

Multiple positive solutions to n -component coupled system of iterative systems on time scales

K. R. PRASAD¹ AND B. SRAVANI²

ABSTRACT. This study explores advances in detecting positive solutions for second order n -component coupled system of iterative systems with two-point boundary conditions on time scales. In this system, each component interacts with both itself and the next component in a cyclic manner. We establish criteria for existence of at least one positive solution using Guo-Krasnosel'skii fixed point theorem and at least three positive solutions utilizing Ren-Ge-Ren fixed point theorem.

1. INTRODUCTION

A time scale is a non-empty closed subset of the real numbers that represents the set of points at which a dynamic system evolves. The idea behind time scales is to unify and extend continuous and discrete time models into one framework, allowing for a more versatile approach to modeling systems that can operate in both continuous and discrete time. It provides a powerful tool for modeling and analyzing dynamic systems that exhibit different types of time-dependent behavior. For more details, refer to [2, 3, 4, 13, 16].

A strong foundation for resolving dynamic equations in mixed discrete-continuous settings is offered by the iterative system of boundary value problems (BVPs) on time scales. Systems having recursive architecture or feedback loops are modeled using iterative dynamic equations. These systems often arise in optimization, numerical methods and simulations, where repeated steps are key to finding solutions and interpreting the solutions, see [6, 12, 17, 20, 22].

In an n -component system of iterative systems, where the last iteration of component leads to the first iteration of the next component, the system evolves through interdependencies between components. In such systems, each component's iteration is tightly tied to the iterations of its neighbors, resulting in a closed-loop interaction. The behavior of each component is determined not just by its own state, but also by the states of the other components. These interactive coupled systems are primarily used to model the dynamics of multiple layers in a neural network, where the output of one layer becomes the input for the next layer, to study the spread of diseases among multiple populations, where the infection rate of one population affects the infection rate of the next population and to model the dynamics of multiple species in an ecosystem, we refer to [1, 5, 8, 14, 19].

In 2006, Hao et. al, [11] established existence of positive solutions for the BVP on time scales

$$u^{\Delta\Delta}(t) + m(t)f(t, u(\sigma(t))) = 0, \quad t \in [a, b]_{\mathbb{T}},$$

$$\alpha u(a) - \beta u^{\Delta}(a) = 0, \quad \text{and} \quad \gamma u(\sigma(b)) + \delta u^{\Delta}(\sigma(b)) = 0,$$

Received: 08.05.2025. In revised form: 07.10.2025. Accepted: 07.01.2026

2020 *Mathematics Subject Classification.* 34B18, 34N05.

Key words and phrases. *Green's function, iterative system, time scale, singularity, cone, positive solution.*

Corresponding author: Rajendra Prasad; rajendra92@rediffmail.com

Recently, Prasad et al. [18] in 2022, considered the following two-point iterative BVP on time scales

$$v_\ell^{\Delta\Delta}(t) + L(t)g_\ell(v_{\ell+1}(t)) = 0, \quad 1 \leq \ell \leq m, \quad t \in (0, \mathfrak{T})_{\mathbb{T}},$$

$$v_{m+1}(t) = v_1(t), \quad t \in (0, \mathfrak{T})_{\mathbb{T}},$$

$$v_\ell(0) = v_\ell^\Delta(0), \quad v_\ell(\mathfrak{T}) = -v_\ell^\Delta(\mathfrak{T}), \quad 1 \leq \ell \leq m,$$

where $m \in \mathbb{N}$, $L(t) = \prod_{i=1}^m L_i(t)$ and each $L_i(t) \in L_\Delta^{p_i}([0, \mathfrak{T}]_{\mathbb{T}})$ has m -singularities and established infinitely many positive solutions.

Based on the above studies, we wish to study the existence of positive solutions for second order n -component coupled system of iterative system with two-point boundary conditions on time scales

$$(1.1) \quad \left. \begin{aligned} (u_j^{(i)})^{\Delta\Delta}(r) + L_j(r) f_j^{(i)}(u_j^{(i+1)}(r)) &= 0, \quad 1 \leq i \leq m, \quad 1 \leq j \leq n \quad r \in [0, w]_{\mathbb{T}}, \\ u_j^{(m+1)}(r) &= u_{j+1}^{(1)}(r), \quad u_{n+1}^{(1)}(r) = u_1^{(1)}(r), \\ a_j u_j^{(i)}(0) - b_j (u_j^{(i)})^\Delta(0) &= 0, \quad c_j u_j^{(i)}(w) + d_j (u_j^{(i)})^\Delta(w) = 0, \end{aligned} \right\}$$

where $n, m \in \mathbb{N}$, $u_j^{(i)}$ represents i^{th} iteration of j^{th} component of system and $L_j(r) = \prod_{k=1}^s \mu_{jk}(r)$ and each $\mu_{jk}(r) \in L_\Delta^{p_k}([0, w]_{\mathbb{T}})$ ($p_k \geq 1$) has s -singularities in the interval $[0, w]_{\mathbb{T}}$. Throughout the study, we assume the following conditions hold:

- (L1) each $f_j^{(i)} : [0, \infty) \rightarrow [0, \infty)$ is continuous for $1 \leq j \leq n$, $1 \leq i \leq m$,
- (L2) $\lim_{r \rightarrow r_k} \mu_{jk}(r) = \infty$, where $0 < r_n < r_{n-1} < \dots < r_1 < w$ for $1 \leq j \leq n$, $1 \leq k \leq s$,
- (L3) there exists $e_{jk} > 0$ such that $\mu_{jk}(r) > e_{jk}$ for $1 \leq j \leq n$, $1 \leq k \leq s$ for $r \in [0, w]_{\mathbb{T}}$.

The rest of the paper is organized as follows: In section 2, we present some preliminaries, which are used in the paper. In Section 3, we construct the Green's function for the homogeneous BVP corresponding to (1.1) and establish bounds for the Green's function. Section 4 is devoted to establish the criteria for the existence of positive solutions to (1.1) using Guo-Krasnosel'skii fixed point theorem. In section 5, we establish the existence of at least three positive solutions using Ren-Ge-Ren fixed point theorem. Finally, last section provides examples to demonstrate our results.

2. PRELIMINARIES

In this section, we present some basic definitions and lemmas that will be useful in our subsequent discussions.

Definition 2.1. [7] A time scale \mathbb{T} is a non-empty closed subset of the real numbers \mathbb{R} . \mathbb{T} has the topology that it inherits from the real numbers with the standard topology. It follows that the jump operators $\sigma, \rho : \mathbb{T} \rightarrow \mathbb{T}$, are defined by

$$\sigma(t) = \inf\{\tau \in \mathbb{T} : \tau > t\}, \quad \rho(t) = \sup\{\tau \in \mathbb{T} : \tau < t\}$$

respectively.

- The point $t \in \mathbb{T}$ is left-dense, left-scattered, right-dense, right-scattered if $\rho(t) = t$, $\rho(t) < t$, $\sigma(t) = t$, $\sigma(t) > t$ respectively.
- A function $f : \mathbb{T} \rightarrow \mathbb{R}$ is called rd-continuous provided it is continuous at right-dense points in \mathbb{T} and its left-sided limits exist (finite) at left-dense points in \mathbb{T} . The set of all rd-continuous functions $f : \mathbb{T} \rightarrow \mathbb{R}$ is denoted by $C_{\text{rd}} = C_{\text{rd}}(\mathbb{T}, \mathbb{R})$.

- A function $f : \mathbb{T} \rightarrow \mathbb{R}$ is called *ld-continuous* provided it is continuous at left-dense points in \mathbb{T} and its right-sided limits exist (finite) at right-dense points in \mathbb{T} . The set of all ld-continuous functions $f : \mathbb{T} \rightarrow \mathbb{R}$ is denoted by $C_{ld} = C_{ld}(\mathbb{T}, \mathbb{R})$.
- By an interval time scale, we mean the intersection of a real interval with a given time scale, i.e., $[a, b]_{\mathbb{T}} = [a, b] \cap \mathbb{T}$. Other intervals can be defined similarly.

Definition 2.2. [10] Let $E \subset \mathbb{T}$ be a Δ -measurable set and $p \in \bar{\mathbb{R}} \equiv \mathbb{R} \cup \{-\infty, +\infty\}$ be such that $p \geq 1$ and $f : E \rightarrow \bar{\mathbb{R}}$ be a Δ -measurable function. We say that f belongs to $L_{\Delta}^p(E)$ provided that either

$$\int_E |f|^p(s) \Delta s < \infty, \quad \text{if } p \in [1, \infty),$$

or there exists a constant $M \in \mathbb{R}$ such that

$$|f| \leq M, \quad \Delta - \text{a.e. on } E \text{ if } p = \infty.$$

3. KERNEL AND BOUNDS

Now, we express the solution of BVP as a solution of integral equation by determining the Green's function for the corresponding homogeneous BVP. We also establish certain properties of Green's function that are essential for subsequent discussions.

Lemma 3.1. Let $H_j(r) \in C_{rd}([0, w]_{\mathbb{T}}, \mathbb{R})$, $1 \leq j \leq n$. Then the BVP

$$(3.2) \quad (u_j^{(1)})^{\Delta\Delta}(r) + H_j(r) = 0, \quad r \in [0, w]_{\mathbb{T}},$$

$$(3.3) \quad a_j u_j^{(1)}(0) - b_j (u_j^{(1)})^{\Delta}(0) = 0, \quad c_j u_j^{(1)}(w) + d_j (u_j^{(1)})^{\Delta}(w) = 0,$$

has one and only one solution

$$(3.4) \quad u_j^{(1)}(r) = \int_0^w N_j(r, s) H_j(s) \Delta s,$$

where

$$(3.5) \quad N_j(r, s) = \frac{1}{A_j} \begin{cases} (a_j \sigma(s) + b_j)(c_j(w - r) + d_j), & \text{if } \sigma(s) \leq r, \\ (a_j r + b_j)(c_j(w - \sigma(s)) + d_j), & \text{if } r \leq s, \end{cases}$$

and

$$A_j = a_j d_j + c_j w a_j + b_j c_j \neq 0, \quad j = 1, 2, \dots, n.$$

Proof. An equivalent integral equation for (3.2) is

$$u_j^{(1)}(r) = - \int_0^r [r - \sigma(s)] H_j(s) \Delta s + f_1 r + f_2.$$

Applying the boundary conditions (3.3), we get

$$f_1 = \frac{a_j}{A_j} \int_0^w [c_j(w - \sigma(s)) + d_j] H_j(s) \Delta s \text{ and } f_2 = \frac{b_j f_1}{a_j}.$$

Then,

$$\begin{aligned} u_j^{(1)}(r) &= - \int_0^r [r - \sigma(s)] H_j(s) \Delta s + \frac{(a_j r + b_j)}{A_j} \int_0^w [c_j(w - \sigma(s)) + d_j] H_j(s) \Delta s \\ &= \int_0^w N_j(r, s) H_j(s) \Delta s. \end{aligned}$$

□

Note that an mn -tuple $(u_1^{(1)}(r), u_1^{(2)}(r), \dots, u_1^{(m)}(r), u_2^{(1)}(r), u_2^{(2)}(r), \dots, u_2^{(m)}(r), \dots, u_n^{(1)}(r), u_n^{(2)}(r), \dots, u_n^{(m)}(r))$ is a solution of (1.1) if and only if

$$u_j^{(i)}(r) = \int_0^w N_j(r, s) L_j(s) f_j^{(i)}(u_j^{(i+1)}(s)) \Delta s, \quad 1 \leq j \leq n, \quad 1 \leq i \leq m,$$

$$u_j^{(m+1)}(r) = u_{j+1}^{(1)}(r), \quad u_{n+1}^{(1)}(r) = u_1^{(1)}(r),$$

$$u_1^{(1)}(r) = \int_0^w N_1(r, s_1) L_1(s_1) f_1^{(1)} \left(\int_0^w N_1(s_1, s_2) L_1(s_2) f_1^{(2)} \left(\int_0^w N_1(s_2, s_3) L_1(s_3) f_1^{(3)} \dots \right. \right.$$

$$\left. \left. \dots \right) \int_0^w N_1(s_{m-1}, s_m) L_1(s_m) f_1^{(m)} \left(\int_0^w N_2(s_m, s_{m+1}) L_2(s_{m+1}) f_2^{(1)} \right. \right.$$

$$\left. \left. \dots \right) \int_0^w N_2(s_{m+2}, s_{m+3}) L_2(s_{m+3}) f_2^{(2)} \dots f_2^{(m-1)} \left(\int_0^w N_2(s_{2m-1}, s_{2m}) L_2(s_{2m}) f_2^{(m)} \dots \right. \right.$$

...

