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On Quaternion-Gaussian Third-order Jacobsthal
Polynomials

GAMALIEL MORALES1

ABSTRACT. In this paper, we define Gaussian third-order Jacobsthal quaternion polynomials and Gaussian
third-order Jacobsthal-Lucas quaternion polynomials. We also investigate some properties of these quaternion
polynomials.

1. INTRODUCTION

Gaussian number, investigated by Carl Gauss in 1832, is a complex number with in-
teger coefficients. In 2013, Aşci and Gürel introduced in [1] the concept of complex Ja-
cobsthal numbers (called Gaussian Jacobsthal numbers) and its generalization Gaussian
Jacobsthal polynomials [2]. Then, Gaussian Jacobsthal numbers and generalized Gauss-
ian Jacobsthal numbers are studied by many authors. Some example of these studies can
be found in [10, 11, 12, 13], among others.

The nth Gaussian third-order Jacobsthal number is defined by the relation

JG(3)
n = JG

(3)
n−1 + JG

(3)
n−2 + 2JG

(3)
n−3, n ≥ 3,

with initial conditions JG(3)
0 = 0, JG(3)

1 = 1 and JG
(3)
2 = 1 + i (see [5]).

It is easy to see that JG(3)
n = J

(3)
n + iJ

(3)
n−1 and J

(3)
−1 = 0, where J

(3)
n is the nth third-order

Jacobsthal number defined recursively by J
(3)
n = J

(3)
n−1 + J

(3)
n−2 + 2J

(3)
n−3 with J

(3)
0 = 0 and

J
(3)
1 = J

(3)
2 = 1.

Similarly, the nth Gaussian modified third-order Jacobsthal number is defined by the
relation

KG(3)
n = KG

(3)
n−1 +KG

(3)
n−2 + 2KG

(3)
n−3, n ≥ 3,

with initial conditions KG
(3)
0 = 3− 1

2 i, KG
(3)
1 = 1 + 3i and KG

(3)
2 = 3 + i.

It is clear that KG
(3)
n = K

(3)
n + iK

(3)
n−1 and K

(3)
−1 = − 1

2 , where K
(3)
n is the nth modified

third-order Jacobsthal number defined recursively by K
(3)
n = K

(3)
n−1 +K

(3)
n−2 +2K

(3)
n−3 with

K
(3)
0 = 3, K(3)

1 = 1 and K
(3)
2 = 3. For more details on third-order Jacobsthal and modified

third-order Jacobsthal numbers, see [3, 7].
Furthermore, the third-order Jacobsthal polynomials studied by Morales in [8] are de-

fined by the relation

J (3)
n (x) = (x− 1)J

(3)
n−1(x) + (x− 1)J

(3)
n−2(x) + xJ

(3)
n−3(x), n ≥ 3,

with initial conditions J (3)
0 (x) = 0, J (3)

1 (x) = 1 and J
(3)
2 (x) = x− 1, for any real variable x

such that x3 ̸= 1.
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The modified third-order Jacobsthal polynomials are defined by the relation

K(3)
n (x) = (x− 1)K

(3)
n−1(x) + (x− 1)K

(3)
n−2(x) + xK

(3)
n−3(x), n ≥ 3,

with initial conditions K(3)
0 (x) = 3, K(3)

1 (x) = x− 1 and K
(3)
2 (x) = x2 − 1.

In [6], Morales studied Gaussian third-order Jacobsthal polynomials as follows:
The Gaussian third-order Jacobsthal polynomials are defined by the relation

(1.1) JG(3)
n (x) = (x− 1)JG

(3)
n−1(x) + (x− 1)JG

(3)
n−2(x) + xJG

(3)
n−3(x), n ≥ 3,

with initial conditions JG(3)
0 (x) = 0, JG(3)

1 (x) = 1 and JG
(3)
2 (x) = x− 1 + i.

Moreover, it is easy to see that JG(3)
n (x) = J

(3)
n (x) + iJ

(3)
n−1(x). Setting x = 2 in the Eq.

(1.1), the Gaussian third-order Jacobsthal number JG(3)
n can be obtained.

