 1, Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X
Pages 27-35 DOI https:/ /doi.org/10.37193 /CMI.2026.01.03

On Quaternion-Gaussian Third-order Jacobsthal
Polynomials

GAMALIEL MORALES!

ABSTRACT. In this paper, we define Gaussian third-order Jacobsthal quaternion polynomials and Gaussian
third-order Jacobsthal-Lucas quaternion polynomials. We also investigate some properties of these quaternion
polynomials.

1. INTRODUCTION

Gaussian number, investigated by Carl Gauss in 1832, is a complex number with in-
teger coefficients. In 2013, Asci and Giirel introduced in [1] the concept of complex Ja-
cobsthal numbers (called Gaussian Jacobsthal numbers) and its generalization Gaussian
Jacobsthal polynomials [2]. Then, Gaussian Jacobsthal numbers and generalized Gauss-
ian Jacobsthal numbers are studied by many authors. Some example of these studies can
be found in [10, 11, 12, 13], among others.

The nth Gaussian third-order Jacobsthal number is defined by the relation

JGD =GP, +IGY, +20G,, 0>,

with initial conditions JG(()S) =0, JG(3 =1and JG SO (see [5]).

It is easy to see that JGY = g +zJ(3) and J(B) =0, where J* is the nth thlrd order
Jacobsthal number defined recursively by J,(f’) = J,(f’_)l +J (3)2 +2J (3)3 with J =0and
J® — B8 4

1 =J2 =L

Similarly, the nth Gaussian modified third-order Jacobsthal number is defined by the

relation
KG® = KG¥, + KGP, +2KGY,, n >3,
with initial conditions KG{) = 3 — 3i, KG{" = 1+ 3i and KGY = 3 + .

It is clear that K Gf) = K,(f) + ini)l and K (fl) = —%, where K,,(LS) is the nth modified

third-order Jacobsthal number defined recursively by K =K (3)1 +K, %) 9+ 2K (3)3 with

K ) — 3, K; ® — 1 and K 53) = 3. For more details on third-order Jacobsthal and modified
thlrd order ]acobsthal numbers, see [3, 7].

Furthermore, the third-order Jacobsthal polynomials studied by Morales in [8] are de-
fined by the relation

IO (@) = (& - 1)IP (@) + (@ — )Ty (@) + 2IVs(2), n >3,

with initial conditions Jég) () =0, Jl(g)(x) =1land Jég)(x) =z — 1, for any real variable x
such that 2 # 1.
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The modified third-order Jacobsthal polynomials are defined by the relation
K® () = (z — 1)K

n n—l(x) + (.13— 1)K7(522(J))—|—1‘K7(523($), n2 37
with initial conditions K(ES) (x) =3, ng) (x) =2 —1and KQ(S) (r) = 2% - 1.
In [6], Morales studied Gaussian third-order Jacobsthal polynomials as follows:
The Gaussian third-order Jacobsthal polynomials are defined by the relation

L1 JGP () = (x - DIGD (@) + (3 — DIGY y(2) + 2I G y(w), n >3,

with initial conditions JG(()B)(x) =0, JGgg)(aj) = land JG%S) () =z —1+1.
Moreover, it is easy to see that J Gg;q’)(x) =J® (x) + iJ,(i)l(:c). Setting = 2 in the Eq.

(1.1), the Gaussian third-order Jacobsthal number .J GS’) can be obtained.
The Binet-type formula for the Gaussian third-order Jacobsthal polynomials is given

by
"z +i)  wi(wr+i) wh(wa + 1)
24+l (r—w)(w —ws) (7 —ws)(ws —ws)’

(12) JG®) (z) =

where w; and ws are the roots of the equation A2 + X + 1 = 0.
The Gaussian modified third-order Jacobsthal polynomials are defined by the relation

(13)  KGP(2)=(z - DKG

n—1

(@) + (z = VEGD (2) + e KGP 4 (2), n >3,

with initial conditions KG (z) = 3 + (2 -1)4, KG¥(z) =2 —1+3iand KG¥ (2) =
22— 1+ (z—1)i.

Furthermore, it is clear that KG\?) (x) = K () + zKr(i)l(x) Setting z = 2 in the Eq.
(1.3), the Gaussian modified third-order Jacobsthal number K Gﬁ;“’) can be obtained.

The Binet-type formula for the Gaussian modified third-order Jacobsthal polynomials
is given by
(1.4) KG® (z) = 2" Yz + i) + WP Hwi + 1) + Wi Hws + 1),
where w; and wy are same as defined in Eq. (1.2).