...

...

$$f_{n-1}^{(m)} \left(\int_0^w N_n(s_{mn-m}, s_{mn-m+1}) L_n(s_{mn-m+1}) f_n^{(1)} \left(\int_0^w N_n(s_{mn-m+1}, s_{mn-m+2}) \right. \right.$$

$$L_n(s_{mn-m+2}) f_n^{(2)} \dots f_n^{(m-1)} \left(\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} \right) \dots$$

$$\left. \Delta s_{mn-m+2} \right) \Delta s_{mn-m+1} \left. \right) \dots \Delta s_{2m} \dots \left. \right) \Delta s_{m+2} \left. \right) \Delta s_{m+1} \left. \right) \Delta s_m \left. \right) \dots \Delta s_3 \left. \right) \Delta s_2 \left. \right) \Delta s_1.$$

Lemma 3.2. Let $G_j(p_j) = \min \left\{ \frac{a_j p_j + b_j}{a_j w + b_j}, \frac{c_j p_j + d_j}{c_j w + d_j} \right\} < 1$, where $p_j \in (0, \frac{w}{2})_{\mathbb{T}}$, $j = 1, 2, \dots, n$. Then $N_j(r, s)$ has the following properties:

- (i) $0 \leq N_j(r, s) \leq N_j(s, s)$ for all $r, s \in [0, w]_{\mathbb{T}}$,
- (ii) $G_j(p_j) N_j(s, s) \leq N_j(r, s)$ for all $r \in [p_j, w - p_j]_{\mathbb{T}}$ and $s \in [0, w]_{\mathbb{T}}$.

Proof. We can establish the inequality (i) by algebraic computations. For the inequality (ii), let $r \in [p_j, w - p_j]_{\mathbb{T}}$ and $r \leq s$, we obtain

$$\frac{N_j(r, s)}{N_j(s, s)} = \frac{a_j r + b_j}{a_j s + b_j} \geq \frac{a_j p_j + b_j}{a_j w + b_j} \geq G_j(p_j).$$

Let $r \in [p_j, w - p_j]_{\mathbb{T}}$ and $r \geq s$, we obtain

$$\frac{N_j(r, s)}{N_j(s, s)} = \frac{c_j(w - r) + d_j}{c_j(w - s) + d_j} \geq \frac{c_j p_j + d_j}{c_j w + d_j} \geq G_j(p_j).$$

This completes the proof. \square

4. EXISTENCE OF AT LEAST ONE POSITIVE SOLUTION

In this section, we establish the presence of positive solution for (1.1) by employing the Hölder's inequality and Guo–Krasnosel'skii fixed point theorem.

Let $B = C_{rd}([0, w]_{\mathbb{T}}, \mathbb{R})$ be a Banach space with norm $\|u_j\| = \max_{r \in [0, w]_{\mathbb{T}}} |u_j(r)|$. For $p_j \in (0, \frac{w}{2})_{\mathbb{T}}$, letting $K = \min \{G_1(p_1), G_2(p_2), \dots, G_n(p_n)\}$, $z = \max \{p_1, p_2, \dots, p_n\}$, define the cone $P \subset B$ as

$$P = \{u_j \in b : \text{each } u_j(r) \geq 0 \text{ on } [0, w]_{\mathbb{T}}, \min_{r \in [z, w-z]_{\mathbb{T}}} u_j(r) \geq K \|u_j\|_B\}.$$

For any $u_1^{(1)} \in P$, define an operator $T : P \rightarrow B$ by

$$\begin{aligned} u_1^{(1)}(r) = & \int_0^w N_1(r, s_1) L_1(s_1) f_1^{(1)} \left(\int_0^w N_1(s_1, s_2) L_1(s_2) f_1^{(2)} \left(\int_0^w N_1(s_2, s_3) L_1(s_3) f_1^{(3)} \dots \right. \right. \\ & f_1^{(m-1)} \left(\int_0^w N_1(s_{m-1}, s_m) L_1(s_m) f_1^{(m)} \left(\int_0^w N_2(s_m, s_{m+1}) L_2(s_{m+1}) f_2^{(1)} \right. \right. \\ & \left(\int_0^w N_2(s_{m+2}, s_{m+3}) L_2(s_{m+3}) f_2^{(2)} \dots f_2^{(m-1)} \left(\int_0^w N_2(s_{2m-1}, s_{2m}) L_2(s_{2m}) f_2^{(m)} \dots \right. \right. \\ & \dots \\ & \dots \\ & f_{n-1}^{(m)} \left(\int_0^w N_n(s_{mn-m}, s_{mn-m+1}) L_n(s_{mn-m+1}) f_n^{(1)} \left(\int_0^w N_n(s_{mn-m+1}, s_{mn-m+2}) \right. \right. \\ & L_n(s_{mn-m+2}) f_n^{(2)} \dots f_n^{(m-1)} \left(\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)} (u_1^{(1)}(s_{mn})) \Delta s_{mn} \right) \dots \\ & \left. \Delta s_{mn-m+2} \right) \Delta s_{mn-m+1} \dots \Delta s_{2m} \dots \left. \Delta s_{m+2} \right) \Delta s_{m+1} \left. \Delta s_m \right) \dots \Delta s_3 \left. \Delta s_2 \right) \Delta s_1. \end{aligned}$$

Lemma 4.3. *Assume that (L1)–(L2) hold. Then for each $p_j \in (0, \frac{w}{2})_{\mathbb{T}}$, $T(P) \subset P$ and $T : P \rightarrow P$ is completely continuous.*

Proof. From Lemma 3.2, we have $N_j(r, s) \geq 0$, for all $r, s \in [0, w]_{\mathbb{T}}$ and so $Tu_1^{(1)}(r) \geq 0$. We can easily establish that T is completely continuous. For any $u_1^{(1)} \in P$, we have

$$\begin{aligned} \|Tu_1^{(1)}\| = & \max_{r \in [0, w]_{\mathbb{T}}} \int_0^w N_1(r, s_1) L_1(s_1) f_1^{(1)} \left(\int_0^w N_1(s_1, s_2) L_1(s_2) f_1^{(2)} \left(\int_0^w N_1(s_2, s_3) L_1(s_3) f_1^{(3)} \dots \right. \right. \\ & f_1^{(m-1)} \left(\int_0^w N_1(s_{m-1}, s_m) L_1(s_m) f_1^{(m)} \left(\int_0^w N_2(s_m, s_{m+1}) L_2(s_{m+1}) f_2^{(1)} \right. \right. \\ & \left(\int_0^w N_2(s_{m+2}, s_{m+3}) L_2(s_{m+3}) f_2^{(2)} \dots f_2^{(m-1)} \left(\int_0^w N_2(s_{2m-1}, s_{2m}) L_2(s_{2m}) f_2^{(m)} \dots \right. \right. \\ & \dots \\ & \dots \\ & f_{n-1}^{(m)} \left(\int_0^w N_n(s_{mn-m}, s_{mn-m+1}) L_n(s_{mn-m+1}) f_n^{(1)} \left(\int_0^w N_n(s_{mn-m+1}, s_{mn-m+2}) \right. \right. \\ & L_n(s_{mn-m+2}) f_n^{(2)} \dots f_n^{(m-1)} \left(\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)} (u_1^{(1)}(s_{mn})) \Delta s_{mn} \right) \dots \\ & \left. \Delta s_{mn-m+2} \right) \Delta s_{mn-m+1} \dots \Delta s_{2m} \dots \left. \Delta s_{m+2} \right) \Delta s_{m+1} \left. \Delta s_m \right) \dots \Delta s_3 \left. \Delta s_2 \right) \Delta s_1. \end{aligned}$$

$$\begin{aligned}
& \leq \int_0^w N_1(s_1, s_1) L_1(s_1) f_1^{(1)} \left(\int_0^w N_1(s_1, s_2) L_1(s_2) f_1^{(2)} \left(\int_0^w N_1(s_2, s_3) L_1(s_3) f_1^{(3)} \dots \right. \right. \\
& \quad \left. \left. f_1^{(m-1)} \left(\int_0^w N_1(s_{m-1}, s_m) L_1(s_m) f_1^{(m)} \left(\int_0^w N_2(s_m, s_{m+1}) L_2(s_{m+1}) f_2^{(1)} \right. \right. \right. \\
& \quad \left. \left. \left. \left(\int_0^w N_2(s_{m+2}, s_{m+3}) L_2(s_{m+3}) f_2^{(2)} \dots f_2^{(m-1)} \left(\int_0^w N_2(s_{2m-1}, s_{2m}) L_2(s_{2m}) f_2^{(m)} \dots \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \dots \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \dots \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. f_{n-1}^{(m)} \left(\int_0^w N_n(s_{mn-m}, s_{mn-m+1}) L_n(s_{mn-m+1}) f_n^{(1)} \left(\int_0^w N_n(s_{mn-m+1}, s_{mn-m+2}) \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \left. L_n(s_{mn-m+2}) f_n^{(2)} \dots f_n^{(m-1)} \left(\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)} (u_1^{(1)}(s_{mn})) \Delta s_{mn} \right) \dots \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \left. \Delta s_{mn-m+2} \right) \Delta s_{mn-m+1} \right) \dots \Delta s_{2m} \dots \right) \Delta s_{m+2} \right) \Delta s_{m+1} \right) \Delta s_m \right) \dots \Delta s_3 \right) \Delta s_2 \right) \Delta s_1. \\
& \min_{r \in [z, w-z]_{\mathbb{T}}} T u_1^{(1)}(r) = \min_{r \in [z, w-z]_{\mathbb{T}}} \int_0^w N_1(r, s_1) L_1(s_1) f_1^{(1)} \left(\int_0^w N_1(s_1, s_2) L_1(s_2) f_1^{(2)} \dots \right. \\
& \quad \left. f_1^{(m-1)} \left(\int_0^w N_1(s_{m-1}, s_m) L_1(s_m) f_1^{(m)} \left(\int_0^w N_2(s_m, s_{m+1}) L_2(s_{m+1}) f_2^{(1)} \right. \right. \right. \\
& \quad \left. \left. \left. \left(\int_0^w N_2(s_{m+2}, s_{m+3}) L_2(s_{m+3}) f_2^{(2)} \dots f_2^{(m-1)} \left(\int_0^w N_2(s_{2m-1}, s_{2m}) L_2(s_{2m}) f_2^{(m)} \dots \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \dots \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \dots \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. f_{n-1}^{(m)} \left(\int_0^w N_n(s_{mn-m}, s_{mn-m+1}) L_n(s_{mn-m+1}) f_n^{(1)} \left(\int_0^w N_n(s_{mn-m+1}, s_{mn-m+2}) \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \left. L_n(s_{mn-m+2}) f_n^{(2)} \dots f_n^{(m-1)} \left(\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)} (u_1^{(1)}(s_{mn})) \Delta s_{mn} \right) \dots \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \left. \Delta s_{mn-m+2} \right) \Delta s_{mn-m+1} \right) \dots \Delta s_{2m} \dots \right) \Delta s_{m+2} \right) \Delta s_{m+1} \right) \Delta s_m \right) \dots \Delta s_3 \right) \Delta s_2 \right) \Delta s_1. \\
& \geq \mathcal{G}_1(p_1) \int_0^w N_1(s_1, s_1) L_1(s_1) f_1^{(1)} \left(\int_0^w N_1(s_1, s_2) L_1(s_2) f_1^{(2)} \left(\int_0^w N_1(s_2, s_3) L_1(s_3) \right. \right. \\
& \quad \left. \left. f_1^{(3)} \dots f_1^{(m-1)} \left(\int_0^w N_1(s_{m-1}, s_m) L_1(s_m) f_1^{(m)} \left(\int_0^w N_2(s_m, s_{m+1}) L_2(s_{m+1}) f_2^{(1)} \right. \right. \right. \\
& \quad \left. \left. \left. \left(\int_0^w N_2(s_{m+2}, s_{m+3}) L_2(s_{m+3}) f_2^{(2)} \dots f_2^{(m-1)} \left(\int_0^w N_2(s_{2m-1}, s_{2m}) L_2(s_{2m}) f_2^{(m)} \dots \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \dots \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \dots \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. f_{n-1}^{(m)} \left(\int_0^w N_n(s_{mn-m}, s_{mn-m+1}) L_n(s_{mn-m+1}) f_n^{(1)} \left(\int_0^w N_n(s_{mn-m+1}, s_{mn-m+2}) \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \left. L_n(s_{mn-m+2}) f_n^{(2)} \dots f_n^{(m-1)} \left(\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)} (u_1^{(1)}(s_{mn})) \Delta s_{mn} \right) \dots \right. \right. \right. \right. \right. \\
& \quad \left. \left. \left. \left. \left. \left. \Delta s_{mn-m+2} \right) \Delta s_{mn-m+1} \right) \dots \Delta s_{2m} \dots \right) \Delta s_{m+2} \right) \Delta s_{m+1} \right) \Delta s_m \right) \dots \Delta s_3 \right) \Delta s_2 \right) \Delta s_1.
\end{aligned}$$