The Binet-type formula for the Gaussian third-order Jacobsthal polynomials is given
by

(1.2) JG(3)
n (x) =

xn(x+ i)

x2 + x+ 1
− ωn

1 (ω1 + i)

(x− ω1)(ω1 − ω2)
+

ωn
2 (ω2 + i)

(x− ω2)(ω1 − ω2)
,

where ω1 and ω2 are the roots of the equation λ2 + λ+ 1 = 0.
The Gaussian modified third-order Jacobsthal polynomials are defined by the relation

(1.3) KG(3)
n (x) = (x− 1)KG

(3)
n−1(x) + (x− 1)KG

(3)
n−2(x) + xKG

(3)
n−3(x), n ≥ 3,

with initial conditions KG
(3)
0 (x) = 3 +

(
1
x − 1

)
i, KG

(3)
1 (x) = x − 1 + 3i and KG

(3)
2 (x) =

x2 − 1 + (x− 1)i.
Furthermore, it is clear that KG

(3)
n (x) = K

(3)
n (x) + iK

(3)
n−1(x). Setting x = 2 in the Eq.

(1.3), the Gaussian modified third-order Jacobsthal number KG
(3)
n can be obtained.

The Binet-type formula for the Gaussian modified third-order Jacobsthal polynomials
is given by

(1.4) KG(3)
n (x) = xn−1(x+ i) + ωn−1

1 (ω1 + i) + ωn−1
2 (ω2 + i),

where ω1 and ω2 are same as defined in Eq. (1.2).
Quaternions, four-dimensional hyper-complex numbers, introduced by Hamilton in

1843. These numbers have found widespread application in quantum physics, computer
graphics, robotics and signal processing.

A quaternion Q is of the form

Q = Q0 +Q1i+Q2j +Q3k,

where Q0, Q1, Q2, Q3 are real numbers, and i, j, k are quaternionic units which satisfy the
equalities

(1.5) i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −ki, ki = j = −ik.

The set of all quaternions denoted by R[i, j, k] is a non-commutative associative algebra
over the real numbers R. For a survey on quaternions, we refer the reader to [14].

In [9], Morales defined the third-order Jacobsthal quaternions as

JQ(3)
n = J (3)

n + J
(3)
n+1i+ J

(3)
n+2j + J

(3)
n+3k, n ≥ 0,

here J
(3)
n is the nth third-order Jacobsthal number and i, j, k are quaternionic units which

satisfy the rules (1.5).
The main objective of this paper is to define and study Gaussian third-order Jacob-

sthal and modified third-order Jacobsthal quaternion polynomials in the sense of [4, 15].
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We shall give recurrence relations, Binet’s formulas, generating functions and summation
formulas involving these quaternion polynomials.

2. THE GAUSSIAN THIRD-ORDER JACOBSTHAL QUATERNION POLYNOMIALS

In this section, we first give the definitions of Gaussian third-order Jacobsthal quater-
nion polynomials and Gaussian modified third-order Jacobsthal quaternion polynomials.
We then obtain some results for these special quaternion polynomials.

The Gaussian third-order Jacobsthal quaternion polynomials {JGQ
(3)
n }n≥0 and Gauss-

ian modified third-order Jacobsthal quaternion polynomials {KGQ
(3)
n }n≥0 are defined by

(2.6) JGQ(3)
n (x) = JG(3)

n (x) + JG
(3)
n+1(x)i+ JG

(3)
n+2(x)j + JG

(3)
n+3(x)k

and

(2.7) KGQ(3)
n (x) = KG(3)

n (x) +KG
(3)
n+1(x)i+KG

(3)
n+2(x)j +KG

(3)
n+3(x)k,

respectively, JG(3)
n (x) is the nth Gaussian third-order Jacobsthal polynomial, KG

(3)
n (x) is

the nth Gaussian modified third-order Jacobsthal polynomial.
It is easy to see that the nth Gaussian third-order Jacobsthal quaternion polynomial is

defined recursively by

(2.8) JGQ(3)
n (x) = (x− 1)JGQ

(3)
n−1(x) + (x− 1)JGQ

(3)
n−2(x) + xJGQ

(3)
n−3(x),

with initial conditions

JGQ
(3)
0 (x) = i+ (x2 − x+ 1)k

JGQ
(3)
1 (x) = (x− 1)i+ (x3 − x2 + x)k

JGQ
(3)
2 (x) = (x2 − x+ 1)i+ (x4 − x3 + x2 − 1)k.

