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New Results on Existence for ¢y—Hilfer Fractional Delay
Differential Problem

EKNATH D. PAWAR! AND R. M. DHAIGUDE?

ABSTRACT. In this paper, we examine the existence and uniqueness of a solution to a nonlinear fractional
delay differential equation with 1p—Hilfer derivative. The contraction mapping principle will be used as a main
tool for existence, and generalized Gronwall inequality for continuous dependence results. Several numerical
examples are included to illustrate our findings.

1. INTRODUCTION

In recent decades, fractional calculus has gained significant importance due to its wide
range of applications in various fields such as physics, mechanics, chemistry, engineering,
and finance see [5, 6, 15, 21, 34]. While classical calculus has long been recognized as a
powerful tool for modeling dynamic processes, many complex systems in nature are more
accurately described by fractional differential equations (FDEs). Examples of such sys-
tems include the transport of chemical pollutants through rocks, the behavior of viscoelas-
tic materials like polymers, air pollution diffusion, cellular diffusion, and signal transmis-
sion across networks in strong magnetic fields see [4, 17, 18, 25, 26, 28, 30]. In these cases,
the systems exhibit complex microscopic behavior that classical derivative models cannot
fully capture. As a result, in many physical, chemical set ups, FDEs provide a more appro-
priate framework than traditional differential problems see [1, 3, 8, 9, 13, 14, 12, 22, 23, 27].

Animportant category of FDEs is fractional delay differential equations (FDDEs). These
equations include delay parameters, meaning the unknown function depends on its past
history. FDDEs have been studied for numerous applications. For example, recent work
[10, 16, 19, 20, 24, 33], are evident. In recent time, the FDDEs are studied by utilizing fixed
point technique and Caratheodory properties see [2, 29, 11]. Motivated by their work, we
consider the following FDDEs

(L1 DTPVC(t) = F(t,C(),¢(t—7)); 0<o <1, 0<6<1<0, 0<t<T,
(1.2) C(t) = o(t), —T <t <0,
(1.3) I =, cen,

where ’Dgf “(.) is the y)—Hilfer fractional derivative of order 0 < o < 1, type 0 <6 <1,

¢(t — 7) denotes the amount of ¢ at a fixed time 7 unit in the previous time in which the
impact of ¢ on the present rate of alteration of  is belated by the time 7.

The paper is organized as follows: In section 2, we enlist some basic definitions, pre-
liminary facts and lemmas whch are useful in the subsequent sections. In section 3, we
prove the equivalence of the )—Hilfer FDDEs with Volterra integral equation. We prove
the existence of a unique solution to FDDEs (1.1)—(1.3), continuous dependence in 4. In
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section 5, two examples illustrating our main results will be provided. The concluding
remarks are presented in the final section.

2. PRELIMINARIES

Let [a,b] € RT, (0 < a < b < ) and €[a, b], AC"[a,b], €"[a,b] are the space of con-
tinuous real function, n-times absolutely continuous function and n-times continuously
differentiable functions on [a, b] respectively. Let £P(a,b), (1 < p < oo) defines space of
Lebesgue measurable function on (a, b). We recall the following norm and weighted space
of continuous function:

b P
||<||gp[a,b][ / |¢<t>|pdt} <o, ¥CeES(ab),

[Cllefa,p) = max{[C(t) : ¢ € [a, 0]}, V(€ [a,b],
AC"[a, ] = {¢ : [a,b] — RIC"Y € AC[a, b]},
and
Chspla, 0] = {C : [a,0] — R|(¥() — ¢(a))’C(t) € €[a,b]}, 0<n<1,
mwlas b = {C 1 [a, 0] — R[C(t) € € a, b; "(¢) € Epyla,b]}, 0<n <1, neMN,
€70, b = {C(t) € Cpyla, B; D7C € €pyfa,b]}, n=0+35—0d.

We note that, if n = 0, €} [a,b] = & [a, b] with

1€l fae) = 1((8) = 9(a))"C() ey, o = max{(¥(t) — ¢(a))"C(E) : t € [a, 0]},

b — Z ||<kH€[u,h] + HCHHme[a,b]'

k=0
Assume during the analysis, unless otherwise indicated, 0 < a < b < T < 0.

Definition 2.1. [31] The Mittag—Leffler function for two parameters is defined as:
2.4 Es(2)=Y ——
24) () kZ:O T(ok +0)

where 0,0 € €, Re(o) > 0and I'(z), z > 0, is Gamma function: I'(z) = / e t* e,
0

Definition 2.2. [31] The left sided 1—Riemann-Liouville fractional integral of order o, (n — 1 <
o < n) for an integrable function ¢ : [a,b] —> R with respect to another function 1 : [a,b] —
R, that is an increasing differentiable function such that ¢'(t) # 0, forall t € [a,b], (—o0 < a <
b < c0) are respectively defined as follows:

s / e $(s))7 ¢ (s)ds

and

o; o 1 d ,~n o;
0= () 20

- 1o (50 i) / (W) — ()7 (s)ds.
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Definition 2.3. [32] The left-sided 1»—Caputo fractional derivative of order o, (n — 1 < ¢ < n),
n = [o] + 1, function { € €"*[a, b] with respect to another function 1 is defined by

cyo3Y¥ n—o;y 1 ﬂ "
Our =7 (w’(t) dt) <)