$\geq K\|Tu_1^{(1)}\|.$
Hence, $\min_{r \in [z, w-z]_{\mathbb{T}}} Tu_1^{(1)}(r) \geq K\|Tu_1^{(1)}\|_B.$

Therefore, $T(P) \subset P$ and using Arzela-Ascoli theorem, it can be seen that T is completely continuous. \square

Theorem 4.1. [15] Let $f \in L_{\Delta}^p(J)$ with $p > 1$, $g \in L_{\Delta}^q(J)$ with $q > 1$, and $\frac{1}{p} + \frac{1}{q} = 1$. Then $fg \in L_{\Delta}^1(J)$ and $\|fg\|_{L_{\Delta}^1} \leq \|f\|_{L_{\Delta}^p} \|g\|_{L_{\Delta}^q}$, where

$$\|f\|_{L_{\Delta}^p} := \begin{cases} \left[\int_J |f|^p(s) \Delta s \right]^{\frac{1}{p}}, & \text{if } p \in \mathbb{R}, \\ \inf \{M \in \mathbb{R} / |f| \leq M \Delta - a.e \text{ on } J\}, & \text{if } p = \infty, \end{cases}$$

and $J = [a, b]$.

Theorem 4.2. (Hölder's inequality) [15] Let $f \in L_{\Delta}^{p_k}[0, 1]$ with $p_k > 1$, for $k = 1, 2, \dots, s$ and $\sum_{k=1}^s \frac{1}{p_k} = 1$. Then $\prod_{k=1}^s f_k \in L_{\Delta}^1[0, 1]$ and $\left\| \prod_{k=1}^s f_k \right\|_1 \leq \prod_{k=1}^s \|f_k\|_{p_k}$. Further, if $f \in L_{\Delta}^1[0, 1]$ and $g \in L_{\Delta}^{\infty}[0, 1]$, then $fg \in L_{\Delta}^1[0, 1]$ and $\|fg\|_1 \leq \|f\|_1 \|g\|_{\infty}$.

Theorem 4.3. [9] Let P be a cone in a Banach space B and R_1, R_2 are open sets with $0 \in R_1$, $\bar{R}_1 \subset R_2$. Let $T : P \cap (\bar{R}_2 \setminus R_1) \rightarrow P$ be completely continuous operator such that

- (i) $\|Tr\| \leq \|r\|, r \in P \cap \partial R_1$, and $\|Tr\| \geq \|r\|, r \in P \cap \partial R_2$, or
- (ii) $\|Tr\| \geq \|r\|, r \in P \cap \partial R_1$, and $\|Tr\| \leq \|r\|, r \in P \cap \partial R_2$.

Then T has a fixed point in $P \cap (\bar{R}_2 \setminus R_1)$.

We consider the cases for $\mu_{jk}(r) \in L_{\Delta}^{p_k}[0, w]_{\mathbb{T}}$:

(i) $\sum_{k=1}^s \frac{1}{p_k} < 1$, (ii) $\sum_{k=1}^s \frac{1}{p_k} = 1$, (iii) $\sum_{k=1}^s \frac{1}{p_k} > 1$.

Firstly, we present a result to establish existence of positive solution when $\sum_{k=1}^s \frac{1}{p_k} < 1$.

Theorem 4.4. Suppose that (L1) – (L3) hold. Let $\{p_{j\ell}\}_{\ell=1}^{\infty}$ be a sequence with $p_{j\ell} \in (r_{\ell+1}, r_{\ell})$, $z_{\ell} = \max \{p_{1\ell}, p_{2\ell}, \dots, p_{n\ell}\}$, $0 < z_1 < \frac{w}{2}$ for $j = 1, 2, \dots, n$. Let $\{D_{\ell}\}_{\ell=1}^{\infty}$ and $\{E_{\ell}\}_{\ell=1}^{\infty}$ be such that

$$D_{\ell+1} < K_{\ell} E_{\ell} < E_{\ell} < M_j E_{\ell} < D_{\ell}, \ell \in \mathbb{N},$$

where

$$M_j = \max \left\{ \left[K_1 \prod_{k=1}^s e_{jk} \int_{z_1}^{w-z_1} N_j(s, s) \Delta s \right]^{-1}, 1 \right\}.$$

Assume that $f_j^{(i)}$ satisfies

$$(H1) \quad f_j^{(i)}(u_j) \leq h_j D_{\ell} \quad \forall r \in [0, w]_{\mathbb{T}}, 0 \leq u_j \leq D_{\ell}, \text{ where}$$

$$h_j < \left[\|N_j\|_{L_{\Delta}^q} \prod_{k=1}^s \|\mu_{jk}(r)\|_{L_{\Delta}^{p_k}} \right]^{-1},$$

$$(H2) \quad f_j^{(i)}(u_j) \geq M_j E_{\ell} \quad \forall r \in [z_{\ell}, w-z_{\ell}]_{\mathbb{T}}, K_{\ell} E_{\ell} \leq u_j \leq E_{\ell}.$$

Then (1.1) has positive solutions $\{(u_1^{(1)})^{[\ell]}, (u_1^{(2)})^{[\ell]}, \dots, (u_1^{(m)})^{[\ell]}, (u_2^{(1)})^{[\ell]}, (u_2^{(2)})^{[\ell]}, \dots, (u_2^{(m)})^{[\ell]}, \dots, (u_n^{(1)})^{[\ell]}, (u_n^{(2)})^{[\ell]}, \dots, (u_n^{(m)})^{[\ell]}\}_{\ell=1}^{\infty}$ such that $(u_j^{(i)})^{[\ell]}(r) \geq 0$ on $[0, w]_{\mathbb{T}}$, $j = 1, 2, \dots, n$, $i = 1, 2, \dots, m$, $\ell \in \mathbb{N}$.

Proof. Consider the sequences $\{E_\ell\}_{\ell=1}^\infty$ and $\{F_\ell\}_{\ell=1}^\infty$ defined by

$$E_\ell = \{u_j \in B : \|u_j\| \leq D_\ell\},$$

$$F_\ell = \{u_j \in B : \|u_j\| \leq E_\ell\},$$

which are open subsets of B . Let $p_{j\ell}$ be as in the hypothesis and note that

$$r^* < r_{\ell+1} < p_{j\ell} < r_\ell < \frac{w}{2}, \quad \forall \ell \in \mathbb{N}.$$

Denote, $P_\ell = \{u_j \in E : u_j(r) \geq 0 \text{ on } [0, w]_{\mathbb{T}} \text{ and } \min_{r \in [z_\ell, w-z_\ell]_{\mathbb{T}}} u_j(r) \geq K_\ell \|u_j(r)\|\}$

and let $u_1^{(1)} \in P_\ell \cap \partial E_\ell$. Then $u_1^{(1)}(s_{mn}) \leq D_\ell = \|u_1^{(1)}\|$ for all $s_{mn} \in [0, w]_{\mathbb{T}}$.

By (H1) and for $s_{mn} \in [0, w]_{\mathbb{T}}$, we have

$$\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} \leq \int_0^w N_n(s_{mn}, s_{mn}) L_n(s_{mn}) h_n D_\ell \Delta s_{mn}$$

$$\leq h_n D_\ell \int_0^w N_n(s_{mn}, s_{mn}) L_n(s_{mn}) \Delta s_{mn} = h_n D_\ell \int_0^w N_n(s_{mn}, s_{mn}) \prod_{k=1}^s \mu_{nk}(s_{mn}) \Delta s_{mn}.$$

Since $\sum_{k=1}^s \frac{1}{p_k} < 1$, there exists $q > 1$ such that $\frac{1}{q} + \sum_{k=1}^s \frac{1}{p_k} = 1$. So,

$$\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} \leq h_n D_\ell \|N_n\|_{L_\Delta^q} \left\| \prod_{k=1}^s \mu_{nk} \right\|_{L_\Delta^{p_k}} \leq D_\ell.$$

$$\int_0^w N_n(s_{mn-2}, s_{mn-1}) L_n(s_{mn-1}) f_n^{(m-1)} \left(\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} \right) \Delta s_{mn-1}$$

$$\leq \int_0^w N_n(s_{mn-2}, s_{mn-1}) L_n(s_{mn-1}) f_n^{(m-1)}(D_\ell) \Delta s_{mn-1} \leq D_\ell.$$

Continuing in this way, we get $(Tu_1^{(1)})(r) \leq D_\ell$.

Since $D_\ell = \|u_1^{(1)}\|$ for $u_1^{(1)} \in P_\ell \cap \partial E_\ell$, we get

$$(4.6) \quad \|Tu_1^{(1)}\| \leq \|u_1^{(1)}\|.$$

Let $r \in [z_\ell, w - z_\ell]_{\mathbb{T}}$, then

$$E_\ell = \|u_j^{(1)}\| \geq u_j^{(1)}(r) \geq \min_{r \in [p_{j\ell}, w-p_{j\ell}]_{\mathbb{T}}} u_j^{(1)}(r) \geq \min_{r \in [z_\ell, w-z_\ell]_{\mathbb{T}}} u_j^{(1)}(r) \geq G_j(p_{j\ell}) \|u_j^{(1)}(r)\| \geq K_\ell E_\ell.$$

By (H2) and for $s_{mn} \in [z_\ell, w - z_\ell]_{\mathbb{T}}$, we have

$$\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn}$$

$$\geq G_n(p_{n\ell}) \int_{z_\ell}^{w-z_\ell} N_n(s_{mn}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn}$$

$$\geq G_n(p_{n\ell}) M_n E_\ell \int_{z_\ell}^{w-z_\ell} N_n(s_{mn}, s_{mn}) L_n(s_{mn}) \Delta s_{mn}$$

$$\geq K_1 M_n E_\ell \prod_{k=1}^s e_{nk} \int_{z_1}^{w-z_1} N_n(s_{mn}, s_{mn}) \Delta s_{mn}$$

$$\geq E_\ell.$$

Continuing in this way, we get $(Tu_1^{(1)})(r) \geq E_\ell$.