Similarly, the nth Gaussian modified third-order Jacobsthal quaternion polynomial is
defined recursively by

(2.9) KGQ(3)
n (x) = (x− 1)KGQ

(3)
n−1(x) + (x− 1)KGQ

(3)
n−2(x) + xKGQ

(3)
n−3(x),

with initial conditions

KGQ
(3)
0 (x) =

(
x+

1

x
− 2

)
i+ (x3 + x+ 1)k

KGQ
(3)
1 (x) = (x2 + 2)i+ (x4 + x2 − 2)k

KGQ
(3)
2 (x) = (x3 + x+ 1)i+ (x5 + x3 + 1)k.

It must be noted that if we set x = 2 in Eqs. (2.6) and (2.8), we obtain Gaussian third-
order Jacobsthal quaternions

JGQ(3)
n = JGQ

(3)
n−1 + JGQ

(3)
n−2 + 2JGQ

(3)
n−3, n ≥ 3,

with initial conditions JGQ
(3)
0 = i + 3k, JGQ

(3)
1 = i + 6k, JGQ

(3)
2 = 3i + 11k, and if

we set x = 2 in Eqs. (2.7) and (2.9), we obtain Gaussian modified third-order Jacobsthal
quaternions

KGQ(3)
n = KGQ

(3)
n−1 +KGQ

(3)
n−2 + 2KGQ

(3)
n−3, n ≥ 3,

with initial conditions KGQ
(3)
0 = i

2 + 11k, KGQ
(3)
1 = 6 + 18k and KGQ

(3)
2 = 11i+ 41k.

Let ω1 and ω2 be the roots of the characteristic equation λ2 + λ + 1 = 0 on the re-
currence relation (2.8) of Gaussian third-order Jacobsthal quaternion polynomials. These
roots satisfy the following rules ω1 + ω2 = −1, ω1ω2 = 1 and ω3

1 = ω3
2 = 1.
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For simplicity of notation, let

(2.10)
Zn+1(x) =

1

ω1 − ω2

(
(ω2 − x)ωn+1

1 − (ω1 − x)ωn+1
2

)
,

Yn = ωn
1 + ωn

2 .

Then, we can write

J (3)
n (x) =

1

x2 + x+ 1

(
xn+1 + Zn+1(x)

)
and

K(3)
n (x) = xn + Yn.

Furthermore, we have Zn+1(x) = −Zn(x)− Zn−1(x), Z1(x) = −x and Z2(x) = x+ 1.
We now give the Binet’s formulas for the Gaussian third-order Jacobsthal and modified

third-order Jacobsthal quaternion polynomials in the following theorem.

Theorem 2.1. The Binet’s formulas for the Gaussian third-order Jacobsthal and modified third-
order Jacobsthal quaternion polynomials are given by

JGQ(3)
n (x) =

1

x2 + x+ 1


JGQ

(3)
2 (x) (xn + Zn(x))

+JGQ
(3)
1 (x) (xn − xZn(x)− Zn−1(x))

+JGQ
(3)
0 (x) (xn + xZn−1(x))


and

KGQ(3)
n (x) =

1

x2 + x+ 1


KGQ

(3)
2 (x) (xn + Zn(x))

+KGQ
(3)
1 (x) (xn − xZn(x)− Zn−1(x))

+KGQ
(3)
0 (x) (xn + xZn−1(x))


with Zn(x) as in Eq. (2.10).

Proof. From the general solution for the recurrence relation and using initial conditions
the desired results can be obtained easily. □

Note that we can also write the Binet’s formula JGQ
(3)
n (x) as follows:

JGQ(3)
n (x) = J

(3)
n−1(x)JGQ

(3)
2 (x) +

[
J (3)
n (x)− (x− 1)J

(3)
n−1(x)

]
JGQ

(3)
1 (x)

+ xJ
(3)
n−2(x)JGQ

(3)
0 (x),

where J
(3)
n (x) is the nth third-order Jacobsthal polynomial.

