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New Results on Existence for ψ−Hilfer Fractional Delay
Differential Problem

EKNATH D. PAWAR1 AND R. M. DHAIGUDE2

ABSTRACT. In this paper, we examine the existence and uniqueness of a solution to a nonlinear fractional
delay differential equation with ψ−Hilfer derivative. The contraction mapping principle will be used as a main
tool for existence, and generalized Gronwall inequality for continuous dependence results. Several numerical
examples are included to illustrate our findings.

1. INTRODUCTION

In recent decades, fractional calculus has gained significant importance due to its wide
range of applications in various fields such as physics, mechanics, chemistry, engineering,
and finance see [5, 6, 15, 21, 34]. While classical calculus has long been recognized as a
powerful tool for modeling dynamic processes, many complex systems in nature are more
accurately described by fractional differential equations (FDEs). Examples of such sys-
tems include the transport of chemical pollutants through rocks, the behavior of viscoelas-
tic materials like polymers, air pollution diffusion, cellular diffusion, and signal transmis-
sion across networks in strong magnetic fields see [4, 17, 18, 25, 26, 28, 30]. In these cases,
the systems exhibit complex microscopic behavior that classical derivative models cannot
fully capture. As a result, in many physical, chemical set ups, FDEs provide a more appro-
priate framework than traditional differential problems see [1, 3, 8, 9, 13, 14, 12, 22, 23, 27].

An important category of FDEs is fractional delay differential equations (FDDEs). These
equations include delay parameters, meaning the unknown function depends on its past
history. FDDEs have been studied for numerous applications. For example, recent work
[10, 16, 19, 20, 24, 33], are evident. In recent time, the FDDEs are studied by utilizing fixed
point technique and Caratheodory properties see [2, 29, 11]. Motivated by their work, we
consider the following FDDEs

Dσ,δ;ψ
a+ ζ(t) = f(t, ζ(t), ζ(t− τ)); 0 < σ < 1, 0 ≤ δ ≤ 1 ≤ 0, 0 < t < T,(1.1)

ζ(t) = ϕ(t), −τ ≤ t < 0,(1.2)

I1−η;ψa+ = c, c ∈ R,(1.3)

where Dσ,δ;ψ
a+ (·) is the ψ−Hilfer fractional derivative of order 0 < σ < 1, type 0 ≤ δ ≤ 1,

ζ(t − τ) denotes the amount of ζ at a fixed time τ unit in the previous time in which the
impact of ζ on the present rate of alteration of ζ is belated by the time τ.

The paper is organized as follows: In section 2, we enlist some basic definitions, pre-
liminary facts and lemmas whch are useful in the subsequent sections. In section 3, we
prove the equivalence of the ψ−Hilfer FDDEs with Volterra integral equation. We prove
the existence of a unique solution to FDDEs (1.1)–(1.3), continuous dependence in 4. In
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section 5, two examples illustrating our main results will be provided. The concluding
remarks are presented in the final section.

2. PRELIMINARIES

Let [a, b] ⊂ R+, (0 < a < b < ∞) and C[a, b], ACn[a, b], Cn[a, b] are the space of con-
tinuous real function, n-times absolutely continuous function and n-times continuously
differentiable functions on [a, b] respectively. Let Lp(a, b), (1 ≤ p ≤ ∞) defines space of
Lebesgue measurable function on (a, b).We recall the following norm and weighted space
of continuous function:

∥ζ∥Lp[a,b] =
[ ∫ b

a

|ζ(t)|pdt
] 1
p

<∞, ∀ ζ ∈ Lp(a, b),

∥ζ∥C[a,b] = max{|ζ(t) : t ∈ [a, b]}, ∀ ζ ∈ [a, b],

ACn[a, b] = {ζ : [a, b] −→ R|ζ(n−1) ∈ AC[a, b]},
and

Cη;ψ[a, b] = {ζ : [a, b] −→ R|(ψ(t)− ψ(a))ηζ(t) ∈ C[a, b]}, 0 ≤ η < 1,

Cnη;ψ[a, b] = {ζ : [a, b] −→ R|ζ(t) ∈ Cn−1[a, b]; ζn(t) ∈ Cη;ψ[a, b]}, 0 ≤ η < 1, n ∈ N,

Cσ;δη;ψ[a, b] = {ζ(t) ∈ Cη;ψ[a, b];D
σ;δζ ∈ Cη;ψ[a, b]}, η = σ + δ − σδ.

We note that, if n = 0, C0
η;ψ[a, b] = Cη;ψ[a, b] with

∥ζ∥Cη;ψ[a,b] = ∥(ψ(t)− ψ(a))ηζ(t)∥C[a,b]
= max{(ψ(t)− ψ(a))ηζ(t) : t ∈ [a, b]},

and ∥ζ∥Cnη;ψ[a,b] =
n−1∑
k=0

∥ζk∥C[a,b]
+ ∥ζn∥Cη;ψ[a,b]

.

Assume during the analysis, unless otherwise indicated, 0 ≤ a < b ≤ T <∞.

Definition 2.1. [31] The Mittag–Leffler function for two parameters is defined as:

(2.4) Eσ,δ(z) =
∞∑
k=0

zk

Γ(σk + δ)
,

where σ, δ ∈ C, Re(σ) > 0 and Γ(z), z > 0, is Gamma function: Γ(z) =
∫ ∞

0

e−ttz−1dt.

Definition 2.2. [31] The left sided ψ−Riemann-Liouville fractional integral of order σ, (n− 1 <
σ < n) for an integrable function ζ : [a, b] −→ R with respect to another function ψ : [a, b] −→
R, that is an increasing differentiable function such that ψ′(t) ̸= 0, for all t ∈ [a, b], (−∞ ≤ a <
b ≤ ∞) are respectively defined as follows:

Iσ;ψa+ ζ(t) =
1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1ζ(s)ds

and

Dσ;ψ
a+ ζ(t) =

(
1

ψ′(t)

d

dt

)n
In−σ;ψa+ ζ(t).