R T
= o [ PO - v s,

where &) = (k) <0
Remark 2.1. The y—Caputo fractional derivative of function ¢ € A€"(a, b] is

crao;Y e = (ﬁ(?‘)%)kg(a) k
o7 =07 o) - 30 T i) - vl
k=0
Definition 2.4. [31] Letn —1 <o <n;n € N,—oc0 <a<b< ooandyp € € ([a,b],R)a
function such that 1 (t) is increasing and ¢’ (t) # 0, Vt € [a, b]. The left-sided 1»—Hilfer fractional
derivative of function ¢ € €"[a, b] of order o and type ¢ € [0, 1] is defined as:

Do 6 R ~O(n—o);1p 1 d nﬁ(l—é)(n—d)
= — 4 4 .
C( ) Jor (¢/(t) dt) Jor C( )7 >a

Remark 2.2. The oy—Hilfer fractional derivative of order o and type ¢ is also defined as:

(2.5) D7 w(( t) = 32&”70);w92ﬁb§(t), t>a, n=o0+nd—0od,
. 1T d\" _(1-8)(n—o):
R _ ~(1=8)(n—0);®
where 7 ((t) = (1//(75) dt) J.+ ¢().

Remark 2.3. In particular, the «»—Hilfer fractional derivative of order o € (0,1) and type § €
[0, 1] can also be defined as:

DoIC(f) = ) / ((t) — (5))"~ " LDTLC(s)ds

I(n—o
:~77 U’J’@ﬁwc( t),

where 1=+ — o6, I177 () defined by (2.5) and DY (1) = <w/1(t) i) ILT(W).

Lemma 2.1. [31]Let 0 >0, 0 < § < land ¢ € L'[a,b]. Then
7P C(t) = 3TFVC(), ace. t € [a,b].
In particular,

(): I ¢ € €ya,b], then 370300 ¢ () = 37F0V¢(t), t € (a,b].
(i): If ¢ € €[a, b], then I7¥ IV ((t) = 3;‘” Ye(t), t € [a,b].

Lemma 2.2. [31] Let 0 > 0, 0 <0 < 1. If ¢ € €,.5[a, ], then
DIIVITLC() = (1), t € (a,b].

If ¢ € €*[a, b] then
DIIVITIC(E) = C(t), t € [a,b].
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Lemma23. [31]Let0 <o <1, 0<d<1,and n=0+0d—o0d.If( € ¢ [a, b] then

11—
JEPDIIVC(t) = 3TV DTV C(t)
and

DUIITI() = DY),

Lemma 2.4. [31] Lett > a, 0 > 0, and 0 > 0. Then
. _ ()
o) _ -1 _
3aJr (w(t) ,(/)(a’)) F(0 + O')
and if 0 < 0 < 1, we have

DT (W(1) — (@) =0,
Lemma 2.5. [31]Let0 <o <1, 0<§<1, and n=0+ 6 — o, and let ¢ € €*([a,b],R) be
an increasing function such that ' (t) # 0, V t € [a, b]. Then
(i) J "m’[’ maps €[a, b] into €a,b].
(ii) J 5 w is bounded from €, _, ., [a,b] into €, _,.,[a, b].
(iii) Ifn < o, then jgf is bounded from €, _,,.[a, b] into Cla, b].

Lemma 2.6. [31] Leto >0, ,0<n < 1,and (€ €, .y[a,b]. If o > n, then jgf’g" € Cla, bl and
3%¥¢(a) = lim 377¢(t) =
t—a™t

Lemma2.7. [31]Let 0 <n <1, a<c<b, (€ Cyyla,cl, (€ a,b]andis continuous at
c. Then ¢ € €,y a,b].

Lemma 2.8. [31]If¢ € €a,b], n—1 <o <n, 0<§ <1, n=0+7d— 0l Then for all
t e la,b],

3241”@;’15%(75):((75)—% W) FZ’?()“))" (D00 gy
k=1

In particular, if 0 < o < 1, we have

(408) — (@)™ -y

THDUITC() = () - ((a).
Addztzonlly if ¢ € €_pyla, b] and 31 e el @, b] such that 0 < n < 1. Then for all
€ (a,0],

[(t) — 9(a)]""

TEDLLC() = C(t) ~ 35" ().

L'(n)
Lemma 2.9. [31] Let ¢ € £%[a, h]. Then
h h
T [ )~ v 0) 60t = [ (00— 600 = DI C(e), 7 > 0.