If we set x = 2 in JGQ
(3)
n (x) using Theorem 2.1, we obtain the Binet’s formula for the

Gaussian third-order Jacobsthal quaternions as follow:

JGQ(3)
n = J

(3)
n−1JGQ

(3)
2 +

(
J (3)
n − J

(3)
n−1

)
JGQ

(3)
1 (x) + 2J

(3)
n−2JGQ

(3)
0 ,

where J
(3)
n is the nth third-order Jacobsthal number.

Now, the ordinary generating functions and exponential generating functions for the
Gaussian third-order Jacobsthal quaternion polynomials and Gaussian modified third-
order Jacobsthal quaternion polynomials are given in the following results, respectively.

Theorem 2.2. The ordinary generating functions for the Gaussian third-order Jacobsthal quater-
nion polynomials and Gaussian modified third-order Jacobsthal quaternion polynomials are given
by

(2.11) g (J ; t) =
i+ (x2 − x+ 1)k +

(
(x2 − x+ 1)k

)
t+

(
i+ (x2 − x)k

)
t2

1− (x− 1)t− (x− 1)t2 − xt3
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and

(2.12) g (K; t) =

{ (
x+ 1

x − 2
)
i+ (x3 + x+ 1)k +

((
3x+ 1

x − 1
)
i+ (x3 − 1)k

)
t

+
((
x+ 1

x

)
i+ (x3 + 2x)k

)
t2

}
1− (x− 1)t− (x− 1)t2 − xt3

,

respectively.

Proof. Let g(J ; t) be the generating function for the Gaussian third-order Jacobsthal quater-
nion polynomials. Then, we write

(2.13) g(J ; t) =

∞∑
n=0

JGQ(3)
n (x)tn = JGQ

(3)
0 (x) + JGQ

(3)
1 (x)t+ JGQ

(3)
2 (x)t2 + · · ·

Multiplying the Eq. (2.13) with −(x− 1)t, −(x− 1)t2 and −xt3, respectively, we get

(2.14) −(x− 1)tg(J ; t) = −(x− 1)JGQ
(3)
0 (x)t− (x− 1)JGQ

(3)
1 (x)t2 − · · · ,

(2.15) −(x− 1)t2g(J ; t) = −(x− 1)JGQ
(3)
0 (x)t2 − (x− 1)JGQ

(3)
1 (x)t3 − · · ·

and

(2.16) −xt3g(J ; t) = −xJGQ
(3)
0 (x)t3 − xJGQ

(3)
1 (x)t4 − · · · .

Then, adding the Eqs. (2.13), (2.14), (2.15) and (2.16), we obtain[
1− (x− 1)t− (x− 1)t2 − xt3

]
g(J ; t)

= JGQ
(3)
0 (x) +

[
JGQ

(3)
1 (x)− (x− 1)JGQ

(3)
0 (x)

]
t

+
[
JGQ

(3)
2 (x)− (x− 1)JGQ

(3)
1 (x)− (x− 1)JGQ

(3)
0 (x)

]
t2

+

∞∑
n=3

[
JGQ(3)

n (x)− (x− 1)JGQ
(3)
n−1(x)− (x− 1)JGQ

(3)
n−2(x)− xJGQ

(3)
n−3(x)

]
tn.

From the Eq. (2.8), we get

(1− (x− 1)t− (x− 1)t2 − xt3)g(J ; t)

= JGQ
(3)
0 (x) +

[
JGQ

(3)
1 (x)− (x− 1)JGQ

(3)
0 (x)

]
t

+
[
JGQ

(3)
2 (x)− (x− 1)JGQ

(3)
1 (x)− (x− 1)JGQ

(3)
0 (x)

]
t2.