Quaternions, four-dimensional hyper-complex numbers, introduced by Hamilton in
1843. These numbers have found widespread application in quantum physics, computer

graphics, robotics and signal processing.
A quaternion @ is of the form

Q = Qo + Q17+ Q25 + Qsk,
where Qo, @1, Q2, Q3 are real numbers, and 1, j, k are quaternionic units which satisfy the
equalities
(1.5) PP=2 =k =ijk=—1,ij =k =—ji, jk=1i=—ki, ki=j = —ik.
The set of all quaternions denoted by R[, j, k] is a non-commutative associative algebra

over the real numbers R. For a survey on quaternions, we refer the reader to [14].
In [9], Morales defined the third-order Jacobsthal quaternions as

JQS’) = Jr(LB) + Jﬁzli + JTSPIBQ-]. + Jfﬁgh n >0,

here Jr(L3) is the nth third-order Jacobsthal number and 3, j, k are quaternionic units which
satisfy the rules (1.5).

The main objective of this paper is to define and study Gaussian third-order Jacob-
sthal and modified third-order Jacobsthal quaternion polynomials in the sense of [4, 15].
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We shall give recurrence relations, Binet’s formulas, generating functions and summation
formulas involving these quaternion polynomials.

2. THE GAUSSIAN THIRD-ORDER JACOBSTHAL QUATERNION POLYNOMIALS

In this section, we first give the definitions of Gaussian third-order Jacobsthal quater-
nion polynomials and Gaussian modified third-order Jacobsthal quaternion polynomials.
We then obtain some results for these special quaternion polynomials.

The Gaussian third-order Jacobsthal quaternion polynomials {J GQY tn>0 and Gauss-
ian modified third-order Jacobsthal quaternion polynomials { K aQY }n>0 are defined by

(2.6) JGQWY (x) = JGP) (2) + JG2) ()i + TG, (x)j + TG (x)k
and
2.7) KGQW(2) = KGP(2) + KG¥), ()i + KGY),(2)j + KGP) 4 (2)k,

respectively, .J G (x) is the nth Gaussian third-order Jacobsthal polynomial, KG (3)( ) is
the nth Gaussian modified third-order Jacobsthal polynomial.
It is easy to see that the nth Gaussian third-order Jacobsthal quaternion polynomial is
defined recursively by
@8 JGRY () = (2~ )IGQ (@) + (¢ = 1)IGQ () + 2IGQ (),
with initial conditions
JGQY (2) =i+ (2® —x + 1)k
JGQP (z) = (x — )i+ («° — a® + )k
JGQ; () = (2® —2 4+ 1)i + (2* — 23 + 22 — Dk.

Similarly, the nth Gaussian modified third-order Jacobsthal quaternion polynomial is
defined recursively by

29  KGQP(2) = (z - VKGQY,(2) + (z — NKGQ'Y ,(z) + e KGQP 4(x),
with initial conditions

KGQW (z) = ( +1—2) + (@ 4+ 1)k

KGQgS)(x) = (2% +2)i + (z* + 22 — 2)k
KGQS”(x) =@+ +1)i+ (2° +2° + 1)k

It must be noted that if we set # = 2 in Egs. (2.6) and (2.8), we obtain Gaussian third-
order Jacobsthal quaternions

JGQY = JGQW, + 1GQY, +27GQY), n > 3,

with initial conditions JGQY = i + 3k, JGQ® = i + 6k, JGQ'Y = 3i + 11k, and if
we set © = 2 in Egs. (2.7) and (2.9), we obtain Gaussian modified third-order Jacobsthal
quaternions

KGQ® = KGQP | + KGQP, + 2KkGQ®P,, n > 3,

n—3»
with initial conditions KGQ = i + 11k, KGQ\¥ = 6 + 18k and KGQS) = 11i + 41k.
Let wy and wy be the roots of the characteristic equation A+ X+ 1 = 0 on the re-
currence relation (2.8) of Gaussian third-order Jacobsthal quaternion polynomials. These
roots satisfy the following rules wy + ws = —1, wiws = 1 and w3 = wj = 1.
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For simplicity of notation, let

1
Ty () =
(2.10) n@)=o—

n n
Y, =wi +wy.

(w2 = @)™ = (w1 — 2)wy ™),

Then, we can write
1

7@ = E

(xn+1 T Zn+1(37))
and
K®(z) =2 +Y,.
Furthermore, we have Z,,,1(x) = —=Z,(z) — Z,—1(x), Z1(x) = —z and Zy(z) = = + 1.