Since $E_\ell = \|u_1^{(1)}\|$ for $u_1^{(1)} \in P_\ell \cap \partial F_\ell$, we get

$$(4.7) \quad \|Tu_1^{(1)}\| \geq \|u_1^{(1)}\|.$$

It is evident that $0 \in \partial F_\ell \subset \partial \bar{F}_\ell \subset \partial E_\ell$. Using (4.6) and (4.7), it follows from theorem 4.3 that T has a fixed point $((u_j^{(i)})^{[\ell]}) \in P_\ell \cap (\bar{E}_\ell \setminus F_\ell)$ such that $(u_j^{(i)})^{[\ell]} \geq 0$ on $[0, w]_{\mathbb{T}}$ and $\ell \in \mathbb{N}$. Next setting $u_j^{(m+1)}(r) = u_{j+1}^{(1)}(r)$, $u_{n+1}^{(1)}(r) = u_1^{(1)}(r)$, for $j = 1, 2, \dots, n$, $r \in [0, w]_{\mathbb{T}}$, we obtain positive solutions $\{(u_1^{(1)})^{[\ell]}, (u_1^{(2)})^{[\ell]}, \dots, (u_1^{(m)})^{[\ell]}, (u_2^{(1)})^{[\ell]}, (u_2^{(2)})^{[\ell]}, \dots, (u_2^{(m)})^{[\ell]}, \dots, (u_n^{(1)})^{[\ell]}, (u_n^{(2)})^{[\ell]}, \dots, (u_n^{(m)})^{[\ell]}\}_{\ell=1}^\infty$ for (1.1). Thus, the proof is complete. \square

For $\sum_{k=1}^s \frac{1}{p_k} = 1$, we have the following theorem.

Theorem 4.5. Suppose that (L1) – (L3) hold. Let $\{p_{j\ell}\}_{\ell=1}^\infty$ be a sequence with $p_{j\ell} \in (r_{\ell+1}, r_\ell)$, $z_\ell = \max \{p_{1\ell}, p_{2\ell}, \dots, p_{n\ell}\}$, $0 < z_1 < \frac{w}{2}$ for $j = 1, 2, \dots, n$. Let $\{D_\ell\}_{\ell=1}^\infty$ and $\{E_\ell\}_{\ell=1}^\infty$ be such that

$$D_{\ell+1} < K_\ell E_\ell < E_\ell < M_j E_\ell < D_\ell, \ell \in \mathbb{N}.$$

Assume that $f_j^{(i)}$ satisfies (H2)

$$(H3) \quad f_j^{(i)}(u_j) \leq g_j D_\ell \quad \forall r \in [0, w]_{\mathbb{T}}, 0 \leq u_j \leq D_\ell, \text{ where}$$

$$g_j < \left[\|N_j\|_{L_\Delta^\infty} \prod_{k=1}^s \|\mu_{jk}(r)\|_{L_\Delta^{p_k}} \right]^{-1}.$$

Then (1.1) has positive solutions $\{(u_1^{(1)})^{[\ell]}, (u_1^{(2)})^{[\ell]}, \dots, (u_1^{(m)})^{[\ell]}, (u_2^{(1)})^{[\ell]}, (u_2^{(2)})^{[\ell]}, \dots, (u_2^{(m)})^{[\ell]}, \dots, (u_n^{(1)})^{[\ell]}, (u_n^{(2)})^{[\ell]}, \dots, (u_n^{(m)})^{[\ell]}\}_{\ell=1}^\infty$ such that $(u_j^{(i)})^{[\ell]}(r) \geq 0$ on $[0, w]_{\mathbb{T}}$, $j = 1, 2, \dots, n$, $i = 1, 2, \dots, m$, $\ell \in \mathbb{N}$.

Proof. The proof is similar to the proof of Theorem 4.4. Therefore, we omit the details here. \square

Lastly, the case $\sum_{k=1}^s \frac{1}{p_k} > 1$.

Theorem 4.6. Suppose that (L1) – (L3) hold. Let $\{p_{j\ell}\}_{\ell=1}^\infty$ be a sequence with $p_{j\ell} \in (r_{\ell+1}, r_\ell)$, $z_\ell = \max \{p_{1\ell}, p_{2\ell}, \dots, p_{n\ell}\}$, $0 < z_1 < \frac{w}{2}$ for $j = 1, 2, \dots, n$. Let $\{D_\ell\}_{\ell=1}^\infty$ and $\{E_\ell\}_{\ell=1}^\infty$ be such that

$$D_{\ell+1} < K_\ell E_\ell < E_\ell < M_j E_\ell < D_\ell, \ell \in \mathbb{N}.$$

Assume that $f_j^{(i)}$ satisfies (H2)

$$(H4) \quad f_j^{(i)}(u_j) \leq d_j D_\ell \quad \forall r \in [0, w]_{\mathbb{T}}, 0 \leq u_j \leq D_\ell, \text{ where}$$

$$d_j < \left[\|N_j\|_{L_\Delta^\infty} \prod_{k=1}^s \|\mu_{jk}(r)\|_{L_\Delta^1} \right]^{-1}.$$

Then (1.1) has positive solutions $\{(u_1^{(1)})^{[\ell]}, (u_1^{(2)})^{[\ell]}, \dots, (u_1^{(m)})^{[\ell]}, (u_2^{(1)})^{[\ell]}, (u_2^{(2)})^{[\ell]}, \dots, (u_2^{(m)})^{[\ell]}, \dots, (u_n^{(1)})^{[\ell]}, (u_n^{(2)})^{[\ell]}, \dots, (u_n^{(m)})^{[\ell]}\}_{\ell=1}^\infty$ such that $(u_j^{(i)})^{[\ell]}(r) \geq 0$ on $[0, w]_{\mathbb{T}}$, $j = 1, 2, \dots, n$, $i = 1, 2, \dots, m$, $\ell \in \mathbb{N}$.

Proof. The proof is similar to the proof of Theorem 4.4. Therefore, we omit the details here. \square

5. EXISTENCE OF AT LEAST TWO POSITIVE SOLUTIONS

Let γ be a nonnegative continuous functional on a cone P of the real Banach space B . Then for any two positive real numbers a', c' , define the sets

$$P(\gamma, c') = \{u \in P : \gamma(u) < c'\} \text{ and } P_{a'} = \{u \in P : \|u\| < a'\}.$$

Define nonnegative, increasing, continuous functionals $\gamma_\ell, \beta_\ell, \alpha_\ell$ by

$$\gamma_\ell(u_1^{(1)}) = \min_{r \in [0, w]_{\mathbb{T}}} (u_1^{(1)}(r)), \beta_\ell(u_1^{(1)}) = \max_{r \in [0, w]_{\mathbb{T}}} (u_1^{(1)}(r)), \alpha_\ell(u_1^{(1)}) = \max_{r \in [0, w]_{\mathbb{T}}} (u_1^{(1)}(r)).$$

It is obvious that for each $u_1^{(1)} \in P$, $\gamma_\ell(u_1^{(1)}) \leq \beta_\ell(u_1^{(1)}) = \alpha_\ell(u_1^{(1)})$.

In addition by lemma (2.2) for each $u_1^{(1)} \in P$, $\gamma_\ell(u_1^{(1)}) = \min_{r \in [0, w]_{\mathbb{T}}} (u_1^{(1)}(r)) \geq K \|u_1^{(1)}\|$.

Thus, $\|u_1^{(1)}\| \leq \frac{1}{K} \gamma_\ell(u_1^{(1)})$ for $u_1^{(1)} \in P$.

Theorem 5.7. (Ren-Ge-Ren) [21] *Let P be a cone in a Banach space B . Let α, β, γ be three increasing, nonnegative and continuous functionals on P satisfying for some $c' > 0$ and $M > 0$ such that $\gamma(z) \leq \beta(z) \leq \alpha(z)$ and $\|z\| \leq M\gamma(z)$, for all $z \in P(\gamma, c')$. Suppose there exists a completely continuous operator $N : P(\gamma, c') \rightarrow P$ and $0 < a' < b' < c'$ such that*

- (i) $\gamma(z) > c'$, for all $z \in \partial P(\gamma, c')$,
- (ii) $\beta(z) < b'$, for all $z \in \partial P(\beta, b')$,
- (iii) $P(\alpha, a') \neq \emptyset$ and $\alpha(z) < a'$, for all $z \in \partial P(\alpha, a')$. Then, N has at least three fixed points $^1z, ^2z, ^3z \in P(\gamma, c')$ such that $\alpha(^1z) < a' < \alpha(^2z), \beta(^2z) < b' < \beta(^3z)$ and $\gamma(^3z) < c'$.

Theorem 5.8. *Suppose that (L1) – (L3) hold. Let $\{p_{j\ell}\}_{\ell=1}^{\infty}$ be a sequence with $p_{j\ell} \in (r_{\ell+1}, r_{\ell})$, $z_{\ell} = \max\{p_{1\ell}, p_{2\ell}, \dots, p_{n\ell}\}$, $0 < z_1 < \frac{w}{2}$ for $j = 1, 2, \dots, n$. Let $\{R_{\ell}\}_{\ell=1}^{\infty}$, $\{Q_{\ell}\}_{\ell=1}^{\infty}$ and $\{S_{\ell}\}_{\ell=1}^{\infty}$ be three sequences such that*

$$R_{\ell+1} < Q_{\ell} < K_{\ell} S_{\ell} < S_{\ell} < R_{\ell}, M_j S_{\ell} < R_{\ell}, \ell \in \mathbb{N},$$

where

$$M_j = \max \left\{ \left[K_1 \prod_{k=1}^s e_{jk} \int_{z_1}^{w-z_1} N_j(s, s) \Delta s \right]^{-1}, 1 \right\}.$$

Assume that $f_j^{(i)}$ satisfies the following

$$(F1) \quad f_j^{(i)}(u_j) \leq h_j R_{\ell} \quad \forall r \in [0, w]_{\mathbb{T}}, \quad 0 \leq u_j \leq \frac{1}{K_{\ell}} R_{\ell}, \text{ where}$$

$$h_j < \left[\|N_j\|_{L_{\Delta}^q} \prod_{k=1}^s \|\mu_{jk}(r)\|_{L_{\Delta}^{p_k}} \right]^{-1},$$

$$(F2) \quad f_j^{(i)}(u_j) \geq M_j S_{\ell} \quad \forall r \in [z_{\ell}, w-z_{\ell}]_{\mathbb{T}}, \quad K_{\ell} S_{\ell} \leq u_j \leq S_{\ell},$$

$$(F3) \quad f_j^{(i)}(u_j) \leq h_j Q_{\ell} \quad \forall r \in [0, w]_{\mathbb{T}}, \quad 0 \leq u_j \leq \frac{1}{K_{\ell}} Q_{\ell}.$$