Lemma 2.10. [32] (Gronwall lemma) Let p, q, be two integrable functions and ¢ is continuous on
[a,b]. Let ¢ € €a,b] be an increasing function such that '(t) # 0,V t € [a, b]. Assume that p
and q are non-negative and non-decreasing. If

p(t) < alt) +C(8) / () ((E) — ()7 p(s)ds,
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then, for all t € [a, b], we have

t oo k
eo s =an+ [ 3 SO WO - v s

Also, if q is a non-decreasing function on [a, b], then
p(t) < q() Ey (C(OT(0)((t) = ¥(a))”).
Theorem 2.1. [21, 7] (Banach fixed point theorem) Let (X, d) be a complete metric space and
T : X — X isa strict contraction, i.e. a map satisfying
(2.7) d(T(z),T(y)) < ad(z,y),Vz,y € X

where 0 < a < 1. Then the operator T has a unique fixed point p € X. The Picard iteration x,,
defined by
Tpy1 =12T,, n=01,2,---
converge to p, for any xo € X.
To prove the main result, we need the following axioms:
(AD): ¢ : (0,T] xR xR — R bea function such that f(t,{(t), \(t — 7)) € C1_y.p[a, b]
forany ¢, A € €;_,.,[0,77.
(A2): f(t,((t), A(t)) satisfies the Lipschitz’s condition with respect to ¢, A and is bounded
inaregion ® C R, Vt € [0,7T] such that

£t C(), At — 7)) — f(t Calt), A2t — T))lles . 0,7)
< LG@) = M(B)le, o) TG E=T) =Xt = 7)o, jo.77)-

3. MAIN RESULT

In this section, we demonstrate the equivalent Volterra integral solution for FDDEs and
establish its existence and uniqueness results.

Lemma3.1l. Let0 <o <1, 0<§ <1, n=0+d—cdandlet {asin (A1).If¢ € !
then ¢ satisfies FDDEs (1.1)- (1 3) if and only if ¢ satisfies:
C

D" Fy ot s —17))ds.
T VO —v@) + F /w (@) f(s,C(5), (s — 7))d

Proof. In the bigining, we prove the f1rst part, followed by its converse. Let ¢ € €] [a, ]
be a solution of FDDEs (1.1)-(1.3). We demonstrate that  also satisfies (3.8). By definition
of € a,b], Lemma 2.5 and Definition 2.4, we have 3" ;¢ € €[a,b] and

. 1 d
i _ ~(1 W
0760 = () 2070 € €palont
Since ¢ € €'[a, b], and by definition of € [a, b], clearly 31 e e el _wla, b]. Hence, by
using Theorem 2.8 and initial condition (1 2) fort € (a,b] we have

1— nw[G’Vb]

(3.8) ¢(t) =

1— 7]1/1[

~o,w©?7 ‘Pc( t) = ((t)— @) _I‘Eﬁ;()a))n 5= TH/JC( )

c
3.9 = ((t)— t) —(a))" L.
39 Cl0) = F7 () = ()
From the fact that ZDZJ:” ¢ € € _yyla,b] and Lemma 2.3, we have
TN = TEDT)

(3.10) = I7YDIIY (L C(), (- 7).
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Comparing (3.9) and (3.10), we reach at the expected integral equation (3.8) as

C(8) = s (0(E) = (@)™ 1+m"‘””f( (5),Cls = 7))
= K Ty — =L r(s, (s s—17))ds.
= W0 @)™+ s [ POWO 9@ (6,666l 7

Conversely, let ¢ € €7 n w[a, b] satlsﬁes (3.8). We prove that ¢ also satisfies the FDDEs
(1.1)-(1.3). Applying ’DZ on both sides of (3.8) and in view of Lemma 2.4, one can write

Ny R ¢ — (a))"L 1 o g
D100 =1 (5 (000~ v 4 I G0, 7))

= F(C ) TP (W(t) - P(a))T + QZﬁijiwf(t,C(t),C(t _ )

(3.11) = DTV F(#, (1), ¢t — 7))
Since DZﬁ’C € €1_,.la, b], equation (3.10) implicate

D) = ( Wl(t)jt) T E (60,6t = 7)) € Cyla. bl

Since f(t,((t),((t—7)) € €, ,,w[a b and by Lemma 2.5, 37075 £(1 ¢ (), ¢(t — 7)) €
¢, —npla, b). Now applymgj (1=2)% on both sides of (3.10):

IR =300V DNTIY (1), C(t - 7))

IO F (1), ¢t - 7))
T'(6(1— o))

= f(tv C(t)a C(t - T)) - W(t) - 1/}(@))5(170)

(3.12) = f(t,¢(),¢(t = 7).
Contrasting (2.5) and (3.12), we have

3UTTRDLLC() = D7) = £(1,¢(1), ¢(t ~ 7).
Now we show that ¢ € €7 0 ¢[a, b] given by (3.8) also satisfies the initial condition (1.2).
Applying Jaﬂ ' to both sides of (3.8), using Lemma 2.1 and Lemma 2.4, we have

T = T | o () — (@) + I (), (- 7))

()
= e+ 3,7 IT (1), (= 7))
(3.13) = e+ 3, (), (- 7).
Now, t — a* in (3.13), and by Lemma 2.6, we conclude that Cii;mwg(t) =c. O

Theorem 3.2. Let0 <o <1, 0<§ <1,andn =0+ — od. Assume that (A1) — (A2) hold.
Then there exists unique solutzon ¢ for FDDEs (1.1)-(1.3) in € . w[a, b].