=
1

Γ(n− σ)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1ζ(s)ds.
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Definition 2.3. [32] The left-sided ψ−Caputo fractional derivative of order σ, (n− 1 < σ < n),
n = [σ] + 1, function ζ ∈ Cn[a, b] with respect to another function ψ is defined by

cDσ;ψ
a+ = In−σ;ψ

(
1

ψ′(t)

d

dt

)n
ζ(t)

=
1

Γ(n− σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−σ−1ζ
(n)
ψ (s)ds,

where ζ(n)ψ (t) =

(
1

ψ′(t)
d
dt

)n
ζ(t).

Remark 2.1. The ψ−Caputo fractional derivative of function ζ ∈ ACn[a, b] is:

cDσ;ψ
a+ = Dσ;ψ

a+

[
ζ(t)−

n−1∑
k=0

( 1
ψ′(t)

d
dt )

kζ(a)

k!
(ψ(t)− ψ(a))k

]
.

Definition 2.4. [31] Let n − 1 < σ < n; n ∈ N,−∞ ≤ a < b ≤ ∞ and ψ ∈ Cn([a, b],R) a
function such that ψ(t) is increasing and ψ′(t) ̸= 0, ∀ t ∈ [a, b]. The left-sided ψ−Hilfer fractional
derivative of function ζ ∈ Cn[a, b] of order σ and type δ ∈ [0, 1] is defined as:

Dσ,δ;ψ
a+ ζ(t) = I

δ(n−σ);ψ
a+

(
1

ψ′(t)

d

dt

)n
I
(1−δ)(n−σ)
a+ ζ(t), t > a.

Remark 2.2. The ψ−Hilfer fractional derivative of order σ and type δ is also defined as:

(2.5) Dσ,δ;ψ
a+ ζ(t) = I

δ(n−σ);ψ
a+ Dη;ψ

a+ ζ(t), t > a, η = σ + nδ − σδ,

where Dη;ψ
a+ ζ(t) =

(
1

ψ′(t)

d

dt

)n
I
(1−δ)(n−σ);ψ
a+ ζ(t).

Remark 2.3. In particular, the ψ−Hilfer fractional derivative of order σ ∈ (0, 1) and type δ ∈
[0, 1] can also be defined as:

Dσ,δ;ψ
a+ ζ(t) =

1

Γ(η − σ)

∫ t

a

(ψ(t)− ψ(s))η−σ−1Dη;ψ
a+ ζ(s)ds

= Iη−σ:ψa+ Dη;ψ
a+ ζ(t),

where η = σ + δ − σδ, Iη−σ:ψa+ (·) defined by (2.5) and Dη;ψ
a+ ζ(t) =

(
1

ψ′(t)

d

dt

)n
I
(1−η);ψ
a+ ζ(t).

Lemma 2.1. [31] Let σ > 0, 0 ≤ δ < 1 and ζ ∈ L1[a, b]. Then

Iσ;ψa+ Iδ;ψa+ ζ(t) = Iσ+δ:ψa+ ζ(t), a.e. t ∈ [a, b].

In particular,

(i): If ζ ∈ Cη;ψ[a, b], then Iσ;ψa+ Iδ;ψa+ ζ(t) = Iσ+δ:ψa+ ζ(t), t ∈ (a, b].

(ii): If ζ ∈ C[a, b], then Iσ;ψa+ Iδ;ψa+ ζ(t) = Iσ+δ:ψa+ ζ(t), t ∈ [a, b].

Lemma 2.2. [31] Let σ > 0, 0 ≤ δ < 1. If ζ ∈ Cη;ψ[a, b], then

Dσ,δ;ψ
a+ Iσ;ψa+ ζ(t) = ζ(t), t ∈ (a, b].

If ζ ∈ C1[a, b] then

Dσ,δ;ψ
a+ Iσ;ψa+ ζ(t) = ζ(t), t ∈ [a, b].
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Lemma 2.3. [31] Let 0 < σ < 1, 0 ≤ δ ≤ 1, and η = σ + δ − σδ. If ζ ∈ Cη1−η;ψ[a, b] then

Iη;ψa+ Dη,δ;ψ
a+ ζ(t) = Iσ;ψa+ Dσ,δ;ψ

a+ ζ(t)

and
Dη,δ;ψ
a+ Iσ;ψa+ ζ(t) = D

δ(1−σ);ψ
a+ ζ(t).

Lemma 2.4. [31] Let t > a, σ ≥ 0, and θ > 0. Then

Iσ;ψa+ (ψ(t)− ψ(a))θ−1 =
Γ(θ)

Γ(θ + σ)
(ψ(t)− ψ(a))θ+σ−1

and if 0 < θ < 1, we have
Dσ;ψ
a+ (ψ(t)− ψ(a))σ−1 = 0.

Lemma 2.5. [31] Let 0 < σ < 1, 0 ≤ δ ≤ 1, and η = σ + δ − σδ, and let ψ ∈ C1([a, b],R) be
an increasing function such that ψ′(t) ̸= 0, ∀ t ∈ [a, b]. Then

(i) Iσ;ψa+ maps C[a, b] into C[a, b].

(ii) Iσ;ψa+ is bounded from C1−η;ψ[a, b] into C1−η;ψ[a, b].

(iii) If η ≤ σ, then Iσ;ψa+ is bounded from C1−η;ψ[a, b] into C[a, b].

Lemma 2.6. [31] Let σ > 0, , 0 ≤ η < 1, and ζ ∈ Cη;ψ[a, b]. If σ > η, then Iσ;ψa+ ζ ∈ C[a, b] and

Iσ;ψa+ ζ(a) = lim
t→a+

Iσ;ψa+ ζ(t) = 0.

Lemma 2.7. [31] Let 0 ≤ η < 1, a < c < b, ζ ∈ Cη;ψ[a, c], ζ ∈ C[a, b] and ζ is continuous at
c. Then ζ ∈ Cη;ψ[a, b].

Lemma 2.8. [31] If ζ ∈ Cn[a, b], n − 1 < σ < n, 0 ≤ δ ≤ 1, η = σ + δ − σδ. Then for all
t ∈ [a, b],

Iσ;ψa+ Dσ,δ;ψ
a+ ζ(t) = ζ(t)−

n∑
k=1

(ψ(t)− ψ(a))η−k

Γ(η)
ζ
(n−k)
ψ I

(1−δ)(1−σ);ψ
a+ ζ(a).