Then (1.1) has at least three positive solutions $\{(^1u_1^{(1)})^{[\ell]}, (^1u_1^{(2)})^{[\ell]}, \dots, (^1u_1^{(m)})^{[\ell]}, (^1u_2^{(1)})^{[\ell]}, (^1u_2^{(2)})^{[\ell]}, \dots, (^1u_2^{(m)})^{[\ell]}, \dots, (^1u_n^{(1)})^{[\ell]}, (^1u_n^{(2)})^{[\ell]}, \dots, (^1u_n^{(m)})^{[\ell]}\}_{\ell=1}^{\infty}, \{(^2u_1^{(1)})^{[\ell]}, (^2u_1^{(2)})^{[\ell]}, \dots, (^2u_1^{(m)})^{[\ell]}, (^2u_2^{(1)})^{[\ell]}, (^2u_2^{(2)})^{[\ell]}, \dots, (^2u_2^{(m)})^{[\ell]}, \dots, (^2u_n^{(1)})^{[\ell]}, (^2u_n^{(2)})^{[\ell]}, \dots, (^2u_n^{(m)})^{[\ell]}\}_{\ell=1}^{\infty}$ and $\{(^3u_1^{(1)})^{[\ell]}, (^3u_1^{(2)})^{[\ell]}, \dots, (^3u_1^{(m)})^{[\ell]}, (^3u_2^{(1)})^{[\ell]}, (^3u_2^{(2)})^{[\ell]}, \dots, (^3u_2^{(m)})^{[\ell]}, \dots, (^3u_n^{(1)})^{[\ell]}, (^3u_n^{(2)})^{[\ell]}, \dots, (^3u_n^{(m)})^{[\ell]}\}_{\ell=1}^{\infty}$ such that $(^1u_j^{(i)})^{[\ell]}(r) \geq 0, (^2u_j^{(i)})^{[\ell]}(r) \geq 0$ and $(^3u_j^{(i)})^{[\ell]}(r) \geq 0$ on $[0, w]_{\mathbb{T}}$, with $\alpha_{\ell}(^1u_j^{(i)})^{[\ell]} \leq Q_{\ell} \leq \alpha_{\ell}(^2u_j^{(i)})^{[\ell]}, \beta_{\ell}(^2u_j^{(i)})^{[\ell]} \leq S_{\ell} \leq \beta_{\ell}(^3u_j^{(i)})^{[\ell]}, \gamma_{\ell}(^3u_j^{(i)})^{[\ell]} \leq R_{\ell}, j = 1, 2, \dots, n, i = 1, 2, \dots, m, \ell \in \mathbb{N}$.

Proof. Consider the completely continuous operator T and the cone P which was established in previous section. So it is easy to check that $T : P(\beta, R_{\ell}) \rightarrow P$ for $\ell \in \mathbb{N}$.

In order to prove that all conditions of theorem (5.7) are satisfied, we choose

$u_1^{(1)} \in \partial P(\beta, R_\ell)$. Then $\beta(u_1^{(1)}) = \max_{r \in [0, w]_{\mathbb{T}}} (u_1^{(1)}(r)) = R_\ell$, $0 \leq u_1^{(1)} \leq \frac{1}{K_\ell} R_\ell$ for $r \in [0, w]_{\mathbb{T}}$.

We have $\|u_1^{(1)}\| \leq \frac{1}{K_\ell} \beta(u_1^{(1)}) = \frac{1}{K_\ell} R_\ell$.

So we have, $0 \leq u_1^{(1)} \leq \frac{1}{K_\ell} R_\ell$, $r \in [0, w]_{\mathbb{T}}$, for $0 \leq s_{mn-1} < w$,

$$\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} \leq \int_0^w N_n(s_{mn}, s_{mn}) L_n(s_{mn}) h_n R_\ell \Delta s_{mn}$$

$$\leq h_n R_\ell \int_0^w N_n(s_{mn}, s_{mn}) L_n(s_{mn}) \Delta s_{mn} = h_n R_\ell \int_0^w N_n(s_{mn}, s_{mn}) \prod_{k=1}^s \mu_{nk}(s_{mn}) \Delta s_{mn}.$$

Since $\sum_{k=1}^s \frac{1}{p_k} < 1$, there exists $q > 1$ such that $\frac{1}{q} + \sum_{k=1}^s \frac{1}{p_k} = 1$. So,

$$\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} \leq h_n R_\ell \|N_n\|_{L_\Delta^q} \left\| \prod_{k=1}^s \mu_{nk} \right\|_{L_\Delta^{p_k}} \leq R_\ell.$$

$$\int_0^w N_n(s_{mn-2}, s_{mn-1}) L_n(s_{mn-1}) f_n^{(m-1)} \left(\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} \right) \Delta s_{mn-1}$$

$$\leq \int_0^w N_n(s_{mn-2}, s_{mn-1}) L_n(s_{mn-1}) f_n^{(m-1)}(R_\ell) \Delta s_{mn-1} \leq R_\ell.$$

Continuing in this way, we get $(Tu_1^{(1)})(r) \leq R_\ell$.

$\beta_\ell(Tu_1^{(1)})(r) = \max_{r \in [0, w]_{\mathbb{T}}} (Tu_1^{(1)})(r) \leq R_\ell$, Hence condition (a) is satisfied.

$u_1^{(1)} \in \partial P(\gamma, S_\ell)$. Then

$$S_\ell = \gamma(u_1^{(1)}) = \min_{r \in [0, w]_{\mathbb{T}}} (u_1^{(1)}(r)) \leq \max_{r \in [0, w]_{\mathbb{T}}} (u_1^{(1)}(r)) = \|u_1^{(1)}\| \leq \frac{1}{K_\ell} \gamma(u_1^{(1)}) \leq \frac{1}{K_\ell} S_\ell.$$

We have $\|u_1^{(1)}\| \leq \frac{1}{K_\ell} \gamma_\ell(u_1^{(1)}) \leq \frac{1}{K_\ell} b_\ell(u_1^{(1)}) = \frac{1}{K_\ell} S_\ell \therefore S_\ell \leq u_1^{(1)}(r) \leq \frac{1}{K_\ell} S_\ell$, $r \in [0, w]_{\mathbb{T}}$.

By (F2) and for $s_{mn} \in [z_\ell, w - z_\ell]_{\mathbb{T}}$, we have

$$\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn}$$

$$\geq G_n(p_{n\ell}) \int_{z_\ell}^{w-z_\ell} N_n(s_{mn}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn}$$

$$\geq G_n(p_{n\ell}) M_n S_\ell \int_{z_\ell}^{w-z_\ell} N_n(s_{mn}, s_{mn}) L_n(s_{mn}) \Delta s_{mn}$$

$$\geq K_1 M_n S_\ell \prod_{k=1}^s e_{nk} \int_{z_1}^{w-z_1} N_n(s_{mn}, s_{mn}) \Delta s_{mn} \geq S_\ell.$$

Continuing in this way, we get $(Tu_1^{(1)})(r) \geq S_\ell$.

$\gamma(Tu_1^{(1)})(r) = \min_{r \in [0, w]_{\mathbb{T}}} T(u_1^{(1)}(r)) \geq S_\ell$.

Hence condition (b) is satisfied. Finally we verify that (c) of theorem 5.7 is also satisfied.

Since $0 \in P$, $Q_\ell > 0$, it follows that $P(\alpha_\ell, Q_\ell) \neq \phi$.

Now let $u_1^{(1)} \in \partial P(\alpha_\ell, Q_\ell)$. Then $\alpha_\ell(u_1^{(1)}(r)) = \max_{r \in [0, w]_{\mathbb{T}}} (u_1^{(1)}(r)) = \|u_1^{(1)}\| = Q_\ell$.

For $\|u_1^{(1)}\| \leq \frac{1}{K_\ell} \gamma_\ell(u_1^{(1)}) \leq \frac{1}{K_\ell} \alpha_\ell(u_1^{(1)}) = \frac{1}{K_\ell} Q_\ell$, then we get $0 \leq u_1^{(1)} \leq \frac{1}{K_\ell} R_\ell$, $r \in [0, w]_{\mathbb{T}}$.

For $0 \leq s_{mn-1} < w$,

$$\begin{aligned} \int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} &\leq \int_0^w N_n(s_{mn}, s_{mn}) L_n(s_{mn}) h_n Q_\ell \Delta s_{mn} \\ &\leq h_n Q_\ell \int_0^w N_n(s_{mn}, s_{mn}) L_n(s_{mn}) \Delta s_{mn} = h_n Q_\ell \int_0^w N_n(s_{mn}, s_{mn}) \prod_{k=1}^s \mu_{nk}(s_{mn}) \Delta s_{mn}. \end{aligned}$$

Since $\sum_{k=1}^s \frac{1}{p_k} < 1$, there exists $q > 1$ such that $\frac{1}{q} + \sum_{k=1}^s \frac{1}{p_k} = 1$. So,

$$\begin{aligned} \int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} &\leq h_n Q_\ell \|N_n\|_{L_\Delta^q} \left\| \prod_{k=1}^s \mu_{nk} \right\|_{L_\Delta^{p_k}} \leq Q_\ell. \\ \int_0^w N_n(s_{mn-2}, s_{mn-1}) L_n(s_{mn-1}) f_n^{(m-1)} \left(\int_0^w N_n(s_{mn-1}, s_{mn}) L_n(s_{mn}) f_n^{(m)}(u_1^{(1)}(s_{mn})) \Delta s_{mn} \right) \Delta s_{mn-1} \\ &\leq \int_0^w N_n(s_{mn-2}, s_{mn-1}) L_n(s_{mn-1}) f_n^{(m-1)}(Q_\ell) \Delta s_{mn-1} \leq Q_\ell. \end{aligned}$$

Continuing in this way, we get $(Tu_1^{(1)})(r) \leq Q_\ell$.

$$\alpha_\ell(Tu_1^{(1)})(r) = \max_{r \in [0, w]_{\mathbb{T}}} (Tu_1^{(1)})(r) \leq Q_\ell, \text{ hence condition (c) is satisfied.}$$

Thus, all the conditions of Theorem 5.7 are satisfied. Hence, there exists at least three fixed points of T which are positive solutions of (1.1) such that

$$\alpha_\ell(^1 u_j^{(i)})^{[\ell]} \leq Q_\ell \leq \alpha_\ell(^2 u_j^{(i)})^{[\ell]}, \beta_\ell(^2 u_j^{(i)})^{[\ell]} \leq S_\ell \leq \beta_\ell(^3 u_j^{(i)})^{[\ell]}, \gamma_\ell(^3 u_j^{(i)})^{[\ell]} \leq R_\ell, j = 1, 2, \dots, n, i = 1, 2, \dots, m, \ell \in \mathbb{N}. \quad \square$$

Theorem 5.9. Suppose that (L1) – (L3) hold. Let $\{p_{j\ell}\}_{\ell=1}^\infty$ be a sequence with $p_{j\ell} \in (r_{\ell+1}, r_\ell)$, $z_\ell = \max\{p_{1\ell}, p_{2\ell}, \dots, p_{n\ell}\}$, $0 < z_1 < \frac{w}{2}$ for $j = 1, 2, \dots, n$. Let $\{R_\ell\}_{\ell=1}^\infty$, $\{Q_\ell\}_{\ell=1}^\infty$ and $\{S_\ell\}_{\ell=1}^\infty$ be three sequences such that

$$R_{\ell+1} < Q_\ell < K_\ell S_\ell < S_\ell < R_\ell, M_j S_\ell < R_\ell, \ell \in \mathbb{N},$$

where

$$M_j = \max \left\{ \left[K_1 \prod_{k=1}^s e_{jk} \int_{z_1}^{w-z_1} N_j(s, s) \Delta s \right]^{-1}, 1 \right\}.$$