We now give the Binet’s formulas for the Gaussian third-order Jacobsthal and modified
third-order Jacobsthal quaternion polynomials in the following theorem.

Theorem 2.1. The Binet’s formulas for the Gaussian third-order Jacobsthal and modified third-
order Jacobsthal quaternion polynomials are given by

JGQY () (a" + Zn(x))

JGQP(@) = =3 +I0QP ) (2" — 2Zu(x) ~ Zua(@)
+IGQE (@) (@ + 3201 (2))
and
KGQS) (@) (¢ + Zu(x))
KGO () = 7§ +KGQY (1) (" — 2Zu(x) — Zu1(2))

+KGQP () (¢ + 2Zp_1(x)
with Z,,(x) as in Eq. (2.10).

Proof. From the general solution for the recurrence relation and using initial conditions
the desired results can be obtained easily. O

Note that we can also write the Binet’s formula J GQ%‘O’) (z) as follows:
1GQY (x) = 1,21 (2)1GQY (2) + | TP (a) — (x = )10, (0)| JGQY (x)

+ 2P, (2)IGQY (x),

where J7(L3) (z) is the nth third-order Jacobsthal polynomial.

If wesetz =2in J GQ%S) (x) using Theorem 2.1, we obtain the Binet’s formula for the
Gaussian third-order Jacobsthal quaternions as follow:

1GQY = J2,0GQY + (1 = J2)) 16QP (@) + 200,0GQ,

where Jn is the nth third-order Jacobsthal number.

Now, the ordinary generating functions and exponential generating functions for the
Gaussian third-order Jacobsthal quaternion polynomials and Gaussian modified third-
order Jacobsthal quaternion polynomials are given in the following results, respectively.

Theorem 2.2. The ordinary generating functions for the Gaussian third-order Jacobsthal quater-
nion polynomials and Gaussian modified third-order Jacobsthal quaternion polynomials are given

by
i+ (@? -2+ Dk+ (2 —z+Dk) t + (i + (22 — 2)k) t?

211)  g(Sit) = 1—(z— 1)t — (z— )2 — a3
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and
{(m+;—2)i+<w3+ T DE+ (o4 5 ~ it (o —1>k)t}
+ ((z+ L) i+ (2% +22)k) 2

—(z—1

(212) g (K;t) = 1—(z—1)t—(z— )2 —at? ’

respectively.

Proof. Let g(J;t) be the generating function for the Gaussian third-order Jacobsthal quater-
nion polynomials. Then, we write

213)  g(Jit) = JGQP ()" = JGQF (x) + JGQP ()t + JGQY (x)t* + -+
=0

Multiplying the Eq. (2.13) with —(z — 1)t, —(x — 1)t and —xt3, respectively, we get

(2.14) —(z = Dtg(J;t) = —(x = 1)JGQY (@)t — (v = NIGQP ()12 — -+,
(2.15) —(z = D)g(J;t) = —(x — 1)JGQP ()8 — (¢ — 1)JGQP (z)t® — - .-
and

(2.16) —at?g(J;t) = —mJGQ(()?’) (z)t® — xJGQ&S) (z)t*

Then, adding the Egs. (2.13), (2.14), (2.15) and (2.16), we obtain
[1—(z—1)t—(z— 1)t —xt®] g(J;1)

= JGQY (1) + [16Q (@) - (z ~ 1)IGQY (x)| ¢
+[1600 @) - (¢ - 1I6QP (@) - (¢ - IR ()] £

+i[JGQ£?><x> (= DIGQY, (2) — (v = 1)IGQYy(x) — 2IGQL (@) 1.
n=3

From the Eq. (2.8), we get
(1—(z— 1)t — (x— Dt —xt3)g(J; 1)

= JGQF @) + [16QY (1) — (¢ — DIGQY (@) ¢
+[160P (@) - (2 - 11760 () - (v - 1)IGQ ()] ¢

Using the initial conditions JGQég)(x), JGQE?’)( ) and JGQ;’)(x), we have
(I—(z-t—(z— 1) —at’)g(J;t) =i+ (@* —z+ Dk + (2 —z+ 1)t
+ (i4 (2® —2)k) £
which completes the proof of the first statement.