Using the initial conditions JGQ
(3)
0 (x), JGQ

(3)
1 (x) and JGQ

(3)
2 (x), we have

(1− (x− 1)t− (x− 1)t2 − xt3)g(J ; t) = i+ (x2 − x+ 1)k +
(
x2 − x+ 1

)
t

+
(
i+ (x2 − x)k

)
t2

which completes the proof of the first statement.
The second statement of the theorem can be proved in a similar manner. □

If we set x = 2 in Eq. (2.11), we obtain the ordinary generating function for the Gauss-
ian third-order Jacobsthal quaternions as follow:

g (J ; t) =
i+ 3k + (3k) t+ (i+ 2k) t2

1− t− t2 − 2t3
.

Furthermore, if we set x = 2 in Eq. (2.12), we obtain the ordinary generating function for
the Gaussian modified third-order Jacobsthal quaternions as follow:

g (K; t) =
i
2 + 11k +

(
9i
2 + 7k

)
t+

(
5i
2 + 12k

)
t2

1− t− t2 − 2t3
.
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Theorem 2.3. The exponential generating functions for the Gaussian third-order Jacobsthal quater-
nion polynomials and Gaussian modified third-order Jacobsthal quaternion polynomials are given
by

J(t) =
1

Φ(x)

{ [
JGQ

(3)
2 (x) + JGQ

(3)
1 (x) + JGQ

(3)
0 (x)

]
ext

+ 1
ω1−ω2

[(ω2 − x)ΨJ(ω2)e
ω1t − (ω1 − x)ΨJ(ω1)e

ω2t]

}
and

K(t) =
1

Φ(x)

{ [
KGQ

(3)
2 (x) +KGQ

(3)
1 (x) +KGQ

(3)
0 (x)

]
ext

+ 1
ω1−ω2

[(ω2 − x)ΨK(ω2)e
ω1t − (ω1 − x)ΨK(ω1)e

ω2t]

}
,

respectively. Further, Φ(x) = x2 + x+ 1 and

ΨJ(ω) = JGQ
(3)
2 (x)− (x+ ω)JGQ

(3)
1 (x) + xωJGQ

(3)
0 (x),

ΨK(ω) = KGQ
(3)
2 (x)− (x+ ω)KGQ

(3)
1 (x) + xωKGQ

(3)
0 (x).

Proof. Using Φ(x) = x2 + x+ 1, the Binet’s formula in Theorem 2.1 of the Gaussian third-
order Jacobsthal quaternion polynomials and Eq. (2.10), we have

Φ(x)

∞∑
n=0

JGQ(3)
n (x)

tn

n!

= JGQ
(3)
2 (x)

∞∑
n=0

(xn + Zn(x))
tn

n!

+ JGQ
(3)
1 (x)

∞∑
n=0

(xn − xZn(x)− Zn−1(x))
tn

n!

+ JGQ
(3)
0 (x)

∞∑
n=0

(xn + xZn−1(x))
tn

n!

=
[
JGQ

(3)
2 (x) + JGQ

(3)
1 (x) + JGQ

(3)
0 (x)

] ∞∑
n=0

(xt)n

n!

+
1

ω1 − ω2

[
(ω2 − x)ΨJ(ω2)

∞∑
n=0

(ω1t)
n

n!
− (ω1 − x)ΨJ(ω1)

∞∑
n=0

(ω2t)
n

n!

]
,

where ΨJ(ω) = JGQ
(3)
2 (x)− (x+ω)JGQ

(3)
1 (x)+xωJGQ

(3)
0 (x). Thus, the proof of the first

statement is completed. The second statement can be proved using the Binet’s formula of
the Gaussian modified third-order Jacobsthal quaternion polynomials in a similar manner.

□

Theorem 2.4. For n ≥ 0, the following identities hold

(2.17)
n∑

r=o

JGQ(3)
r (x) =

1

3(x− 1)


JGQ

(3)
n+2(x)− (x− 2)JGQ

(3)
n+1(x)

+xJGQ
(3)
n (x)− JGQ

(3)
2 (x)

+(x− 2)JGQ
(3)
1 (x) + (2x− 3)JGQ

(3)
0 (x)


and

(2.18)
n∑

r=o

KGQ(3)
r (x) =

1

3(x− 1)


KGQ

(3)
n+2(x)− (x− 2)KGQ

(3)
n+1(x)