In particular, if 0 < σ < 1, we have

Iσ;ψa+ Dσ,δ;ψ
a+ ζ(t) = ζ(t)− (ψ(t)− ψ(a))η−1

Γ(η)
I
(1−δ)(1−σ);ψ
a+ ζ(a).

Additionlly , if ζ ∈ C1−η;ψ[a, b] and I1−η;ψa+ ζ ∈ C1
1−η;ψ[a, b] such that 0 < η < 1. Then for all

t ∈ (a, b],

Iη;ψa+ Dη;ψ
a+ ζ(t) = ζ(t)− [ψ(t)− ψ(a)]

η−1

Γ(η)
I1−η;ψa+ ζ(a).

Lemma 2.9. [31] Let ζ ∈ L1[a, h]. Then

lim
s→h+

∫ h

a

(ψ(s)− ψ(t))σ−1ζ(t)dt =

∫ h

a

(ψ(h)− ψ(t))σ−1ζ(t)dt = Γ(σ)Iσ;ψa+ ζ(c), σ > 0.

Lemma 2.10. [32] (Gronwall lemma) Let p, q, be two integrable functions and ζ is continuous on
[a, b]. Let ψ ∈ C[a, b] be an increasing function such that ψ′(t) ̸= 0,∀ t ∈ [a, b]. Assume that p
and q are non-negative and non-decreasing. If

p(t) ≤ q(t) + ζ(t)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1p(s)ds,
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then, for all t ∈ [a, b], we have

(2.6) p(t) ≤ q(t) +

∫ t

a

∞∑
k=1

(ζ(t)Γ(σ))
k

Γ(σk)
ψ′(s)(ψ(t)− ψ(s))σk−1q(s)ds.

Also, if q is a non-decreasing function on [a, b], then

p(t) ≤ q(t)Eσ(ζ(t)Γ(σ)(ψ(t)− ψ(a))σ).

Theorem 2.1. [21, 7] (Banach fixed point theorem) Let (X, d) be a complete metric space and
T : X → X is a strict contraction, i.e. a map satisfying

(2.7) d(T (x), T (y)) ≤ ad(x, y),∀x, y ∈ X

where 0 < a < 1. Then the operator T has a unique fixed point p ∈ X. The Picard iteration xn∞n=0

defined by
xn+1 = Txn, n = 0, 1, 2, · · ·

converge to p, for any x0 ∈ X.

To prove the main result, we need the following axioms:
(A1): ζ : (0, T ]×R×R −→ R be a function such that f(t, ζ(t), λ(t−τ)) ∈ C1−η;ψ[a, b]

for any ζ, λ ∈ C1−η;ψ[0, T ].
(A2): f(t, ζ(t), λ(t)) satisfies the Lipschitz’s condition with respect to ζ, λ and is bounded

in a region G ⊂ R, ∀ t ∈ [0, T ] such that

∥f(t, ζ1(t), λ1(t− τ))− f(t, ζ2(t), λ2(t− τ))∥C1−η;ψ [0,T ]

≤ L(|ζ1(t)− λ1(t)|C1−η;ψ[0,T ] + |ζ1(t− τ)− λ2(t− τ)|C1−η;ψ[0,T ]).

3. MAIN RESULT

In this section, we demonstrate the equivalent Volterra integral solution for FDDEs and
establish its existence and uniqueness results.

Lemma 3.11. Let 0 < σ < 1, 0 ≤ δ ≤ 1, η = σ+δ−σδ and let ζ as in (A1). If ζ ∈ Cη1−η;ψ[a, b]

then ζ satisfies FDDEs (1.1)-(1.3) if and only if ζ satisfies:

(3.8) ζ(t) =
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(a))σ−1f(s, ζ(s), ζ(s− τ))ds.

Proof. In the bigining, we prove the first part, followed by its converse. Let ζ ∈ Cη1−η;ψ[a, b]

be a solution of FDDEs (1.1)-(1.3). We demonstrate that ζ also satisfies (3.8). By definition
of Cη1−η;ψ[a, b], Lemma 2.5 and Definition 2.4, we have I1−η;ψa+ ζ ∈ C[a, b] and

Dη;ψ
a+ ζ(t) =

(
1

ψ′(t)

d

dt

)n
I
(1−η);ψ
a+ ζ(t) ∈ C1−η;ψ[a, b].

Since ψ ∈ C1[a, b], and by definition of Cηη;ψ[a, b], clearly I1−η;ψa+ ζ ∈ C1
1−η;ψ[a, b]. Hence, by

using Theorem 2.8 and initial condition (1.2), for t ∈ (a, b] we have

Iσ;ψa+ Dη;ψ
a+ ζ(t) = ζ(t)− (ψ(t)− ψ(a))η−1

Γ(η)
I1−η;ψa+ ζ(a)

= ζ(t)− c

Γ(η)
(ψ(t)− ψ(a))η−1.(3.9)

From the fact that Dη;ψ
a+ ζ ∈ C1−η;ψ[a, b] and Lemma 2.3, we have

Iη;ψa+ Dη;ψ
a+ ζ(t) = Iσ;ψa+ Dσ,δ;ψ

a+ ζ(t)

= Iσ;ψa+ Dσ,δ;ψ
a+ f(t, ζ(t), ζ(t− τ)).(3.10)
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Comparing (3.9) and (3.10), we reach at the expected integral equation (3.8) as

ζ(t) =
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)
Iσ;ψa+ f(s, ζ(s), ζ(s− τ))

=
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(a))σ−1f(s, ζ(s), ζ(s− τ))ds.

Conversely, let ζ ∈ Cη1−η;ψ[a, b] satisfies (3.8). We prove that ζ also satisfies the FDDEs
(1.1)-(1.3). Applying Dη;ψ

a+ on both sides of (3.8) and in view of Lemma 2.4, one can write

Dη;ψ
a+ ζ(t) = Dη;ψ

a+

(
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)
Iσ;ψa+ f(t, ζ(t), ζ(t− τ))

)
=

c

Γ(η)
Dη;ψ
a+ (ψ(t)− ψ(a))η−1 +Dη;ψ

a+ Iσ;ψa+ f(t, ζ(t), ζ(t− τ))

= D
δ(1−σ);ψ
a+ f(t, ζ(t), ζ(t− τ)).(3.11)

Since Dη;ψ
a+ ζ ∈ C1−η;ψ[a, b], equation (3.10) implicate

Dη;ψ
a+ ζ(t) =

(
1

ψ′(t)

d

dt

)n
I
(1−η);ψ
a+ f(t, ζ(t), ζ(t− τ)) ∈ C1−η;ψ[a, b].