Proof. We begin to prove the existence and uniqueness in &,_,[0,7]. The proof is con-
structed by examining two cases, the first one is when t € (0, 7] = [a, b] and second one is
t € (7,T).In each cases, we divided the interval into j subinterval as (to, t1], [t1, 2], ...[tj—1, t;]
on which operator y is contraction mapping on all subinterval. Consider x : X — X with
X ={( € €,_,[0,T]} defined as:
(3.14)

c

X(El) = 000 = 0@ + s [ W00 = @) 6. C(0). s = s
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Step I: Let t € (0,7],s0 ((t —7) = ¢(t — 7) = At — 7). Choose k1, k2 such that
0 < k1 < ko < 7,50 €, _,[k1, ko] is complete metric space with

d(¢(t) = A(t)) = [IC(t) — A(t )||¢ o[k ko]
= max |(¥(t) —¥(a)7 () — A®))]-

telky,k2]
Select t; € (0, 7] such that

LI'(n)

A =
T T+o)

(%) = pla))™ 7 < 1.

Note that ﬁ(w(t) — (a))" ' € €, _,;4[0,#;] and in light of Lemma 2.5, x(((t)) €

€10, t1]; x maps €, _,,. [0, t1] ino itself.

Now, we prove that x has a fixed point in €;_,,,[0,¢;] which is the unique solution to
FDDEs (1.1)-(1.3) on (0, ¢1]. To this end, it is sufficient to prove that the operator x is a
contraction map. For any ((t), A(t) € €,_;,4[0,t1], we have

IX(CE) = XA lle, o) = 137 F(£,CE), St = 7)) =TT F(EAD),AE =)l p 0.0
<IZLF S, ¢t = 7)) = F(E A, AE = ), o f0.0a]-
Note that
1 (8, C(8), St = 7)) = F (& A0, A = T))lle, )y f0uta]
= max ((t) = (a))" (G0, ((t = 7)) = F(£ M), At = 7))

te[0,t1]
SO,
£, C(@), ¢t =)= fEAR), A = 7))le, . pf0.61]
> (¢(t) = (@) T F(E,C(), St — 7)) = F{8 ), At —7))].
Therefore,

(8, C(#), €t = 7)) =f(E, A1), At = 7)llEe, . f0,t4]
< (®(t) = ()" C(), ¢t = 7)) = F(tAL), At — 7))

195 (F (8, C(0), ¢t = TN =F (LMD AE = T)Dle, 0]
SIS, CE = 7)) = FEADACE = D) e, 0]
consequently,

IS0 = xAO) e 00 < P

I'(n+o)

(%(t) — P(a))™

X L(IC(L‘) = AMOlle, 0.y +ICE=7) = At = T)Ilcl_w[o,n])

L'(n) o1

= T+ o) (¥ (t) = (a)"*

x L(IC(t) = AOlle, pplota) Tl —7) — &(t — T)Ilelw[o,tl]>
L'(n) o1 B

S T +0) ((t) = P(a)"* L(((t) )\(t)||¢l_w[07tl])

= Al”C(t) - )‘(t)Hlen;«p[O,tl]'
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Since A; < 1, by contraction mapping theorem, we can deduce that a single fixed point
exists, that is the solution {y(t) € €,_,.4[0,%1] on (0,¢1]. If t1# 7, we consider [t, 7] and
note that

x«@»=rag¢@»—wm»“*+fé3/1wwxwaw—wm»mﬂﬂacwxas—T»m
¢ 7’_1Ltl's —(a))" L f(s,C(s),C(s — 7))ds
=F@¢wﬂ—ww> +F®%A1M>wm Y(a))” f(s,¢(s),¢(s — 7))d
+ﬁ [ (5)000) — (@)™ (5. L(5). (5 = 7))
¢ n—1it1/8 —(a))° !
=f6¢ww—w@> +Fw)a¢%M¢® Y(a))
x f(s,¢(5),C(s = m))ds + 37 (£, C(t),¢(t = 7).
Select Ay < 1 such that Ay = m(w(tg) —h(t))"T < 1. Let ¢(t), A(t) € €[ty,ta],

for some t; <ty < 7, we get
IX(CE) = X ED e ey = 13727 £ (£ C(1), (= 7)) =TT F (1 ADAE = 7)llees ro
ST ), = 7)) = F(EAMAE = 7)) eter o

F(W) n+o—1
< T(y+ o) ((t2) — P(t1))""

X ”f(tv C(t)v C(t - T)) - f(ta )\(t), )\(t - T))||¢[t17t2]
LT L
= (1) = )™ (1) = AO e )

= AQHC(t) - A(t)||€[t17t2].

Since, Ay < 1, x is contraction on [t1,t2] and there exists a unique solution (3 (¢) for ¢ €
[t1,t2], by Lemma 2.9, we can see (o (t) = ¢1(t). So

Jom o<t<ty
= {Cl(t) t <t <t

By lemma 2.7 { € €,_,[0, 3], therefore ((¢) is unique solution of FDDEs (1.1)-(1.3) on
[0, 2]
If to # 7, we iterate the above step more (j — 2) times, and we get a unique solution
Gi(t) for [t;,tip1] withi = 2,3,---j where 0 =ty < t; < --- < t; = 7 such that A;; =
LT'(n) _
t; — (T nto—l < 1.
Hence, we have unique solution ¢(t) € €,_,.,;[0, 7] such that

Co(t), 0<t<ty,

t), < tg,
(=S mstsn

Cn(t), Ifj,1 <t<t,=T.
Now, since ((t) € €, _,,,1[0, 7] is unique solution and satisfies (3.8). By conversing Lemma