Assume that $f_j^{(i)}$ satisfies

$$(F4) \quad f_j^{(i)}(u_j) \leq m_j R_\ell \quad \forall r \in [0, w]_{\mathbb{T}}, \quad 0 \leq u_j \leq \frac{1}{K_\ell} R_\ell, \text{ where}$$

$$m_j < \left[\|N_j\|_{L_\Delta^\infty} \prod_{k=1}^s \|\mu_{jk}(r)\|_{L_\Delta^{p_k}} \right]^{-1},$$

$$(F5) \quad f_j^{(i)}(u_j) \geq M_j S_\ell \quad \forall r \in [z_\ell, w - z_\ell]_{\mathbb{T}}, \quad K_\ell S_\ell \leq u_j \leq S_\ell,$$

$$(F6) \quad f_j^{(i)}(u_j) \leq m_j Q_\ell \quad \forall r \in [0, w]_{\mathbb{T}}, \quad 0 \leq u_j \leq \frac{1}{K_\ell} Q_\ell.$$

Then (1.1) has at least three positive solutions $\{(^1 u_1^{(1)})^{[\ell]}, (^1 u_1^{(2)})^{[\ell]}, \dots, (^1 u_1^{(m)})^{[\ell]}, (^1 u_2^{(1)})^{[\ell]}, (^1 u_2^{(2)})^{[\ell]}, \dots, (^1 u_2^{(m)})^{[\ell]}, \dots, (^1 u_n^{(1)})^{[\ell]}, (^1 u_n^{(2)})^{[\ell]}, \dots, (^1 u_n^{(m)})^{[\ell]}\}_{\ell=1}^\infty$, $\{(^2 u_1^{(1)})^{[\ell]}, (^2 u_1^{(2)})^{[\ell]}, \dots, (^2 u_1^{(m)})^{[\ell]}, (^2 u_2^{(1)})^{[\ell]}, (^2 u_2^{(2)})^{[\ell]}, \dots, (^2 u_2^{(m)})^{[\ell]}, \dots, (^2 u_n^{(1)})^{[\ell]}, (^2 u_n^{(2)})^{[\ell]}, \dots, (^2 u_n^{(m)})^{[\ell]}\}_{\ell=1}^\infty$ and $\{(^3 u_1^{(1)})^{[\ell]}, (^3 u_1^{(2)})^{[\ell]}, \dots, (^3 u_1^{(m)})^{[\ell]}, (^3 u_2^{(1)})^{[\ell]}, (^3 u_2^{(2)})^{[\ell]}, \dots, (^3 u_2^{(m)})^{[\ell]}, \dots, (^3 u_n^{(1)})^{[\ell]}, (^3 u_n^{(2)})^{[\ell]}, \dots, (^3 u_n^{(m)})^{[\ell]}\}_{\ell=1}^\infty$ such that $(^1 u_j^{(i)})^{[\ell]}(r) \geq 0$, $(^2 u_j^{(i)})^{[\ell]}(r) \geq 0$ and $(^3 u_j^{(i)})^{[\ell]}(r) \geq 0$ on $[0, w]_{\mathbb{T}}$, with $\alpha_\ell(^1 u_j^{(i)})^{[\ell]} \leq Q_\ell \leq \alpha_\ell(^2 u_j^{(i)})^{[\ell]}, \beta_\ell(^2 u_j^{(i)})^{[\ell]} \leq S_\ell \leq \beta_\ell(^3 u_j^{(i)})^{[\ell]}, \gamma_\ell(^3 u_j^{(i)})^{[\ell]} \leq R_\ell, j = 1, 2, \dots, n, i = 1, 2, \dots, m, \ell \in \mathbb{N}$.

Lastly, the case $\sum_{k=1}^s \frac{1}{p_k} > 1$.

Theorem 5.10. Suppose that (L1) – (L3) hold. Let $\{p_{j\ell}\}_{\ell=1}^{\infty}$ be a sequence with $p_{j\ell} \in (r_{\ell+1}, r_{\ell})$, $z_{\ell} = \max\{p_{1\ell}, p_{2\ell}, \dots, p_{n\ell}\}$, $0 < z_1 < \frac{w}{2}$ for $j = 1, 2, \dots, n$. Let $\{R_{\ell}\}_{\ell=1}^{\infty}$, $\{Q_{\ell}\}_{\ell=1}^{\infty}$ and $\{S_{\ell}\}_{\ell=1}^{\infty}$ be three sequences such that

$$R_{\ell+1} < Q_{\ell} < K_{\ell}S_{\ell} < S_{\ell} < R_{\ell}, \quad M_j S_{\ell} < R_{\ell}, \quad \ell \in \mathbb{N},$$

where

$$M_j = \max \left\{ \left[K_1 \prod_{k=1}^s e_{jk} \int_{z_1}^{w-z_1} N_j(s, s) \Delta s \right]^{-1}, 1 \right\}.$$

Assume that $f_j^{(i)}$ satisfies

$$(F7) \quad f_j^{(i)}(u_j) \leq n_j R_{\ell} \quad \forall r \in [0, w]_{\mathbb{T}}, \quad 0 \leq u_j \leq \frac{1}{K_{\ell}} R_{\ell}, \text{ where}$$

$$n_j < \left[\|N_j\|_{L_{\Delta}^{\infty}} \prod_{k=1}^s \|\mu_{jk}(r)\|_{L_{\Delta}^1} \right]^{-1},$$

$$(F8) \quad f_j^{(i)}(u_j) \geq M_j S_{\ell} \quad \forall r \in [z_{\ell}, w - z_{\ell}]_{\mathbb{T}}, \quad K_{\ell} S_{\ell} \leq u_j \leq S_{\ell},$$

$$(F9) \quad f_j^{(i)}(u_j) \leq n_j Q_{\ell} \quad \forall r \in [0, w]_{\mathbb{T}}, \quad 0 \leq u_j \leq \frac{1}{K_{\ell}} Q_{\ell}.$$

Then (1.1) has at least three positive solutions $\{(^1u_1^{(1)})^{[\ell]}, (^1u_1^{(2)})^{[\ell]}, \dots, (^1u_1^{(m)})^{[\ell]}, (^1u_2^{(1)})^{[\ell]}, \dots, (^1u_2^{(2)})^{[\ell]}, \dots, (^1u_2^{(m)})^{[\ell]}, \dots, (^1u_n^{(1)})^{[\ell]}, (^1u_n^{(2)})^{[\ell]}, \dots, (^1u_n^{(m)})^{[\ell]}\}_{\ell=1}^{\infty}$, $\{(^2u_1^{(1)})^{[\ell]}, (^2u_1^{(2)})^{[\ell]}, \dots, (^2u_1^{(m)})^{[\ell]}, \dots, (^2u_2^{(1)})^{[\ell]}, (^2u_2^{(2)})^{[\ell]}, \dots, (^2u_2^{(m)})^{[\ell]}, \dots, (^2u_n^{(1)})^{[\ell]}, (^2u_n^{(2)})^{[\ell]}, \dots, (^2u_n^{(m)})^{[\ell]}\}_{\ell=1}^{\infty}$ and $\{(^3u_1^{(1)})^{[\ell]}, (^3u_1^{(2)})^{[\ell]}, \dots, (^3u_1^{(m)})^{[\ell]}, (^3u_2^{(1)})^{[\ell]}, (^3u_2^{(2)})^{[\ell]}, \dots, (^3u_2^{(m)})^{[\ell]}, \dots, (^3u_n^{(1)})^{[\ell]}, (^3u_n^{(2)})^{[\ell]}, \dots, (^3u_n^{(m)})^{[\ell]}\}_{\ell=1}^{\infty}$ such that $(^1u_j^{(i)})^{[\ell]}(r) \geq 0$, $(^2u_j^{(i)})^{[\ell]}(r) \geq 0$ and $(^3u_j^{(i)})^{[\ell]}(r) \geq 0$ on $[0, w]_{\mathbb{T}}$, with $\alpha_{\ell} (^1u_j^{(i)})^{[\ell]} \leq Q_{\ell} \leq \alpha_{\ell} (^2u_j^{(i)})^{[\ell]}, \beta_{\ell} (^2u_j^{(i)})^{[\ell]} \leq S_{\ell} \leq \beta_{\ell} (^3u_j^{(i)})^{[\ell]}, \gamma_{\ell} (^3u_j^{(i)})^{[\ell]} \leq R_{\ell}$, $j = 1, 2, \dots, n$, $i = 1, 2, \dots, m$, $\ell \in \mathbb{N}$.

6. NUMERICAL EXAMPLES

In this section, we consider certain problems to verify our results.

Example 6.1. Consider the BVP

$$(6.8) \quad \left. \begin{aligned} & (u_1^{(1)})^{\Delta\Delta}(r) + L_1(r) f_1^{(1)}(u_2^{(1)}(r)) = 0, \quad i = 1, j = 1, 2 \quad r \in [0, 1]_{\mathbb{T}}, \\ & (u_2^{(1)})^{\Delta\Delta}(r) + L_2(r) f_2^{(1)}(u_1^{(1)}(r)) = 0, \\ & u_1^{(2)}(r) = u_2^{(1)}(r), \quad u_3^{(1)}(r) = u_1^{(1)}(r), \\ & u_1^{(1)}(0) - (u_1^{(1)})^{\Delta}(0) = 0, \quad u_1^{(1)}(1) + (u_1^{(1)})^{\Delta}(1) = 0, \\ & u_2^{(1)}(0) - (u_2^{(1)})^{\Delta}(0) = 0, \quad u_2^{(1)}(1) + (u_2^{(1)})^{\Delta}(1) = 0, \end{aligned} \right\}$$

where $\mathbb{T} = [0, \frac{1}{5}] \cup \{\frac{1}{4}, \frac{2}{5}, \frac{3}{5}\} \cup [\frac{3}{4}, 1]$, $L_1(r) = \mu_{11}(r)\mu_{12}(r)$, $L_2(r) = \mu_{21}(r)\mu_{22}(r)$, $\mu_{11}(r) = \frac{1}{|r - \frac{1}{8}|^{\frac{1}{2}}}$, $\mu_{12}(r) = \frac{1}{|r - \frac{1}{6}|^{\frac{1}{2}}}$, $\mu_{21}(r) = \frac{1}{|r - \frac{4}{5}|^{\frac{1}{2}}}$, $\mu_{22}(r) = \frac{1}{|r - \frac{7}{8}|^{\frac{1}{2}}}$,

$$\begin{aligned} \mathfrak{f}_1^{(1)}(u_1) &= \begin{cases} 0.05 \times 10^{-4}, \quad u_1 \in (10^{-4}, \infty), \\ \frac{17 \times 10^{-(4\ell+3)} - 0.05 \times 10^{-(4\ell)}}{10^{-(4\ell+3)} - 10^{-(4\ell)}} (u_1 - 10^{-(4\ell)}) + 0.05 \times 10^{-(8\ell)}, \\ u_1 \in [10^{-(4\ell+3)}, 10^{-(4\ell)}], \end{cases} \\ \mathfrak{f}_2^{(1)}(u_2) &= \begin{cases} 17 \times 10^{-(4\ell+3)}, \quad u_2 \in \left(\frac{1}{5} \times 10^{-(4\ell+3)}, 10^{-(4\ell+3)}\right), \\ \frac{17 \times 10^{-(4\ell+3)} - 0.05 \times 10^{-(8\ell)}}{0.05 \times 10^{-(4\ell+3)} - 10^{-(4\ell+4)}} (u_2 - 10^{-(4\ell+4)}) + 0.05 \times 10^{-(8\ell)}, \\ u_2 \in (10^{-(4\ell+4)}, \frac{1}{5} \times 10^{-(4\ell+3)}], \\ 0, \quad u_2 = 0, \end{cases} \\ &\begin{cases} 0.05 \times 10^{-4}, \quad u_2 \in (10^{-4}, \infty), \\ \frac{16 \times 10^{-(4\ell+3)} - 0.05 \times 10^{-(4\ell)}}{10^{-(4\ell+3)} - 10^{-(4\ell)}} (u_2 - 10^{-(4\ell)}) + 0.05 \times 10^{-(8\ell)}, \\ u_2 \in [10^{-(4\ell+3)}, 10^{-(4\ell)}], \end{cases} \\ &\begin{cases} 16 \times 10^{-(4\ell+3)}, \quad u_2 \in \left(\frac{1}{5} \times 10^{-(4\ell+3)}, 10^{-(4\ell+3)}\right), \\ \frac{16 \times 10^{-(4\ell+3)} - 0.05 \times 10^{-(8\ell)}}{0.05 \times 10^{-(4\ell+3)} - 10^{-(4\ell+4)}} (u_2 - 10^{-(4\ell+4)}) + 0.05 \times 10^{-(8\ell)}, \\ u_2 \in (10^{-(4\ell+4)}, \frac{1}{5} \times 10^{-(4\ell+3)}], \\ 0, \quad u_2 = 0. \end{cases} \end{aligned}$$

Let $r_\ell = \frac{31}{64} - \sum_{k=1}^{\ell} \frac{1}{4(k+1)^4}$, $p_{j\ell} = \frac{1}{2}(r_\ell + r_{\ell+1})$, $j = 1, 2, \ell = 1, 2, 3, \dots$,

then $p_{j1} = \frac{15}{32} - \frac{1}{648} < \frac{15}{32}$ and $r_{\ell+1} < p_{j\ell} < r_\ell$, $p_{j\ell} > \frac{1}{5}$, $z_1 = \frac{15}{32} - \frac{1}{648}$.