Since f(t, ζ(t), ζ(t− τ)) ∈ C1−η;ψ[a, b] and by Lemma 2.5, I(1−δ)(1−σ);ψa+ f(t, ζ(t), ζ(t− τ)) ∈
C1−η;ψ[a, b]. Now applying I

δ(1−σ);ψ
a+ on both sides of (3.10):

I
δ(1−σ);ψ
a+ Dη;ψ

a+ ζ(t) =I
δ(1−σ);ψ
a+ D

δ(1−σ);ψ
a+ f(t, ζ(t), ζ(t− τ))

= f(t, ζ(t), ζ(t− τ))−
I
(1−δ)(1−σ);ψ
a+ f(t, ζ(t), ζ(t− τ))

Γ(δ(1− σ))
(ψ(t)− ψ(a))δ(1−σ)

= f(t, ζ(t), ζ(t− τ)).(3.12)

Contrasting (2.5) and (3.12), we have

I
δ(1−σ);ψ
a+ Dη;ψ

a+ ζ(t) = Dσ,δ;ψ
a+ ζ(t) = f(t, ζ(t), ζ(t− τ)).

Now we show that ζ ∈ Cη1−η;ψ[a, b] given by (3.8) also satisfies the initial condition (1.2).
Applying I1−η;ψa+ to both sides of (3.8), using Lemma 2.1 and Lemma 2.4, we have

I1−η;ψa+ ζ(t) = I1−η;ψa+

[
c

Γ(η)
(ψ(t)− ψ(a))η−1 + Iσ;ψa+ f(t, ζ(t), ζ(t− τ))

]
= c+ I1−η;ψa+ Iσ;ψa+ f(t, ζ(t), ζ(t− τ))

= c+ I
1−δ(1−σ);ψ
a+ f(t, ζ(t), ζ(t− τ)).(3.13)

Now, t→ a+ in (3.13), and by Lemma 2.6, we conclude that I1−η;ψa+ ζ(t) = c. □

Theorem 3.2. Let 0 < σ < 1, 0 ≤ δ ≤ 1, and η = σ+ δ− σδ. Assume that (A1)− (A2) hold.
Then there exists unique solution ζ for FDDEs (1.1)-(1.3) in Cη1−η;ψ[a, b].

Proof. We begin to prove the existence and uniqueness in C1−η[0, T ]. The proof is con-
structed by examining two cases, the first one is when t ∈ (0, τ ] = [a, b] and second one is
t ∈ (τ, T ]. In each cases, we divided the interval into j subinterval as (t0, t1], [t1, t2], ...[tj−1, tj ]
on which operator χ is contraction mapping on all subinterval. Consider χ : X → X with
X = {ζ ∈ C1−η[0, T ]} defined as:
(3.14)

χ(ζ(t)) =
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(a))σ−1f(s, ζ(s), ζ(s− τ))ds.
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Step I: Let t ∈ (0, τ ], so ζ(t − τ) = ϕ(t − τ) = λ(t − τ). Choose k1, k2 such that
0 < k1 < k2 ≤ τ, so C1−η[k1, k2] is complete metric space with

d(ζ(t)− λ(t)) = ∥ζ(t)− λ(t)∥C1−η [k1,k2]

= max
t∈[k1,k2]

∣∣(ψ(t)− ψ(a))σ−1(ζ(t)− λ(t))
∣∣.

Select t1 ∈ (0, τ ] such that

Λ1 =
LΓ(η)

Γ(η + σ)
(ψ(t)− ψ(a))η+σ−1 < 1.

Note that
c

Γ(η)
(ψ(t) − ψ(a))η−1 ∈ C1−η;ψ[0, t1] and in light of Lemma 2.5, χ(ζ(t)) ∈

C1−η;ψ[0, t1]; χ maps C1−η;ψ[0, t1] ino itself.
Now, we prove that χ has a fixed point in C1−η;ψ[0, t1] which is the unique solution to
FDDEs (1.1)-(1.3) on (0, t1]. To this end, it is sufficient to prove that the operator χ is a
contraction map. For any ζ(t), λ(t) ∈ C1−η;ψ[0, t1], we have

∥χ(ζ(t))− χ(λ(t))∥C1−η;ψ [0,t1] = ∥Iσ;ψa+ f(t, ζ(t), ζ(t− τ))− Iσ;ψa+ f(t, λ(t), λ(t− τ))∥C1−η;ψ [0,t1]

≤ ∥Iσ;ψa+ |f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|∥C1−η;ψ [0,t1].

Note that

∥f(t, ζ(t), ζ(t− τ))−f(t, λ(t), λ(t− τ))∥C1−η;ψ[0,t1]

= max
t∈[0,t1]

(ψ(t)− ψ(a))1−η|f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|

so,

∥f(t, ζ(t), ζ(t− τ))−f(t, λ(t), λ(t− τ))∥C1−η;ψ[0,t1]

≥ (ψ(t)− ψ(a))1−η|f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|.

Therefore,

∥f(t, ζ(t), ζ(t− τ))−f(t, λ(t), λ(t− τ))∥tC1−η;ψ[0,t1]

≤ (ψ(t)− ψ(a))η−1|f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|

∥Iσ;ψa+ (f(t, ζ(t), ζ(t− τ))−f(t, λ(t), λ(t− τ)))∥C1−η;ψ[0,t1]

≤ ∥Iσ;ψa+ |f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|∥C1−η;ψ[0,t1]

consequently,

∥χ(ζ(t))− χ(λ(t))∥C1−η;ψ [0,t1] ≤
Γ(η)

Γ(η + σ)
(ψ(t)− ψ(a))η+σ−1

× L

(
∥ζ(t)− λ(t)∥C1−η;ψ[0,t1] + ∥ζ(t− τ)− λ(t− τ)∥C1−η;ψ[0,t1]

)
≤ Γ(η)

Γ(η + σ)
(ψ(t)− ψ(a))η+σ−1

× L

(
∥ζ(t)− λ(t)∥C1−η;ψ[0,t1] + ∥ϕ(t− τ)− ϕ(t− τ)∥C1−η;ψ[0,t1]