3.11, we proved ((t) € €] _, [0, 7].
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Step II: If ¢ € (7,T] and ((¢t), A(t) € €,_,[r,T]. Divide [0,T] into [0, 7] U --- U [(ig —
1)7,407] U [io7, T], where ig € j such that 0 < T — iy < T. Suppose that FDDEs (1.1)-(1.3)
possesses a unique solution say ¢;(¢) on [, 7], where 1 < ¢ < iy. So, we want to prove
that unique solution (', ; (t) exists on [iT, (i 4+ 1)7]. Suppose that x is contraction map for
t € [r,ir] where [[xC() — XA(t)[lefr,ir] < AillC(8) — A(E) | efrin-
Lett € [ir, (i + 1)7]. Then Ct—7)= At —7) = ¢;(t —7) and ky, ko such that 7 < k1 <
ko <i7.S0 €, _yy[k1, k2] is complete metric space with

d(C(t) = A1) = [I€(8) — A(t )Ilel,,,[kl,kz]

= max [(6(0) - ¥(a)”HC(0) — A0
Select t; € (iT, (i + 1)7] such that
_ LT(n) _ ola)yto-t
Ay = Tln + o) (V(t) = ¢(a)™7H < 1.

Note that ﬁ(@b(t) —(a))" ! € €,_p.pfiT, t1] s0 by Lemma 2.5 X (((t)) € €,y [iT, t1];

x maps €, _,.4[i7, t1] into itself.
Now for each ((t), A\(t) € €,_,.[iT,t1] we have

IX(CE) = XA le,,ufimia]
= 137 F(,C(1), C(t — 7)) = 3T F (8, M0, At = T)lle, o lima]
<ITEVF (¢, G —7)) = FEADAE =) lles o]

Note that

1F (2, C(8), €t = 7)) = (& A0, At = T))lles o lim ]
= max (¥(t) — ¥(a)) Tf(t,C(1).C(t = 7)) = FIEA),AE = 7))le, . plimin)

te(0,t1]
however,
[£(t, C(8),C(t — 7)) — F& AL At — 7)) e, _pplimta]
> ((t) = (@) T F(E C(8), C(E = 7)) = F(EA) A= T))le, o limta]
therefore,
£, C(8).CE—7)) = f(&AE), Mt = T))lle, plimta]
(3.15) < () = (@) F (4, C(1), ¢t = 7)) = FEAD),AE = 7))e, )y limt]

17 (£, G = 7)) = F(EADAE =T, pulimt]
(3.16) < 3T C), ¢t — 7)) — FEAE)AE = T)lle,  pfinta]

which gives
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r
IG0) = XA, i < g (0E) = (a7

< L(nc(t) O en o +ICE—T) At~ r>||¢1_w,[”,m)

I'(n)  o(ghrte-1

< s (D)~ v(a)

< L(1¢06) = AOller_oiinan) + 6t — 7) — 6t — T>||¢l_w[”,m)
() o1 B _

S Tw+o) (p(t) — ¢(a)"t L(||C(t) )\(t)|¢l_w[”,t1])

= AsillC(#) = ABlle, . plirta]-

Since Ay; < 1, by contraction mapping theorem we can deduce a single fix point which is
a solution (§(t) € €,y [i7,t1].
If t; # (i + 1)7, then set [t1, (¢ + 1)7. Furthermore

X(E() = 5 (00— 0@ + s / e )77 (5,6(5), (s — )
¢ a))? ! L s —(a)) (s, ((s s—1T))ds
=5 n)w(t) v 55 W (5)((8) — (@) (s, ¢(5), (s — 7))
- ﬁ W () (%) — (@) £(5,(5), Cs = 7))
¢ 77 1y -
= Fi (00) - s [ @)
x f(s,¢(s),¢(s —T>)ds+ﬁzﬁ’f(t ¢(1),¢(t = 7))
_ LI'(n) to—
Choose Ay; < 1suchthat Ay = m(w(tl)—w(tg)) Tl <1 Let ¢(t), A(t) € €ty ta),

for some t; <ty < (i + 1)1, we get

Ix(C(®) = x(A@) lleer ta]
= ||3‘Zli¢f(t7 (), ¢t —7)) - ﬁflfl’f(ta A, At = 7))l 22)

< BT £ C0 = ) — F(EAD. ME =) el
I 1
< e (0lta) = () 0.0 = 7)) = SN = ) et
LT'(n)
=Tl +0)
LT'(n)
~—TI'(n+o)
_ LF(’I]) n+o—1
= For s () - v (160 - MOt )

= AQZ”C(t) - )‘(t)|‘€[t17t2]'

(%(t2) = 9 (t2))"™ " (II((t) = ABOllertr o) + 1CE=7) = Al = 7)llefts )

(%(t2) = ¥(tr))"" (IIC(t) = AOllettr 2] + N0t = 7) — Gt = T)||¢[t1,t2]>
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Since, Ag; < 1, x is contraction on [t1,%2] and there exists a unique solution (;(¢) for
t € [t1,t2], by Lemma 2.9, we can see (o(t) = (1(%).

o), 0<t<ty
<= {(jl(t), ty <t <t

By Lemma 2.7 u € €,_,[0,t,], therefore ((¢) is unique solution of FDDEs (1.1)-(1.3) on
[0, t2].