It is clear that $r_1 = \frac{15}{32} < \frac{1}{2}$, $r_\ell - r_{\ell+1} = \frac{1}{4(\ell+2)^4}$.

Since $\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}$ and $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$, it follows that

$$r^* = \lim_{\ell \rightarrow \infty} r_\ell = \frac{31}{64} - \sum_{k=1}^{\infty} \frac{1}{4(k+1)^4} = \frac{47}{64} - \frac{\pi^4}{360} > \frac{1}{5}.$$

$G_j(p_{j1}) = 0.7336033951$, $e_{11} = e_{12} = (\frac{5}{3})^{\frac{1}{2}}$, and $e_{21} = e_{22} = (\frac{5}{2})^{\frac{1}{3}}$,

$$\int_{z_1}^{w-z_1} N_j(s, s) ds = \int_{\frac{15}{32} - \frac{1}{648}}^{1 - \frac{15}{32} + \frac{1}{648}} \frac{(2-s)(1+s)}{3} ds = 0.04918197801.$$

Thus, we obtain

$$M_1 = 25.557267815288, \quad M_2 = 26.212302578035.$$

It follows that

$$\begin{aligned} \prod_{k=1}^2 \|\mu_{1k}\|_{L^{p_k}} &= \int_0^{\frac{1}{4}} \mu_{11}(r) \mu_{12}(r) \Delta r + \int_{\frac{3}{4}}^1 \mu_{11}(r) \mu_{12}(r) \Delta r + \left[\sigma\left(\frac{1}{4}\right) - \frac{1}{4} \right] \mu_{11}\left(\frac{1}{4}\right) \mu_{12}\left(\frac{1}{4}\right) + \\ &\left[\sigma\left(\frac{2}{5}\right) - \frac{2}{5} \right] \mu_{11}\left(\frac{2}{5}\right) \mu_{12}\left(\frac{2}{5}\right) + \left[\sigma\left(\frac{3}{5}\right) - \frac{3}{5} \right] \mu_{11}\left(\frac{3}{5}\right) \mu_{12}\left(\frac{3}{5}\right) + \left[\sigma\left(\frac{1}{5}\right) - \frac{1}{5} \right] \mu_{11}\left(\frac{1}{5}\right) \mu_{12}\left(\frac{1}{5}\right), \end{aligned}$$

$$\prod_{k=1}^2 \|\mu_{1k}\|_{L^{p_k}} \approx 12.004 \prod_{k=1}^2 \|\mu_{2k}\|_{L^{p_k}} \approx 8.57 \text{ and } \|N_j\|_\infty = \frac{2}{3}.$$

We have $g_1 < 0.1249560140438$, $g_2 < 0.1751029108175$, taking $g_1 = \frac{1}{10}$, $g_2 = \frac{3}{20}$. In addition, if we take $D_\ell = 10^{-4\ell}$, $E_\ell = 10^{-(4\ell+3)}$, then

$$D_{\ell+1} = 10^{-(4\ell+4)} < \frac{1}{5} \times 10^{-(4\ell+3)} < K_\ell E_\ell < E_\ell = 10^{-(4\ell+3)} < D_\ell = 10^{-4\ell},$$

$$M_1 E_\ell = 25.557267815288 \times 10^{-(4\ell+3)} < \frac{1}{10} \times 10^{-4\ell} = g_1 D_\ell, \ell = 1, 2, 3, \dots,$$

$$D_{\ell+1} = 10^{-(4\ell+4)} < \frac{1}{5} \times 10^{-(4\ell+3)} < K_\ell E_\ell < E_\ell = 10^{-(4\ell+3)} < D_\ell = 10^{-4\ell},$$

$$M_2 E_\ell = 26.212302578035 \times 10^{-(4\ell+3)} < \frac{3}{20} \times 10^{-4\ell} = g_2 D_\ell, \ell = 1, 2, 3, \dots,$$

and $f_j^{(i)}$ satisfies the following growth conditions:

$$f_1^{(1)}(u_1) \leq g_1 D_\ell = \frac{1}{10} \times 10^{-4\ell}, u_1 \in [0, 10^{-4\ell}],$$

$$f_1^{(1)}(u_1) \geq M_1 E_\ell = 25.557267815288 \times 10^{-(4\ell+3)}, u_1 \in [\frac{1}{5} \times 10^{-(4\ell+3)}, 10^{-(4\ell+3)}],$$

$$f_2^{(1)}(u_2) \leq g_2 D_\ell = \frac{3}{20} \times 10^{-4\ell}, u_2 \in [0, 10^{-4\ell}],$$

$$f_2^{(1)}(u_2) \geq M_2 E_\ell = 26.212302578035 \times 10^{-(4\ell+3)}, u_2 \in [\frac{1}{5} \times 10^{-(4\ell+3)}, 10^{-(4\ell+3)}].$$

Hence, all conditions in Theorem 4.5 are satisfied. Therefore, by Theorem 4.5 the system of iterative BVP (6.8) has at least one positive solution $\{(u_1^{(1)})^{[\ell]}, (u_2^{(1)})^{[\ell]}\}_{\ell=1}^\infty$ such that $(u_j^{(i)})^{[\ell]}(r) \geq 0$ on $[0, 1]_{\mathbb{T}}$, $j = 1, 2$, $i = 1$ and $\ell \in \mathbb{N}$.

Example 6.2. Consider the BVP

$$(6.9) \quad \left. \begin{aligned} (u_1^{(1)})^{\Delta\Delta}(r) + L_1(r) f_1^{(1)}(u_2^{(1)}(r)) &= 0, \quad i = 1, j = 1, 2 \quad r \in [0, 1]_{\mathbb{T}}, \\ (u_2^{(1)})^{\Delta\Delta}(r) + L_2(r) f_2^{(1)}(u_1^{(1)}(r)) &= 0, \\ u_1^{(2)}(r) &= u_2^{(1)}(r), \quad u_3^{(1)}(r) = u_1^{(1)}(r), \\ u_1^{(1)}(0) - (u_1^{(1)})^\Delta(0) &= 0, \quad u_1^{(1)}(1) + (u_1^{(1)})^\Delta(1) = 0, \\ u_2^{(1)}(0) - (u_2^{(1)})^\Delta(0) &= 0, \quad u_2^{(1)}(1) + (u_2^{(1)})^\Delta(1) = 0, \end{aligned} \right\}$$

where $\mathbb{T} = [0, \frac{1}{4}] \cup \{\frac{1}{3}, \frac{2}{5}, \frac{1}{2}\} \cup [\frac{3}{4}, 1]$, $L_1(r) = \mu_{11}(r)\mu_{12}(r)$, $L_2(r) = \mu_{21}(r)\mu_{22}(r)$, $\mu_{11}(r) = \frac{1}{|r - \frac{1}{5}|^{\frac{1}{2}}}$, $\mu_{12}(r) = \frac{1}{|r - \frac{4}{5}|^{\frac{1}{2}}}$, $\mu_{21}(r) = \frac{1}{|r - \frac{1}{6}|^{\frac{1}{2}}}$, $\mu_{22}(r) = \frac{1}{|r - \frac{5}{6}|^{\frac{1}{2}}}$,

$$\begin{aligned} \mathfrak{f}_1^{(1)}(u_1) &= \begin{cases} 0.05 \times 10^{-4}, \quad u_1 \in (10^{-4}, \infty), \\ \frac{25 \times 10^{-(4\ell+3)} - 0.05 \times 10^{-(4\ell)}}{10^{-(4\ell+3)} - 10^{-(4\ell)}} (u_1 - 10^{-(4\ell)}) + 0.05 \times 10^{-(8\ell)}, \\ u_1 \in [10^{-(4\ell+3)}, 10^{-(4\ell)}], \\ 25 \times 10^{-(4\ell+3)}, \quad u_1 \in \left(\frac{1}{5} \times 10^{-(4\ell+3)}, 10^{-(4\ell+3)}\right), \\ \frac{25 \times 10^{-(4\ell+3)} - 0.05 \times 10^{-(8\ell)}}{0.05 \times 10^{-(4\ell+3)} - 10^{-(4\ell+4)}} (u_1 - 10^{-(4\ell+4)}) + 0.05 \times 10^{-(8\ell)}, \\ u_1 \in (10^{-(4\ell+4)}, \frac{1}{5} \times 10^{-(4\ell+3)}], \\ 0, \quad u_1 = 0, \end{cases} \\ \mathfrak{f}_2^{(1)}(u_2) &= \begin{cases} 0.05 \times 10^{-4}, \quad u_2 \in (10^{-4}, \infty), \\ \frac{32 \times 10^{-(4\ell+3)} - 0.05 \times 10^{-(4\ell)}}{10^{-(4\ell+3)} - 10^{-(4\ell)}} (u_2 - 10^{-(4\ell)}) + 0.05 \times 10^{-(8\ell)}, \\ u_2 \in [10^{-(4\ell+3)}, 10^{-(4\ell)}], \\ 32 \times 10^{-(4\ell+3)}, \quad u_2 \in \left(\frac{1}{5} \times 10^{-(4\ell+3)}, 10^{-(4\ell+3)}\right), \\ \frac{32 \times 10^{-(4\ell+3)} - 0.05 \times 10^{-(8\ell)}}{0.05 \times 10^{-(4\ell+3)} - 10^{-(4\ell+4)}} (u_2 - 10^{-(4\ell+4)}) + 0.05 \times 10^{-(8\ell)}, \\ u_2 \in (10^{-(4\ell+4)}, \frac{1}{5} \times 10^{-(4\ell+3)}], \\ 0, \quad u_2 = 0. \end{cases} \end{aligned}$$

Let $r_\ell = \frac{31}{64} - \sum_{k=1}^{\ell} \frac{1}{4(k+1)^4}$, $p_{j\ell} = \frac{1}{2}(r_\ell + r_{\ell+1})$, $j = 1, 2, \ell = 1, 2, 3, \dots$,

then $p_{j1} = \frac{15}{32} - \frac{1}{648} < \frac{15}{32}$ and $r_{\ell+1} < p_{j\ell} < r_\ell$, $p_{j\ell} > \frac{1}{5}$, $z_1 = \frac{15}{32} - \frac{1}{648}$.