)
≤ Γ(η)

Γ(η + σ)
(ψ(t)− ψ(a))η+σ−1L

(
∥ζ(t)− λ(t)∥C1−η;ψ[0,t1]

)
= Λ1∥ζ(t)− λ(t)∥C1−η;ψ[0,t1].
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Since Λ1 < 1, by contraction mapping theorem, we can deduce that a single fixed point
exists, that is the solution ζ0(t) ∈ C1−η;ψ[0, t1] on (0, t1]. If t1 ̸= τ , we consider [t1, τ ] and
note that

χ(ζ(t)) =
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(a))σ−1f(s, ζ(s), ζ(s− τ))ds

=
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t1

a

ψ′(s)(ψ(t)− ψ(a))σ−1f(s, ζ(s), ζ(s− τ))ds

+
1

Γ(σ)

∫ t

t1

ψ′(s)(ψ(t)− ψ(a))σ−1f(s, ζ(s), ζ(s− τ))

=
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t1

a

ψ′(s)(ψ(t)− ψ(a))σ−1

× f(s, ζ(s), ζ(s− τ))ds+ Iσ;ψa+ f(t, ζ(t), ζ(t− τ)).

Select Λ2 < 1 such that Λ2 =
LΓ(η)

Γ(η + σ)
(ψ(t2) − ψ(t1))

η+σ−1 < 1. Let ζ(t), λ(t) ∈ C[t1, t2],

for some t1 < t2 < τ, we get

∥χ(ζ(t))− χ(λ(t))∥C[t1,t2] = ∥Iσ;ψ
t+1

f(t, ζ(t), ζ(t− τ))− Iσ;ψ
t+1

f(t, λ(t), λ(t− τ))∥C[t1,t2]

≤ ∥Iσ;ψ
t+1

|f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|∥C[t1,t2]

≤ Γ(η)

Γ(η + σ)
(ψ(t2)− ψ(t1))

η+σ−1

× ∥f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))∥C[t1,t2]

=
LΓ(η)

Γ(η + σ)
(ψ(t2)− ψ(t1))

η+σ−1

(
∥ζ(t)− λ(t)∥C[t1,t2]

)
= Λ2∥ζ(t)− λ(t)∥C[t1,t2].

Since, Λ2 < 1, χ is contraction on [t1, t2] and there exists a unique solution ζ1(t) for t ∈
[t1, t2], by Lemma 2.9, we can see ζ0(t) = ζ1(t). So

ζ(t) =

{
ζ0(t) 0 < t ≤ t1

ζ1(t) t1 < t ≤ t2.

By lemma 2.7 ζ ∈ C1−η[0, t2], therefore ζ(t) is unique solution of FDDEs (1.1)-(1.3) on
[0, t2].
If t2 ̸= τ, we iterate the above step more (j − 2) times, and we get a unique solution
ζi(t) for [ti, ti+1] with i = 2, 3, · · · j where 0 = t0 < t1 < · · · < tj = τ such that Λi+1 =
LΓ(η)

Γ(η + σ)
(ψ(ti+1)− ψ(ti))

η+σ−1 < 1.

Hence, we have unique solution ζ(t) ∈ C1−η;ψ[0, τ ] such that

ζ(t) =


ζ0(t), 0 < t ≤ t1,

ζ1(t), t1 < t ≤ t2,
...
ζn(t), tj−1 < t ≤ tn = τ.

Now, since ζ(t) ∈ C1−η;ψ[0, τ ] is unique solution and satisfies (3.8). By conversing Lemma
3.11, we proved ζ(t) ∈ Cη1−η;ψ[0, τ ].
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Step II: If t ∈ (τ, T ] and ζ(t), λ(t) ∈ C1−η[τ, T ]. Divide [0, T ] into [0, τ ] ∪ · · · ∪ [(i0 −
1)τ, i0τ ] ∪ [i0τ, T ], where i0 ∈ j such that 0 ≤ T − i0τ ≤ T. Suppose that FDDEs (1.1)-(1.3)
possesses a unique solution say ζ∗i (t) on [τ, iτ ], where 1 ≤ i ≤ i0. So, we want to prove
that unique solution ζ∗i+1(t) exists on [iτ, (i + 1)τ ]. Suppose that χ is contraction map for
t ∈ [τ, iτ ] where ∥χζ(t)− χλ(t)∥C[τ,iτ ] ≤ Λi∥ζ(t)− λ(t)∥C[τ,iτ ].
Let t ∈ [iτ, (i + 1)τ ]. Then ζ(t − τ) = λ(t − τ) = ϕi(t − τ) and k1, k2 such that τ < k1 <
k2 ≤ iτ. So C1−η;ψ[k1, k2] is complete metric space with

d(ζ(t)− λ(t)) = ∥ζ(t)− λ(t)∥C1−η [k1,k2]

= max
t∈[k1,k2]

∣∣(ψ(t)− ψ(a))σ−1(ζ(t)− λ(t))
∣∣.

Select t1 ∈ (iτ, (i+ 1)τ ] such that

Λ1i =
LΓ(η)

Γ(η + σ)
(ψ(t)− ψ(a))η+σ−1 < 1.

Note that
c

Γ(η)
(ψ(t) − ψ(a))η−1 ∈ C1−η;ψ[iτ, t1] so by Lemma 2.5 χ(ζ(t)) ∈ C1−η;ψ[iτ, t1];

χ maps C1−η;ψ[iτ, t1] into itself.
Now for each ζ(t), λ(t) ∈ C1−η;ψ[iτ, t1] we have

∥χ(ζ(t))− χ(λ(t))∥C1−η;ψ[iτ,t1]

= ∥Iσ;ψa+ f(t, ζ(t), ζ(t− τ))− Iσ;ψa+ f(t, λ(t), λ(t− τ))∥C1−η;ψ[iτ,t1]

≤ ∥Iσ;ψa+ |f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|∥C1−η;ψ[iτ,t1]

Note that

∥f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))∥C1−η;ψ[iτ,t1]

= max
t∈[0,t1]

(ψ(t)− ψ(a))1−η|f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|C1−η;ψ [iτ,t1]

however,

∥f(t, ζ(t),ζ(t− τ))− f(t, λ(t), λ(t− τ))∥C1−η;ψ [iτ,t1]