If to # (i + 1)7, we iterate the above step more (j — 2) times, after that we get the unique
solution \;(t) for [t;, t;41] withi = 2,3,---j, where it =ty < t; < --- <t; = (i+ 1)7 such
that

LT(n) _
A; = = t; — (T, nto—1 <1
+1 F(U+U) (7/’( +1) 1/}( ))
Hence, we have unique solution ¢(t) € €,_,.y[iT, (i + 1)7] such that
Co(t), T <t<ty,

Gi(t), i1 <t <ty

(1) =

Gult),  tia<t<t;=(i+1r

Now, since ((t) € €, _y;p[i7, (i + 1)7] is a unique solution and satisfies (3.8). By converse
part of Lemma 3.11 we proved ((t) € €], [iT, (i + 1)7]. O

4. CONTINUOUS DEPENDENCE

Theorem 4.3. Let ¢ € &([a,b],R) a function such that it is increasing and ' (t) # 0, for all
t € [a,b]. Also, let f € (a,b] xR xR — R is continuation and satisfies Lipschitz condition (A2)
onRando > 0,e > 0suchthat 0 <o —e <o <1with0 < < 1. Foranya <t <b, assume
that C is the solution of the FDDEs (1.1)-(1.3) and \* is the solution of the following problem:

(4.17) DITTVN(t) = FIN (1), N (t 7)), 0<0<1,0<8<1,t>aq,
(4.18) N (t) = p(t), —T <t <0
(4.19) 3;"76(671)”&)\*(&) =c". n=o+0—o0d.

Then, for a <t <,

t [ o o — k s — ah(s))kle—e)-1
IAT(t) = A®)] < B(t)+/ > (Lré(g) 8)) oA )(wg()k(gw( 2;) B(s)| ds,
@ k=1
where
e @) = (a)rt DT () — p(a)!
(20 BO=|="Tave0-1y T
Il (b(t) = p(a)?™=  (P(t) = Y(a)7*
I(oc—e+1) I'(oc —e)'(0)
() —¥(a)”™= (@) —P(a)”
+ 171 ‘ T(o—oT(0) T+l |’

1711 = mase [£(A(E). A= 7).
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Proof. The FDDEs (1.1)-(1.3) and (4.17)-(4.19), have integral equations which are given by

C

A = 60— vl
+7/1/) 8))7 7 f(s,M(s),)ds, t > a,
and
() = mjwu)—w( @)+
NCE /w )T (5, M (5), N (s — 7))ds, £ > a,

respectively. It follows that

() — P(a))=OmDTEe(p(t) — pla))7?
L(n+e(6—1)) L'(n)

+‘1 /¢ B(E) — 957 F 5, A% (), A (5 — ))ds

(AT =A@)] <

/ ¥'(s )7 (5. A(s), A(s — 7))ds
< C ))n+5(5 1) _ ( ( ) (a))
n+e(6 )) L)
{ Y)W — (s)7” 61} f(s,X*(s), \* (s — 7))ds

[(o—¢) (o)
+@/a D ()W) = ()7 HF (5, A7 (8), A (s = 7)) = f(5,A(8), A(s = 7))] ds

t _ s oc—e—1 _ s o—1
- w,(s)[wa) Ll ORI ] FoA(5) A5 — )8

Since
IA(t) = A@)] =[f(& A" (@), A" (¢ = 7)) = f(t, ML), A(=T))]
< LA () = A+ A (t = 7) = AM(=7)]
< LIA(E) = AQ)]-

Then

M) @) < |CW0 = @)D eut) — dla)!
- )

F(n+6(5 1)) - T'(n
Y(a)?=%  (p(t) —(a))” ¢

+”f”’ et 1) T(o)T(o-9)

L W / () ((E) — ()7 N (5) — A(s)| ds

((t) —(s))77%  (P(t) —(s))7
+”f”[ To)l(o—2  T(e+1) ]

— B@) +L%U> / () (W(E) — ()7 N (5) — A(s)| ds,
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where B(t) is defined as in (4.20). By applying Lemma 2.10, we conclude that

%) LF(U_E) kw/(s)(w(t)_ (s )k(a o)
;;( I'(o) ) L(k(oc —¢)) B(S) ds.

(1) — A(t)] < B(t) + /

Next, we consider the following fractional differential equation
(4.21) DTIUNE) = FEAE),ANE—T)), 0<0<1,0<5<1,t>a.
with condition

(4.22) A(t) = ¢(t), —1<t <0

(4.23) 3TN a) = ¢+ p, n=0c+68—od.

Theorem 4.4. Assume that hypotheses of Theorem 3.2 hold. Let ¢ and \* are solutions of the
FDDEs (1.1)-(1.3) and (4.21)-(4.23) respectively. Then

IAE) = X (O] < lpl (¥(t) = ©(a))"™" Egy [L(¥(t) = 9(a))7], t € [a,b].