+xKGQ
(3)
n (x)−KGQ

(3)
2 (x)

+(x− 2)KGQ
(3)
1 (x) + (2x− 3)KGQ

(3)
0 (x)

 .
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Proof. Using Eq. (2.8) and initial conditions of JGQ
(3)
n (x), we obtain

n∑
r=0

JGQ(3)
r (x) = JGQ

(3)
0 (x) + JGQ

(3)
1 (x) + JGQ

(3)
2 (x) +

n∑
r=3

JGQ(3)
r (x)

= JGQ
(3)
0 (x) + JGQ

(3)
1 (x) + JGQ

(3)
2 (x)

+ (x− 1)

n∑
r=3

JGQ
(3)
r−1(x) + (x− 1)

n∑
r=3

JGQ
(3)
r−2(x) + x

n∑
r=3

JGQ
(3)
r−3(x)

= JGQ
(3)
0 (x) + JGQ

(3)
1 (x) + JGQ

(3)
2 (x)

+ (x− 1)

n−1∑
r=2

JGQ(3)
r (x) + (x− 1)

n−2∑
r=1

JGQ(3)
r (x) + x

n−3∑
r=0

JGQ(3)
r (x)

= (3x− 2)

n∑
r=0

JGQ(3)
r (x)

+ JGQ
(3)
2 (x)− (x− 2)JGQ

(3)
1 (x)− (2x− 3)JGQ

(3)
0 (x)

− JGQ
(3)
n+2(x) + (x− 2)JGQ

(3)
n+1(x)− xJGQ(3)

n (x).

Further,

3(x− 1)

n∑
r=0

JGQ(3)
r (x) = JGQ

(3)
n+2(x)− (x− 2)JGQ

(3)
n+1(x) + xJGQ(3)

n (x)

− JGQ
(3)
2 (x) + (x− 2)JGQ

(3)
1 (x) + (2x− 3)JGQ

(3)
0 (x).

Then, the first result is completed. The second statement of the theorem (2.18) can be
proved in a similar manner. □

If we set x = 2 in Eq. (2.17), we obtain the summation formula for the Gaussian third-
order Jacobsthal quaternions as follow:

n∑
r=o

JGQ(3)
r =

1

3

(
JGQ

(3)
n+2 + 2JGQ(3)

n − 2i− 8k
)
.

If we set x = 2 in Eq. (2.18), we obtain the summation formula for the Gaussian modi-
fied third-order Jacobsthal quaternions as follow:

n∑
r=o

KGQ(3)
r =

1

3

(
KGQ

(3)
n+2 + 2KGQ(3)

n − 21

2
i− 30k

)
.

Theorem 2.5. Let n ≥ 2 be any integer. Then,

(2.19) KGQ(3)
n (x) = (x− 1)JGQ(3)

n (x) + 2(x− 1)JGQ
(3)
n−1(x) + 3xJGQ

(3)
n−2(x).

Proof. To prove Eq. (2.19), we use induction on n. Let n = 2, we get

(x− 1)JGQ
(3)
2 (x) + 2(x− 1)JGQ

(3)
1 (x) + 3xJGQ

(3)
0 (x)

= (x− 1)(x2 − x− 1)i+ 2(x− 1)(x− 1)i+ 3xi

+ (x− 1)(x4 − x3 + x2 − 1)k + 2(x− 1)(x3 − x2 + x)k + 3x(x2 − x+ 1)k

= (x3 + x+ 1)i+ (x4 − x3 + x2 − 1)k = KGQ
(3)
2 (x).
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Let us assume that KGQ
(3)
m (x) = (x−1)JGQ

(3)
m (x)+2(x−1)JGQ

(3)
m−1(x)+3xJGQ

(3)
m−2(x)

is true for all values m less than or equal n ≥ 2. Then, we have

KGQ
(3)
m+1(x) = (x− 1)KGQ(3)

m (x) + (x− 1)KGQ
(3)
m−1(x) + xKGQ

(3)
m−2(x)

= (x− 1)
[
(x− 1)JGQ(3)

m (x) + 2(x− 1)JGQ
(3)
m−1(x) + 3xJGQ

(3)
m−2(x)