≥ (ψ(t)− ψ(a))1−η|f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|C1−η;ψ[iτ,t1]

therefore,

∥f(t, ζ(t),ζ(t− τ))− f(t, λ(t), λ(t− τ))∥C1−η;ψ [iτ,t1]

≤ (ψ(t)− ψ(a))η−1|f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|C1−η;ψ[iτ,t1](3.15)

∥Iσ;ψa+ (f(t, ζ(t),ζ(t− τ))− f(t, λ(t), λ(t− τ)))∥C1−η;ψ[iτ,t1]

≤ ∥Iσ;ψa+ |f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|∥C1−η;ψ[iτ,t1](3.16)

which gives
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∥χζ(t)− χλ(t)∥C1−η;ψ[iτ,t1] ≤
Γ(η)

Γ(η + σ)
(ψ(t)− ψ(a))η+σ−1

× L

(
∥ζ(t)− λ(t)∥C1−η;ψ [0,t1] + ∥ζ(t− τ)− λ(t− τ)∥C1−η;ψ[iτ,t1]

)
≤ Γ(η)

Γ(η + σ)
(ψ(t)− ψ(a))η+σ−1

× L

(
∥ζ(t)− λ(t)∥C1−η;ψ[iτ,t1] + ∥ϕ(t− τ)− ϕ(t− τ)∥C1−η;ψ [iτ,t1]

)
≤ Γ(η)

Γ(η + σ)
(ψ(t)− ψ(a))η+σ−1L

(
∥ζ(t)− λ(t)∥C1−η;ψ[iτ,t1]

)
= Λ1i∥ζ(t)− λ(t)∥C1−η;ψ[iτ,t1].

Since Λ1i < 1, by contraction mapping theorem we can deduce a single fix point which is
a solution ζ∗0 (t) ∈ C1−η;ψ[iτ, t1].
If t1 ̸= (i+ 1)τ, then set [t1, (i+ 1)τ. Furthermore

χ(ζ(t)) =
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(a))σ−1f(s, ζ(s), ζ(s− τ))ds

=
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t1

a

ψ′(s)(ψ(t)− ψ(a))σ−1f(s, ζ(s), ζ(s− τ))ds

+
1

Γ(σ)

∫ t

t1

ψ′(s)(ψ(t)− ψ(a))σ−1f(s, ζ(s), ζ(s− τ))

=
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t1

a

ψ′(s)(ψ(t)− ψ(a))σ−1

× f(s, ζ(s), ζ(s− τ))ds+ Iσ;ψa+ f(t, ζ(t), ζ(t− τ)).

Choose Λ2i < 1 such that Λ2 =
LΓ(η)

Γ(η + σ)
(ψ(t1)−ψ(t2))η+σ−1 < 1. Let ζ(t), λ(t) ∈ C[t1, t2],

for some t1 < t2 < (i+ 1)τ, we get

∥χ(ζ(t))− χ(λ(t))∥C[t1,t2]
= ∥Iσ;ψ

t+1
f(t, ζ(t), ζ(t− τ))− Iσ;ψ

t+1
f(t, λ(t), λ(t− τ))∥C[t1,t2]

≤ ∥Iσ;ψ
t+1

|f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))|∥C[t1,t2]

≤ Γ(η)

Γ(η + σ)
(ψ(t2)− ψ(t1))

η+σ−1∥f(t, ζ(t), ζ(t− τ))− f(t, λ(t), λ(t− τ))∥C[t1,t2]

≤ LΓ(η)

Γ(η + σ)
(ψ(t2)− ψ(t1))

η+σ−1

(
∥ζ(t)− λ(t)∥C[t1,t2] + ∥ζ(t− τ)− λ(t− τ)∥C[t1,t2]

)
≤ LΓ(η)

Γ(η + σ)
(ψ(t2)− ψ(t1))

η+σ−1

(
∥ζ(t)− λ(t)∥C[t1,t2] + ∥ϕ(t− τ)− ϕ(t− τ)∥C[t1,t2]

)
=

LΓ(η)

Γ(η + σ)
(ψ(t2)− ψ(t1))

η+σ−1

(
∥ζ(t)− λ(t)∥C[t1,t2]

)
= Λ2i∥ζ(t)− λ(t)∥C[t1,t2].
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Since, Λ2i < 1, χ is contraction on [t1, t2] and there exists a unique solution ζ1(t) for
t ∈ [t1, t2], by Lemma 2.9, we can see ζ0(t) = ζ1(t).

ζ(t) =

{
ζ0(t), 0 < t ≤ t1

ζ1(t), t1 < t ≤ t2.

By Lemma 2.7 u ∈ C1−η[0, t2], therefore ζ(t) is unique solution of FDDEs (1.1)-(1.3) on
[0, t2].
If t2 ̸= (i+ 1)τ, we iterate the above step more (j − 2) times, after that we get the unique
solution λi(t) for [ti, ti+1] with i = 2, 3, · · · j, where iτ = t0 < t1 < · · · < tj = (i+ 1)τ such
that

Λi+1 =
LΓ(η)

Γ(η + σ)
(ψ(ti+1)− ψ(ti))

η+σ−1 < 1.

Hence, we have unique solution ζ(t) ∈ C1−η;ψ[iτ, (i+ 1)τ ] such that

ζ(t) =


ζ0(t), iτ < t ≤ t1,

ζ1(t), t1 < t ≤ t2,
...
ζn(t), tj−1 < t ≤ tj = (i+ 1)τ.

Now, since ζ(t) ∈ C1−η;ψ[iτ, (i + 1)τ ] is a unique solution and satisfies (3.8). By converse
part of Lemma 3.11 we proved ζ(t) ∈ Cη1−η;ψ[iτ, (i+ 1)τ ]. □

4. CONTINUOUS DEPENDENCE

Theorem 4.3. Let ψ ∈ C([a, b],R) a function such that it is increasing and ψ′(t) ̸= 0, for all
t ∈ [a, b]. Also, let f ∈ (a, b]×R×R → R is continuation and satisfies Lipschitz condition (A2)
on R and σ > 0, ε > 0 such that 0 < σ − ϵ < σ ≤ 1 with 0 ≤ δ ≤ 1. For any a ≤ t ≤ b, assume
that ζ is the solution of the FDDEs (1.1)-(1.3) and λ∗ is the solution of the following problem:

(4.17) Dσ−ε,δ;ψ
a+ λ∗(t) = f(t, λ∗(t), λ∗(t− τ)), 0 < σ < 1, 0 ≤ δ ≤ 1, t > a,

(4.18) λ∗(t) = ϕ(t), −τ ≤ t < 0

(4.19) I
1−η−ε(δ−1);ψ
a+ λ∗(a) = c∗. η = σ + δ − σδ.