It is clear that $r_1 = \frac{15}{32} < \frac{1}{2}$, $r_\ell - r_{\ell+1} = \frac{1}{4(\ell+2)^4}$.

Since $\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}$ and $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$, it follows that

$$r^* = \lim_{\ell \rightarrow \infty} r_\ell = \frac{31}{64} - \sum_{k=1}^{\infty} \frac{1}{4(k+1)^4} = \frac{47}{64} - \frac{\pi^4}{360} > \frac{1}{5}.$$

$G_j(p_{j1}) = 0.7336033951$, $e_{11} = e_{12} = (\frac{5}{3})^{\frac{1}{2}}$, and $e_{21} = e_{22} = (\frac{5}{2})^{\frac{1}{3}}$,

$$\int_{z_1}^{w-z_1} N_j(s, s) ds = \int_{\frac{15}{32} - \frac{1}{648}}^{1 - \frac{15}{32} + \frac{1}{648}} \frac{(2-s)(1+s)}{3} ds = 0.04918197801.$$

Thus, we obtain

$$M_1 = 24.393296158, M_2 = 31.392175118.$$

It follows that

$$\begin{aligned} \prod_{k=1}^2 \|\mu_{1k}\|_{L^{p_k}} &= \int_0^{\frac{1}{4}} \mu_{11}(r) \mu_{12}(r) \Delta r + \int_{\frac{3}{4}}^1 \mu_{11}(r) \mu_{12}(r) \Delta r + \left[\sigma\left(\frac{1}{4}\right) - \frac{1}{4} \right] \mu_{11}\left(\frac{1}{4}\right) \mu_{12}\left(\frac{1}{4}\right) + \\ &\quad \left[\sigma\left(\frac{1}{3}\right) - \frac{1}{3} \right] \mu_{11}\left(\frac{1}{3}\right) \mu_{12}\left(\frac{1}{3}\right) + \left[\sigma\left(\frac{2}{5}\right) - \frac{2}{5} \right] \mu_{11}\left(\frac{2}{5}\right) \mu_{12}\left(\frac{2}{5}\right) + \left[\sigma\left(\frac{1}{2}\right) - \frac{1}{2} \right] \mu_{11}\left(\frac{1}{2}\right) \mu_{12}\left(\frac{1}{2}\right), \end{aligned}$$

$$\prod_{k=1}^2 \|\mu_{1k}\|_{L^{p_k}} \approx 5.68 \prod_{k=1}^2 \|\mu_{2k}\|_{L^{p_k}} \approx 5.04 \text{ and } \|N_j\|_\infty = \frac{2}{3}.$$

We have $m_1 < 0.2641395704$, $m_2 < 0.2976190476$, taking $m_1 = \frac{1}{5}$, $m_2 = \frac{1}{4}$.
In addition, if we take $R_\ell = 10^{-4\ell}$, $Q_\ell = 10^{-(4\ell+3)}$, $S_\ell = 10^{-4(\ell+2)}$ then

$$R_{\ell+1} < Q_\ell < K_\ell S_\ell < S_\ell < R_\ell, \quad M_j S_\ell < R_\ell,$$

$$R_{\ell+1} = 10^{-(4\ell+4)} < Q_\ell = 10^{-(4\ell+3)} < K_\ell S_\ell < S_\ell = 10^{-(4\ell+2)} < R_\ell = 10^{-4\ell},$$

$$M_1 S_\ell = 24.393296158 \times 10^{-(4\ell+2)} < \frac{1}{5} \times 10^{-4\ell} = m_1 R_\ell, \quad \ell = 1, 2, 3, \dots,$$

$$M_2 S_\ell = 31.392175118 \times 10^{-(4\ell+2)} < \frac{1}{4} \times 10^{-4\ell} = m_2 R_\ell, \quad \ell = 1, 2, 3, \dots,$$

and $f_j^{(i)}$ satisfies the following growth conditions:

$$f_1^{(1)}(u_1) \leq m_1 R_\ell = \frac{1}{5} \times 10^{-4\ell}, \quad u_1 \in [0, 10^{-4\ell}],$$

$$f_1^{(1)}(u_1) \geq M_1 S_\ell = 24.393296158 \times 10^{-(4\ell+2)}, \quad u_1 \in [\frac{1}{5} \times 10^{-(4\ell+2)}, 10^{-(4\ell+2)}],$$

$$f_1^{(1)}(u_1) \leq m_1 Q_\ell = \frac{1}{5} \times 10^{-4(\ell+3)}, \quad u_1 \in [0, 10^{-4(\ell+3)}],$$

$$f_2^{(1)}(u_2) \leq m_2 R_\ell = \frac{1}{4} \times 10^{-4\ell}, \quad u_2 \in [0, 10^{-4\ell}],$$

$$f_2^{(1)}(u_2) \geq M_2 S_\ell = 31.392175118 \times 10^{-(4\ell+2)}, \quad u_2 \in [\frac{1}{5} \times 10^{-(4\ell+2)}, 10^{-(4\ell+2)}],$$

$$f_2^{(1)}(u_2) \leq m_2 Q_\ell = \frac{1}{4} \times 10^{-4(\ell+3)}, \quad u_2 \in [0, 10^{-4(\ell+3)}].$$

Hence, all conditions in Theorem 5.9 are satisfied. Therefore, by Theorem 5.9 the system of iterative BVP (6.9) has at least three positive solutions $\{(u_1^{(1)})^{[\ell]}, (u_2^{(1)})^{[\ell]}\}_{\ell=1}^\infty$ such that $(u_j^{(i)})^{[\ell]}(r) \geq 0$ on $[0, 1]_T$, $j = 1, 2$, $i = 1$ and $\ell \in \mathbb{N}$.

CONCLUSION

This paper aims to extend and generalize the existing results in the literature, see [6, 18, 19]. For instance, if $j = 1$, then the system reduces to an iterative system of two-point boundary value problem on time scales with one component. And also, if $i = 1$, then the system becomes a system of dynamical equations with n components. The present paper establishes the existence of positive solutions for an n -component coupled system of iterative system associated with two-point boundary conditions on time scales. The approach is based on the application of the Guo–Krasnosel’skii fixed point theorem and Hölder’s inequality. Further, by applying the Ren–Ge–Ren fixed point theorem, we also establish the multiple positive solutions of the problem. Moreover, the present work can be further extended to multi-point boundary value problems and integral-type boundary value problems by applying various new fixed point theorems.

ACKNOWLEDGEMENTS

The authors thank the reviewers for their valuable suggestions and comments. One of the authors (Butu Sravani) is thankful to UGC, Government of India, New Delhi for awarding SRF under SJSGC; Ref.No: UGCES-22-OB-AND-F-SJSGC-8159.

REFERENCES

- [1] Ammi, M. R. S.; Malinowska, A. B. Existence of solutions for a coupled quasilinear system on time scales. *Electron. J. Diff. Equ.* **2011** (2011), no. 131, 1–11.
- [2] Agarwal, R. P.; Bohner, M. Basic calculus on time scales and some of its applications. *Results. Math.* **35** (1999), no. 1, 3–22.
- [3] Agarwal, R. P.; Bohner, M.; O'Regan, D.; Peterson, A. Dynamic equations on time scales: a survey. *J. Comput. Appl. Math.* **141** (2002), no. 1-2, 1–26.
- [4] Agarwal, R. P.; Otero-Espinar, V.; Perera, K.; Vivero, D. R. Basic properties of Sobolev's spaces on time scales. *Adv. Difference Equ.* **2006** (2006), 1–14.
- [5] Agarwal, R. P.; O'Regan, D. A coupled system of boundary value problems. *Appl. Anal.* **69** (1998), no. 3-4, 381–385.
- [6] Benchohra, M.; Berhoun, F.; Hamani, S.; Henderson, J.; Ntouyas, S. K.; Ouahab, A.; Purnaras, I. K. Eigenvalues for iterative systems of nonlinear boundary value problems on time scales. *Nonlinear Dyn. Syst. Theory* **9** (2009), no. 1, 11–22.
- [7] Bohner, M.; Peterson, A. Dynamic equations on time scales: An introduction with applications, Boston: Birkhäuser Boston, Inc., 2001.
- [8] Cao, Z.; Lv, Y.; Jiang, D.; Zu, L. Positive solutions to singular semipositone boundary value problems of second order coupled differential systems. *J. Appl. Math. Comput.* **46** (2014), no. 1, 1–16.
- [9] Guo, D.; Lakshmikantham, V. *Nonlinear Problems in Abstract Cones*, Academic Press, San Diego, 2014.
- [10] Guseinov, G. S. Integration on time scales, *J. Math. Anal. Appl.* **285** (2003), no. 1, 107–127.
- [11] Hao, Z. C.; Liang, J.; Xiao, T. J. Existence results for time scale boundary value problem. *J. Comput. Appl. Math.* **197** (2006), no. 1, 156–168.
- [12] Khuddush, M.; Prasad, K. R. Nonlinear two-point iterative functional boundary value problems on time scales. *J. Appl. Math. Comput.* **68** (2022), no. 6, 4241–4251.
- [13] Liu, X. L.; Wang, W. X.; Wu, J. Delay dynamic equations on time scales. *Appl. Anal.* **89** (2010), no. 8, 1241–1249.
- [14] Lü, H.; Yu, H.; Liu, Y. Positive solutions for singular boundary value problems of a coupled system of differential equations. *J. Math. Anal.* **302** (2005), no. 1, 14–29.
- [15] Özkan, U. M.; Sarikaya, M. Z.; Yıldırım, H. Extensions of certain integral inequalities on time scales. *Appl. Math. Lett.* **21** (2008), no. 10, 993–1000.
- [16] Peterson, A. C.; Tisdell, C. C. Boundedness and uniqueness of solutions to dynamic equations on time scales. *J. Differ. Equ. Appl.* **10** (2004), no. 13-15, 1295–1306.
- [17] Prasad, K. R.; Khuddush, M.; Vidyasagar, K. V. Denumerably many positive solutions for iterative system of boundary value problems with n-singularities on time-scales. *Kragujev. J. Math.* **47** (2023), no. 3, 369–385.
- [18] Prasad, K. R.; Khuddush, M.; Vidyasagar, K. V. Infinitely many positive solutions for an iterative system of singular BVP on time scales. *Cubo* **24** (2022), no. 1, 21–35.
- [19] Prasad, K. R.; Sravani, B.; Sreedhar, N. Countably many positive solutions for system of iterative system of boundary value problems on time scales. *Russ. Math.* **68** (2024), no. 10, 52–65.
- [20] Rao, A. K.; Rao, S. N. Positive solutions for iterative systems of nonlinear boundary value problems on time scales. *Asian-Eur. J. Math.* **4** (2011), no. 1, 95–107.
- [21] Ren, J. L.; Ge, W. G.; Ren, B. X. Existence of three positive solutions for quasi-linear boundary value problem. *Acta Math. Appl. Sin.* **21** (2005), no. 3, 353–358.
- [22] Zheng, F.; Wang, X.; Cheng, X.; Du, B. Infinitely many positive solutions to nonlinear first-order iterative systems of singular bvp on time scales. *Symmetry* **15** (2023), no. 8, 1–9.

¹ DEPARTMENT OF APPLIED MATHEMATICS, COLLEGE OF SCIENCE AND TECHNOLOGY ANDHRA UNIVERSITY, VISAKHAPATNAM, 530003, INDIA

Email address: rajendra92@rediffmail.com

² DEPARTMENT OF APPLIED MATHEMATICS, COLLEGE OF SCIENCE AND TECHNOLOGY, ANDHRA UNIVERSITY, VISAKHAPATNAM, 530003, INDIA

Email address: butusravani@gmail.com