]
+ (x− 1)

[
(x− 1)JGQ

(3)
m−1(x) + 2(x− 1)JGQ

(3)
m−2(x) + 3xJGQ

(3)
m−3(x)

]
+ x

[
(x− 1)JGQ

(3)
m−2(x) + 2(x− 1)JGQ

(3)
m−3(x) + 3xJGQ

(3)
m−4(x)

]
= (x− 1)

[
(x− 1)JGQ(3)

m (x) + (x− 1)JGQ
(3)
m−1(x) + xJGQ

(3)
m−2(x)

]
+ 2(x− 1)

[
(x− 1)JGQ

(3)
m−1(x) + (x− 1)JGQ

(3)
m−2(x) + xJGQ

(3)
m−3(x)

]
+ 3x

[
(x− 1)JGQ

(3)
m−2(x) + (x− 1)JGQ

(3)
m−3(x) + xJGQ

(3)
m−4(x)

]
= (x− 1)JGQ

(3)
m+1(x) + 2(x− 1)JGQ(3)

m (x) + 3xJGQ
(3)
m−1(x),

as desired. □

We now define the matrices J and Q(J) as follows:

J =

 x− 1 x− 1 x
1 0 0
0 1 0


and

Q(J) =

 JGQ
(3)
3 JGQ

(3)
4 − (x− 1)JGQ

(3)
3 xJGQ

(3)
2

JGQ
(3)
2 JGQ

(3)
3 − (x− 1)JGQ

(3)
2 xJGQ

(3)
1

JGQ
(3)
1 JGQ

(3)
2 − (x− 1)JGQ

(3)
1 xJGQ

(3)
0


Theorem 2.6. For n ≥ 2, we have

Q(J)J n−2 =

 JGQ
(3)
n+1 JGQ

(3)
n+2 − (x− 1)JGQ

(3)
n+1 xJGQ

(3)
n

JGQ
(3)
n JGQ

(3)
n+1 − (x− 1)JGQ

(3)
n xJGQ

(3)
n−1

JGQ
(3)
n−1 JGQ

(3)
n − (x− 1)JGQ

(3)
n−1 xJGQ

(3)
n−2

 .

Proof. The result can be obtained easily using the mathematical induction on n. □

3. CONCLUSIONS AND FUTURE STUDIES

In this paper, we study the Gaussian third-order Jacobsthal and modified third-order
Jacobsthal quaternion polynomials. We give some results including recurrence relations,
Binet’s formulas, generating functions and summation formulas for these complex quater-
nion polynomials. It must be noted that for x = 2, the results for the Gaussian third-order
Jacobsthal quaternion polynomials and Gaussian modified third-order Jacobsthal quater-
nion polynomials given in this study correspond to the Gaussian third-order Jacobsthal
quaternions and Gaussian modified third-order Jacobsthal quaternions, respectively.

By applying these theoretical results to Gaussian third-order Jacobsthal numbers and
Gaussian third-order Jacobsthal polynomials, we provided illustrative examples that not
only validated the accuracy of our findings but also reinforced the broader applicability
of the derived results. Suggestions for future research:
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(1) Application to other polynomial and number sequences: Future studies could
explore the application of Gaussian quaternion polynomials to other special se-
quences, such as Gaussian Tribonacci numbers and Gaussian Tribonacci polyno-
mials, to investigate whether similar properties and patterns emerge.

(2) Generalization to higher dimensions: Extending the Gaussian quaternion polyno-
mials framework to dual numbers or hyper-dual numbers could provide deeper
insights and broader applications in fields like derivative calculations and multi-
body kinematics.

(3) Connections with graph theory: The Gaussian quaternion matrices could be stud-
ied in the context of graph theory, particularly for analyzing adjacency or Lapla-
cian matrices of structured graphs. A matrix representation for the case of Gauss-
ian Fibonacci quaternion polynomials is presented in [4, Theorem 2.4]

By building on the foundations laid in this work, further research can uncover additional
properties and applications of Gaussian third-order Jacobsthal quaternion polynomials
and matrices, cementing their role in both theoretical studies and applied mathematics.
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