Proof. In view of Theorem 3.2, we have A(t) = klirn A (t) with
— 00

(4.24) Mo(t) = g () = bla))™

and

Ak (t) = Ao (t) + jZE:/)FAkfl (t)

(4.25)
— () — ¥( ))”‘1+1/tw’( ) (t) = ()7 £, Ak—1(8), Me—1(s))d
~ T() ¢ To) J, " P AR AR

—
o
+

S

=

(4.26) Ao(t) = Ty (W) - Y(@)"!
and
Nelt) = A5(0) + 37 fp_, (1)
(4.27)
_ (C+p) n—1 1 ¢ / o—1 *
= S 00 = v@) ™+ g [ @00~ ) 6N ()N ()i
By (4.24) and (4.26) we get
(4.28) )
) = | C(anyn=t — P oy vy (¥(t) = ¢(a))"”
o(t) = Xa0)| = | s (0(0) — (@)™ = e (wle) — (@)™ | < ol HE
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Using relations (4.24)-(4.27), the Lipschitz condition (A2) and the inequality (4.28), we get

A1) = A < el

o) (o)
000 = 0175 Aofs) Dol = ) = s X5 5, i — 7
< I OO B [ )i - w6~ el ~ Ao
< OO B [ sy 00) — 0060)°~006) — @)~
AU ALy ) — oo
Hence,
@29) D)~ A0 < ol (00— v(@)" ; oy L™,
On the other hand, we have
a(t) = X300 < o L2 ‘Fgff)“”“ i
/ Y)W = 6()7F 5,0 (9), (s = 7)) = £, Xi(3), X (5 = 7)lds
<jp - () o [ 7L (1) — X (1) ds
<1l L0 ;gff) L‘p‘ / e () - () s
o atw(s)(w(t) 0(5))7 () —(a)) 7+ s
<l O Ly 0y -y
F(ﬁ";'@ ((6) = ()72
=[pl(( i 1sz HUZ;W.
Using the mathematical induction, we get
@30 () - M) < ol @0 - (@) 1ZU‘—(””.

L'(n+ 1)
Taking the limit k — oo in inequation (4.30), we obtain

Ik (8) = AL < ol (0(t) = 9 (a))"™ By (L($(2) — ¥(a))?).
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5. EXAMPLE
Example 5.1. Consider the following nonlinear FDDEs:
(5.31)

51
DVy(t) = —ky + f(t ~ y (1)),
for f(t,y(t)) = sin(t) + y(t), t > 7and y(t) = g(t), t € [0,7]. The integral solution can be
written as
(5.32)

Lo o ,
y(t) = g(t) + (o) /0 W (8)(t = 1(s)7 (=hy(s — ) +sin(s) +y*(s))ds.

For 9(t) = sin(t) with o = 0.5, 0.65, 0.7, 0.85, 0.95, and § = 1, all the conditions of Theorem
3.2 satisfied. Hence there exists a fixed point solution y(t) given by (5.32).

Example 5.2. Consider the following nonlinear FDDEs:
(5.33)

DI Vy(t) = hit,y(t — 7)),
solution, by Lemma 2.1, is:

for h(t,y(t—7)) = e teos(y(t — 7)) +t2, t > 7,y(t) = g(t), t € [0, 7]. The equivalent integral
(5.34)

y(t) = g(t) + ﬁ / U (5)(t = ()7 (e cos(y(s — 7)) + s7)ds.
For 9(t) = log(1 + t?) with 0 = 0.5, 0.65, 0.7, 0.85, 0.95, and § = 1.

Example 1: (t) = sin(t)

Example 2: y(t) = log(1 + t~2)

y(t)

y(t)

40

-6

10

6. CONCLUSION AND FUTURE SCOPE

We established the existence and uniqueness of solutions to nonlinear fractional delay
differential equations (FDDEs) by applying the contraction mapping principle. Further,
the result of continuous dependence of solution on order of differentiation using a gen-
eralized Gronwall inequality. Main results are justified with illustrative examples. This
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work may proven to be foundational work for nonlocal delay boundary value problems,
some physico-chemical applications such as thermal shock problem with practical initial
and boundary conditions in near future.

REFERENCES

[1] Abdo, M. S.; Panchal, S. K. Fractional integro-differential equations involving «-Hilfer fractional derivative.
Adv. Appl. Math. Mech. 11 (2019), no. 2, 338-359.

[2] Akbulut Arik, L; Araz, S. 1. Delay differential equations with fractional differential operators: existence,
uniqueness, and applications to chaos. Commun. Anal. Math. 16 (2023), no. 1, 169-192.

[3] Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Non-
linear Sci. Numer. Simul. 44 (2017), 460—481.

[4] Atanackovic, T. M,; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics:
Vibrations and Diffusion Processes. Wiley-ISTE, London, Hoboken, 2014.

[5] Balachandran, K. An Introduction to Fractional Differential Equations. Industrial and Applied Mathematics,
Springer, Singapore, 2023.

[6] Benchohra, M.; Karapinar, E.; Lazreg, J. E.; Salim, A. Advanced Topics in Fractional Differential Equations—A
Fixed Point Approach. Synthesis Lectures on Mathematics and Statistics, Springer, Cham, 2023.

[7] Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal.
Forum 9 (2004), no. 1, 43-53.

[8] Bhairat, S. P. Existence and continuation of solutions of Hilfer fractional differential equations. J. Math.
Model. 7 (2019), no. 1, 1-20.