The second statement of the theorem can be proved in a similar manner. O

If we set = 2 in Eq. (2.11), we obtain the ordinary generating function for the Gauss-
ian third-order Jacobsthal quaternions as follow:
i+ 3k + (3k)t + (i + 2k) t?
1—t—12—-2¢3
Furthermore, if we set x = 2 in Eq. (2.12), we obtain the ordinary generating function for
the Gaussian modified third-order Jacobsthal quaternions as follow:
s+ 1k+ (5 +T7h)t+ (5 +12k) ¢
1—t—¢2—2t3

g(J;t) =

g(K;t) =
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Theorem 2.3. The exponential generating functions for the Gaussian third-order Jacobsthal quater-
nion polynomials and Gaussian modified third-order Jacobsthal quaternion polynomials are given

by

(3) (3) (3) xt
o= L { . [7608 @) + 7601 @) + 7605 @)] ¢ }

oo (w2 = 2) T (w2)ert — (w1 — )P s (wr)ev?!]

and

Kty = L { K607 @) + KGO ) + KGR )] e } |
o (x) +orma [(wo — )UK (wa)e“tt — (w1 — 2) W (wy)ev?t]
respectively. Further, ®(x) = 2% + = + 1 and

Wy (w) = JGQS () — (2 +w)IGQY (x) + 2] GQFY (x),

Ui (w) = KGQY () — (2 + w)KGQY (2) + 2wKGQY (x).

Proof. Using ®(z) = x? + x + 1, the Binet’s formula in Theorem 2.1 of the Gaussian third-
order Jacobsthal quaternion polynomials and Eq. (2.10), we have

(x) 2 JGQS”(»T)%
— JGQY (2 )i(x” +Zn(x))%n!
+ 160 () i(x” - a2, (x) = Zya () o
4 1GOP @ f: @+ 22,1 ()
= [7GQY (@) + 1GQ (@) + JGQ ()] i (9%
— im l(w — 2) Wy (w2) 2 (w;?n — (w1 — @)W (wr) 2 (wjj)n ’

where ¥ ;(w) = JGQ&P’) () —(z+ w)JGQg?’) (x)+ waGQéB) (x). Thus, the proof of the first
statement is completed. The second statement can be proved using the Binet’s formula of
the Gaussian modified third-order Jacobsthal quaternion polynomials in a similar manner.

O

Theorem 2.4. For n > 0, the following identities hold

" X TGQuia(@) =~ (z = 2GR0} (x)
217) Y JGQ®(z) = 5T +2JGQP (z) — 1GQY ()
r=o +Ha —2) TG () + (22 - 3)JGQY ()
and
| KGQW,(a) = (@ - DKGQu), (x)

+2KGQY () — KGQY (x)

(2.18) iKGQS?’)( ) =
r=o o - 2)KGQY () + (20 - 3)KGQY (x)

3(xz—1)
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Proof. Using Eq. (2.8) and initial conditions of J GQS’) (z), we obtain

3" IGQP) (2) = JGQT (2) + JGQY () + TGQY (2) + Y JGQWP ()

r=3

= JGQY () + 1GQP (x) + JGQY (x)

(@1 Zn: JGQY, (x Zn: JGQY,(2) + 2 Z JGQY4(x)

:JGQ03)(x)+JGQ1 () + JGQY ()

n—1 n—2 n—3
H@-1)Y JGQP () + (x - 1) JGQP (z) + 2 Y JGQP (x)
r=2 r=1 r=0

= (3z - 2) Z JGQY (x)
r=0

+ JGQ;3)( ) — (x — )JGQ(S)( ) — (2z — 3)JGQ(()3)(m)
—JGQP),(z) + (x - 2)JGQ), (z) — 2T GQP) (x).
Further,

3z —1) i JGQP) (2) = JGQ,(x) — (x — 2)IGQY, (2) + 2 GQP (x)

r=0
— JGQY () + (z — 2)JGQY (2) + (22 — 3)JGQY (x).