Then, for a < t ≤ b,

|λ∗(t)− λ(t)| ≤ B(t) +

∫ t

a

[ ∞∑
k=1

(
LΓ(σ − ε)

Γ(σ)

)k
ψ′(s)(ψ(t)− ψ(s))k(σ−ε)−1

Γ(k(σ − ε))
B(s)

]
ds,

where

B(t) =

∣∣∣∣c∗(ψ(t)− ψ(a))η+ε(δ−1)−1

Γ(η + ε(δ − 1))
− c(ψ(t)− ψ(a))η−1

Γ(η)

∣∣∣∣(4.20)

+ ∥f∥
∣∣∣∣ (ψ(t)− ψ(a))σ−ε

Γ(σ − ε+ 1)
− (ψ(t)− ψ(a))σ−ε

Γ(σ − ε)Γ(σ)

∣∣∣∣
+ ∥f∥

∣∣∣∣ (ψ(t)− ψ(a))σ−ε

Γ(σ − ε)Γ(σ)
− (ψ(t)− ψ(a))σ

Γ(σ + 1)

∣∣∣∣ ,
∥f∥ = max

t∈[a,b]
|f(t, λ(t), λ(t− τ))| .
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Proof. The FDDEs (1.1)-(1.3) and (4.17)-(4.19), have integral equations which are given by

λ(t) =
c

Γ(η)
(ψ(t)− ψ(a))η−1

+
1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1f(s, λ(s), )ds, t > a,

and

λ∗(t) =
c∗

Γ(η + ε(δ − 1))
(ψ(t)− ψ(a))η+ε(δ−1)−1

+
1

Γ(σ − ε)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−ε−1f(s, λ∗(s), λ∗(s− τ))ds, t > a,

respectively. It follows that

|λ∗(t)−λ(t)| ≤
∣∣∣∣c∗(ψ(t)− ψ(a))η+ε(δ−1)−1

Γ(η + ε(δ − 1))
− c(ψ(t)− ψ(a))η−1

Γ(η)

∣∣∣∣
+

∣∣∣∣ 1

Γ(σ − ε)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−ε−1f(s, λ∗(s), λ∗(s− τ))ds

− 1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1f(s, λ(s), λ(s− τ))ds

∣∣∣∣
≤
∣∣∣∣c∗(ψ(t)− ψ(a))η+ε(δ−1)−1

Γ(η + ε(δ − 1))
− c(ψ(t)− ψ(a))η−1

Γ(η)

∣∣∣∣
+

∣∣∣∣ ∫ t

a

ψ′(s)

[
(ψ(t)− ψ(s))σ−ε−1

Γ(σ − ε)
− (ψ(t)− ψ(s))σ−ε−1

Γ(σ)

]
f(s, λ∗(s), λ∗(s− τ))ds

+
1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−ε−1 [f(s, λ∗(s), λ∗(s− τ))− f(s, λ(s), λ(s− τ))] ds

+

∫ t

a

ψ′(s)

[
(ψ(t)− ψ(s))σ−ε−1

Γ(σ)
− (ψ(t)− ψ(s))σ−1

Γ(σ)

]
f(s, λ(s), λ(s− τ))ds

∣∣∣∣.
Since

|λ∗(t)− λ(t)| =|f(t, λ∗(t), λ∗(t− τ))− f(t, λ(t), λ(−τ))|
≤ L(|λ∗(t)− λ(t)|+ |λ∗(t− τ)− λ(−τ)|
≤ L|λ∗(t)− λ(t)|.

Then

|λ∗(t)− λ(t)| ≤
∣∣∣∣c∗(ψ(t)− ψ(a))η+ε(δ−1)−1

Γ(η + ε(δ − 1))
− c(ψ(t)− ψ(a))η−1

Γ(η)

∣∣∣∣
+ ∥f∥

∣∣∣∣ (ψ(t)− ψ(a))σ−ε

Γ(σ − ε+ 1)
− (ψ(t)− ψ(a))σ−ε

Γ(σ)Γ(σ − ε)

∣∣∣∣
+L

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−ε−1 |λ∗(s)− λ(s)| ds

+ ∥f∥
[
(ψ(t)− ψ(s))σ−ε

Γ(σ)Γ(σ − ε)
− (ψ(t)− ψ(s))σ

Γ(σ + 1)

]
= B(t) + L

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−ε−1 |λ∗(s)− λ(s)| ds,
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where B(t) is defined as in (4.20). By applying Lemma 2.10, we conclude that

|λ∗(t)− λ(t)| ≤ B(t) +

∫ t

a

[ ∞∑
k=1

(
LΓ(σ − ε)

Γ(σ)

)k
ψ′(s)(ψ(t)− ψ(s))k(σ−ε)−1

Γ(k(σ − ε))
B(s)

]
ds.

□

Next, we consider the following fractional differential equation

(4.21) Dσ,δ;ψ
a+ λ(t) = f(t, λ(t), λ(t− τ)), 0 < σ < 1, 0 ≤ δ ≤ 1, t > a.

with condition

(4.22) λ(t) = ϕ(t), −τ ≤ t < 0

(4.23) I1−η;ψa+ λ(a) = c+ ρ, η = σ + δ − σδ.

Theorem 4.4. Assume that hypotheses of Theorem 3.2 hold. Let ζ and λ∗ are solutions of the
FDDEs (1.1)-(1.3) and (4.21)-(4.23) respectively. Then

|λ(t)− λ∗(t)| ≤ |ρ| (ψ(t)− ψ(a))η−1Eσ,η [L(ψ(t)− ψ(a))σ] , t ∈ [a, b].