[9] Bhairat, S. P. New approach to existence of solution to generalized Cauchy-type problem. ]. Math. Model. 8
(2020), no. 4, 377-391.

[10] Bose, V.; et al. Study on the controllability of Hilfer fractional differential system with and without impul-
sive conditions via infinite delay. Nonlinear Anal. Model. Control 29 (2024), no. 1, 166-188.

[11] Cermak, J.; Kisela, T.; Nechvatal, L. The Lambert function method in qualitative analysis of fractional delay
differential equations. Fract. Calc. Appl. Anal. (2023), Art. 38.

[12] Delbosco, D.; Rodino, L. Existence and uniqueness for a nonlinear fractional differential equation. J. Math.
Anal. Appl. 204 (1996), 609-625.

[13] Dhaigude, D. B.; Bhairat, S. P. Existence and uniqueness of solution of Cauchy-type problem for Hilfer
fractional differential equations. Commun. Appl. Anal. 22 (2018), no. 1, 121-134.

[14] Dhaigude, D. B.; Bhairat, S. P. Local existence and uniqueness of solution of Hilfer fractional differential
equations. Nonlinear Dyn. Syst. Theory 18 (2018), no. 2, 144-153.

[15] Diethelm, K. The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, Springer, Berlin,
2010.

[16] Frunzo, L.; Garra, R.; Gusti, A.; Luongo, V. Modeling biological systems with an improved fractional Gom-
pertz law. Commun. Nonlinear Sci. Numer. Simul. (2019), Art. 105275.

[17] Gaul, L.; Klein, P.; Kempfle, S. Damping description involving fractional operators. Mech. Syst. Signal Pro-
cess. 5 (1991), 81-88.

[18] Hilfer, R. Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.

[19] Kavitha, K.; et al. A note on approximate controllability of the Hilfer fractional neutral differential inclu-
sions with infinite delay. Math. Methods Appl. Sci. 44 (2021), no. 6, 4428-4447.

[20] Kharade, J. P.; Kucche, K. D. On the impulsive implicit ¢-Hilfer fractional differential equations with delay.
arXiv:1908.07793 [math.DS] (2019).

[21] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations. North-
Holland Math. Stud. 204, Elsevier, Amsterdam, 2006.

[22] Kucche, K. D.; Trujillo, J. J. Theory of system of nonlinear fractional differential equations. Progr. Fract.
Differ. Appl. 3 (2017), 7-18.

[23] Kucche, K. D.; Mali, A. D.; Vanterler da C. Sousa, ]J. On the nonlinear «-Hilfer fractional differential equa-
tions. Comput. Appl. Math. 38 (2019), Art. 73.

[24] Ma, Y.-K.; Kavitha, K.; Shukla, A.; Vijayakumar, V. An analysis on the optimal control and approximate
controllability for Hilfer fractional neutral integro-differential systems with finite delay. Optim. Control Appl.
Methods 45 (2024), no. 3, 1086-1107.

[25] Magin, R. L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59
(2010), no. 5, 1586-1593.

[26] Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models.
Imperial College Press, World Scientific, London, 2010.



New Results on Existence for 1 —Hilfer Fractional Delay Differential Problem 53

[27] Samko, S. G.; Kilbas, A. A.; Marichev, O. L. Fractional Integrals and Derivatives. Theory and Applications. Gor-
don and Breach, Yverdon, 1993.

[28] Sun, H. G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. Q. A new collection of real-world applications of
fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213-231.

[29] Sweis, H.; Arqub, O. A.; Shawagfeh, N. Hilfer fractional delay differential equations: existence and unique-
ness computational results and pointwise approximation utilizing the shifted-Legendre Galerkin algo-
rithm. Alex. Eng. J. (2023), Art. 109838.

[30] Toledo-Hernandez, R.; Rico-Ramirez, V.; Iglesias-Silva, G. A.; Diwekar, U. M. A fractional calculus ap-
proach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological
reactions. Chem. Eng. Sci. 117 (2014), 217-228.

[31] Vanterler da C. Sousa, J.; Capelas de Oliveira, E. On the «-Hilfer fractional derivative. Commun. Nonlinear
Sci. Numer. Simul. 60 (2018), 72-91.

[32] Vanterler da C. Sousa, J.; Capelas de Oliveira, E. A Gronwall inequality and the Cauchy-type problem by
means of i-Hilfer operator. Differ. Equ. Appl. 11 (2019), no. 1, 87-106.

[33] Yao, Z.; Yang, Z.; Fu, Y. Asymptotic stability of nonlinear fractional delay differential equations with a €
(1,2): an application to fractional delay neural networks. Chaos 34 (2024), 043109.

[34] Zhou, Y. Basic Theory of Fractional Differential Equations. 3rd ed., World Scientific, Hackensack, NJ, 2024.

1 DEPARTMENT OF MATHEMATICS, DR BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, CHHATRAP-
ATI SAMBHAJINAGAR—-431004 (M.S.) INDIA.
Email address: eknathpawar0801@gmail.com

2 P G DEPARTMENT OF MATHEMATICS, GOVERNMENT VIDHARBH INSTITUTE OF SCIENCE AND HUMANI-
TIES, AMARAVATI-444604 (M.S.)INDIA.
Email address: rmdhaigude@gmail.com