Then, the first result is completed. The second statement of the theorem (2.18) can be
proved in a similar manner. O

If we set # = 2 in Eq. (2.17), we obtain the summation formula for the Gaussian third-
order Jacobsthal quaternions as follow:

> IGRY) = é (JGQiij +2JGQY) —2i — 8k) :

If we set = 2 in Eq. (2.18), we obtain the summation formula for the Gaussian modi-
fied third-order Jacobsthal quaternions as follow:

21
Z KGQY = (KGQ,LH +2KGQW® — i 30k> .

Theorem 2.5. Let n > 2 be any integer. Then,
219)  KGQY(z) = (= 1)JGQP (z) + 2(x — 1)JGQY, () + 32TGQY y (x).
Proof. To prove Eq. (2.19), we use induction on n. Let n = 2, we get
(2= 1DIGREY (x) + 2z ~ 1)IGQY (x) + 327GQE (x)
=(x—1)(2* -2 —1)i+2(x —1)(z — 1)i + 3zi
+ -z =23+ 22 = Dk +2(x — 1) (2% — 2% + 2)k + 3z(2® —z + Dk
=@ +az+ )i+ @ —2P 2t -1k = KGQ23)(:1:).
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Let us assume that KGQ(g)( ) = (2—1)JGQY () +2(z — 1)JGQ(3) 1(z) +31‘JGQ(3) 5(x)
is true for all values m less than or equal n > 2. Then, we have

KGQu1 (@) = (z = DKGQR (x) + (¢ — NKGQL), (v) + 2K GQL 5 ()
—(z—1) [(x ~1)JGQP) (2) + 2(z — 1)JGQ®) | (2) + 32JGQ®) ,(x )]
+ (2= 1) [(2 = DIGQE. (2) + 22 — 1)IGQS 4 (@) + 32T GQL. 4 (v)]
+a [(@ = 1DIGQSL () + 2w — 1)IGQS) 4 (2) + 32IGQN. ()]
=(z—1) [(m —1)JGQP () + (x — 1)TGQP) | (z) + 27GQ®), (x)}
+2(z = 1) [(2 = DIGQE (@) + (@~ DIGQY 5 (2) + 2GRS 4(x)]
+ 32 [(x ~1)JGQY (@) + (z — 1)TGQ®) 4(z) + xJGQSf;>_4(x)}
= (z = 1)JGQY, () + 2(x — 1)JGQP) (2) + 32JGQY | (x),
as desired. O
We now define the matrices 7 and Q(J) as follows:
r—1 z—-1 = ]
1 0 0

0 1 0

j:

and

[ JGQY  JGQY — (2 —1)JGQY  zIGQY)
o) = | 1GQY JGQY - (x - 1)JGQY 27GQP
L JGQY JGQY — (2 - 1)JGQY 2JGQY

Theorem 2.6. For n > 2, we have

[ JGQY), JGQY), - (@ —1>JGQ£;°21 5IGQYY
QNI = JaQY JaQY), - (@ -1JaQY  21GQ®,
| s6QY, 16l - - 116Ql, ziaql,

Proof. The result can be obtained easily using the mathematical induction on n. O

3. CONCLUSIONS AND FUTURE STUDIES

In this paper, we study the Gaussian third-order Jacobsthal and modified third-order
Jacobsthal quaternion polynomials. We give some results including recurrence relations,
Binet’s formulas, generating functions and summation formulas for these complex quater-
nion polynomials. It must be noted that for = = 2, the results for the Gaussian third-order
Jacobsthal quaternion polynomials and Gaussian modified third-order Jacobsthal quater-
nion polynomials given in this study correspond to the Gaussian third-order Jacobsthal
quaternions and Gaussian modified third-order Jacobsthal quaternions, respectively.

By applying these theoretical results to Gaussian third-order Jacobsthal numbers and
Gaussian third-order Jacobsthal polynomials, we provided illustrative examples that not
only validated the accuracy of our findings but also reinforced the broader applicability
of the derived results. Suggestions for future research:



On Quaternion-Gaussian Third-order Jacobsthal Polynomials 35

(1) Application to other polynomial and number sequences: Future studies could
explore the application of Gaussian quaternion polynomials to other special se-
quences, such as Gaussian Tribonacci numbers and Gaussian Tribonacci polyno-
mials, to investigate whether similar properties and patterns emerge.

(2) Generalization to higher dimensions: Extending the Gaussian quaternion polyno-
mials framework to dual numbers or hyper-dual numbers could provide deeper
insights and broader applications in fields like derivative calculations and multi-
body kinematics.

(3) Connections with graph theory: The Gaussian quaternion matrices could be stud-
ied in the context of graph theory, particularly for analyzing adjacency or Lapla-
cian matrices of structured graphs. A matrix representation for the case of Gauss-
ian Fibonacci quaternion polynomials is presented in [4, Theorem 2.4]

By building on the foundations laid in this work, further research can uncover additional
properties and applications of Gaussian third-order Jacobsthal quaternion polynomials
and matrices, cementing their role in both theoretical studies and applied mathematics.
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