Proof. In view of Theorem 3.2, we have λ(t) = lim
k→∞

λk(t) with

(4.24) λ0(t) =
c

Γ(η)
(ψ(t)− ψ(a))η−1

and

λk(t) = λ0(t) + Iσ;ψa+ Fλk−1
(t)

=
c

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1f(s, λk−1(s), λk−1(s))ds.

(4.25)

Clearly, we can write λ∗(t) = lim
k→∞

λ∗k(t) with

(4.26) λ∗0(t) =
(c+ ρ)

Γ(η)
(ψ(t)− ψ(a))η−1

and

λ∗k(t) = λ∗0(t) + Iσ;ψa+ fλ∗
k−1

(t)

=
(c+ ρ)

Γ(η)
(ψ(t)− ψ(a))η−1 +

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1f(s, λ∗k−1(s), λ
∗
k−1(s))ds.

(4.27)

By (4.24) and (4.26) we get
(4.28)

|λ0(t)− λ∗0(t)| =
∣∣∣∣ c

Γ(η)
(ψ(t)− ψ(a))η−1 − (c+ ρ)

Γ(η)
(ψ(t)− ψ(a))η−1

∣∣∣∣ ≤ |ρ| (ψ(t)− ψ(a))η−1

Γ(η)
.
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Using relations (4.24)-(4.27), the Lipschitz condition (A2) and the inequality (4.28), we get

|λ1(t)− λ∗1(t)| ≤ |ρ| (ψ(t)− ψ(a))η−1

Γ(η)
+

1

Γ(σ)

×
∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1|f(s, λ0(s), λ0(s− τ))− f(s, λ∗0(s), λ
∗
0(s− τ)|ds

≤ |ρ| (ψ(t)− ψ(a))η−1

Γ(η)
+

L

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1|λk(t)− λ∗0(t)|ds

≤ |ρ| (ψ(t)− ψ(a))η−1

Γ(η)
+
L|ρ|
Γ(η)

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1(ψ(s)− ψ(a))η−1ds

=|ρ| (ψ(t)− ψ(a))η−1

Γ(η)
+

L|ρ|
Γ(η + σ)

(ψ(t)− ψ(a))η+σ−1.

Hence,

(4.29) |λ1(t)− λ∗1(t)| ≤ |ρ| (ψ(t)− ψ(a))η−1
1∑
i=0

(L)
i (ψ(t)− ψ(a))σi

Γ(η + σk)
.

On the other hand, we have

|λ2(t)− λ∗2(t)| ≤ |ρ| (ψ(t)− ψ(a))η−1

Γ(η)
+

1

Γ(σ)

×
∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1|f(s, λ1(s), λ1(s− τ))− f(s, λ∗1(s), λ
∗
1(s− τ)|ds

≤|ρ| (ψ(t)− ψ(a))η−1

Γ(η)
+

1

Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1L|λ1(t)− λ∗1(t)|ds

≤|ρ| (ψ(t)− ψ(a))η−1

Γ(η)
+

L|ρ|
Γ(η)Γ(σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1(ψ(s)− ψ(a))η−1ds

+
L2|ρ|

Γ(σ)Γ(η + σ)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))σ−1(ψ(s)− ψ(a))η+σ−1ds

≤|ρ| (ψ(t)− ψ(a))η−1

Γ(η)
+

L|ρ|
Γ(η + σ)

(ψ(t)− ψ(a))η+σ−1

+
L2|ρ|

Γ(η + 2σ)
(ψ(t)− ψ(a))η+2σ−1

=|ρ|(ψ(t)− ψ(a))η−1
2∑
i=0

Li
(ψ(t)− ψ(a))σi

Γ(η + σi)
.

Using the mathematical induction, we get

(4.30) |λk(t)− λ∗k(t)| ≤ |ρ| (ψ(t)− ψ(a))η−1
k∑
i=0

Li
(ψ(t)− ψ(a))σi

Γ(η + σi)
.

Taking the limit k → ∞ in inequation (4.30), we obtain

|λk(t)− λ∗k(t)| ≤ |ρ| (ψ(t)− ψ(a))η−1Eσ,η (L(ψ(t)− ψ(a))σ) .

□
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5. EXAMPLE

Example 5.1. Consider the following nonlinear FDDEs:

(5.31) Dσ,δ;ψ
a+ y(t) = −ky + f(t− y(t)),

for f(t, y(t)) = sin(t) + y2(t), t ≥ τ and y(t) = g(t), t ∈ [0, τ ]. The integral solution can be
written as

(5.32) y(t) = g(t) +
1

Γ(σ)

∫ t

0

ψ′(s)(t− ψ(s))σ−1(−ky(s− τ) + sin(s) + y2(s))ds.

For ψ(t) = sin(t) with σ = 0.5, 0.65, 0.7, 0.85, 0.95, and δ = 1, all the conditions of Theorem
3.2 satisfied. Hence there exists a fixed point solution y(t) given by (5.32).

Example 5.2. Consider the following nonlinear FDDEs:

(5.33) Dσ,δ;ψ
a+ y(t) = h(t, y(t− τ)),

for h(t, y(t− τ)) = e−t cos(y(t− τ))+ t2, t ≥ τ, y(t) = g(t), t ∈ [0, τ ]. The equivalent integral
solution, by Lemma 2.1, is:

(5.34) y(t) = g(t) +
1

Γ(σ)

∫ t

0

ψ′(s)(t− ψ(s))σ−1(e−s cos(y(s− τ)) + s2)ds.

For ψ(t) = log(1 + t2) with σ = 0.5, 0.65, 0.7, 0.85, 0.95, and δ = 1.

6. CONCLUSION AND FUTURE SCOPE

We established the existence and uniqueness of solutions to nonlinear fractional delay
differential equations (FDDEs) by applying the contraction mapping principle. Further,
the result of continuous dependence of solution on order of differentiation using a gen-
eralized Gronwall inequality. Main results are justified with illustrative examples. This
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work may proven to be foundational work for nonlocal delay boundary value problems,
some physico-chemical applications such as thermal shock problem with practical initial
and boundary conditions in near future.

REFERENCES

[1] Abdo, M. S.; Panchal, S. K. Fractional integro-differential equations involvingψ-Hilfer fractional derivative.
Adv. Appl. Math. Mech. 11 (2019), no. 2, 338–359.
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