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Multiple positive solutions to n-component coupled system
of iterative systems on time scales

K. R. PRASAD1 AND B. SRAVANI2

ABSTRACT. This study explores advances in detecting positive solutions for second order n-component cou-
pled system of iterative systems with two-point boundary conditions on time scales. In this system, each com-
ponent interacts with both itself and the next component in a cyclic manner. We establish criteria for existence of
at least one positive solution using Guo–Krasnosel’skii fixed point theorem and at least three positive solutions
utilizing Ren-Ge-Ren fixed point theorem.

1. INTRODUCTION

A time scale is a non-empty closed subset of the real numbers that represents the set
of points at which a dynamic system evolves. The idea behind time scales is to unify and
extend continuous and discrete time models into one framework, allowing for a more
versatile approach to modeling systems that can operate in both continuous and discrete
time. It provides a powerful tool for modeling and analyzing dynamic systems that ex-
hibit different types of time-dependent behavior. For more details, refer to [2, 3, 4, 13, 16].

A strong foundation for resolving dynamic equations in mixed discrete-continuous set-
tings is offered by the iterative system of boundary value problems (BVPs) on time scales.
Systems having recursive architecture or feedback loops are modeled using iterative dy-
namic equations. These systems often arise in optimization, numerical methods and sim-
ulations, where repeated steps are key to finding solutions and interpreting the solutions,
see [6, 12, 17, 20, 22].

In an n-component system of iterative systems, where the last iteration of component
leads to the first iteration of the next component, the system evolves through interde-
pendencies between components. In such systems, each component’s iteration is tightly
tied to the iterations of its neighbors, resulting in a closed-loop interaction. The behavior
of each component is determined not just by its own state, but also by the states of the
other components. These interactive coupled systems are primarily used to model the
dynamics of multiple layers in a neural network, where the output of one layer becomes
the input for the next layer, to study the spread of diseases among multiple populations,
where the infection rate of one population affects the infection rate of the next population
and to model the dynamics of multiple species in an ecosystem, we refer to [1, 5, 8, 14, 19].

In 2006, Hao et. al, [11] established existence of positive solutions for the BVP on time
scales

u∆∆(t) +m(t)f (t , u(σ(t)) = 0, t ∈ [a, b]T,

au(a)− βu∆(a) = 0, cu(σ(b)) + du∆(σ(b)) = 0,
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Recently, Prasad et al. [18] in 2022, considered the following two-point iterative BVP
on time scales

v∆∆
ℓ (t) + L(t)gℓ(vℓ+1(t)) = 0, 1 ⩽ ℓ ⩽ m, t ∈ (0,T)T,

vm+1(t) = v1(t), t ∈ (0,T)T,

vℓ(0) = v∆
ℓ (0), vℓ(T) = −v∆

ℓ (T), 1 ⩽ ℓ ⩽ m,

where m ∈ N, L(t) =
m∏
i=1

Li(t) and each Li(t) ∈ L
pi

∆ ([0,T]T) has m-singularities and estab-

lished infinitely many positive solutions.
Based on the above studies, we wish to study the existence of positive solutions for

second order n-component coupled system of iterative system with two-point boundary
conditions on time scales

(1.1)

(u
(i)
j )∆∆(r) + Lj(r) f

(i)
j (u

(i+1)
j (r)) = 0, 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n r ∈ [0, w]T,

u
(m+1)
j (r) = u

(1)
j+1(r), u

(1)
n+1(r) = u

(1)
1 (r),

aju
(i)
j (0)− bj (u

(i)
j )∆(0) = 0, cju

(i)
j (w) + dj (u

(i)
j )∆(w) = 0,


where n,m ∈ N, u(i)j represents ith iteration of jth component of system and Lj(r) =

s∏
k=1

µjk(r)

and each µjk(r) ∈ L
pk

∆ ([0, w]T) (pk ⩾ 1) has s–singularities in the interval [0, w]T. Through-
out the study, we assume the following conditions hold:

(L1) each f
(i)
j : [0,∞) → [0,∞) is continuous for 1 ⩽ j ⩽ n, 1 ⩽ i ⩽ m,

(L2) lim
r→rk

µjk(r) = ∞, where 0 < rn < rn−1 < · · · < r1 < w for 1 ⩽ j ⩽ n, 1 ⩽ k ⩽ s,

(L3) there exists ejk > 0 such that µjk(r) > ejk for 1 ⩽ j ⩽ n, 1 ⩽ k ⩽ s for r ∈ [0, w]T.

The rest of the paper is organized as follows: In section 2, we present some preliminar-
ies, which are used in the paper. In Section 3, we construct the Green’s function for the
homogeneous BVP corresponding to (1.1) and establish bounds for the Green’s function.
Section 4 is devoted to establish the criteria for the existence of positive solutions to (1.1)
using Guo–Krasnosel’skii fixed point theorem. In section 5, we establish the existence of
at least three positive solutions using Ren-Ge-Ren fixed point theorem. Finally, last section
provides examples to demonstrate our results.

2. PRELIMINARIES

In this section, we present some basic definitions and lemmas that will be useful in our
subsequent discussions.

Definition 2.1. [7] A time scale T is a non-empty closed subset of the real numbers R. T has the
topology that it inherits from the real numbers with the standard topology. It follows that the jump
operators σ, ρ : T → T, are defined by

σ(t) = inf
{
τ ∈ T : τ > t

}
, ρ(t) = sup

{
τ ∈ T : τ < t

}
respectively.

• The point t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t,
ρ(t) < t, σ(t) = t, σ(t) > t respectively.

• A function f : T → R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set of all
rd-continuous functions f : T → R is denoted by Crd = Crd = Crd(T,R).
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• A function f : T → R is called ld-continuous provided it is continuous at left-dense
points in T and its right-sided limits exist (finite) at right-dense points in T. The set of all
ld-continuous functions f : T → R is denoted by Cld = Cld = Cld(T,R).

• By an interval time scale, we mean the intersection of a real interval with a given time
scale, i.e., [a, b]T = [a, b] ∩ T. Other intervals can be defined similarly.

Definition 2.2. [10] Let E ⊂ T be a ∆-measurable set and p ∈ R̄ ≡ R ∪ {−∞,+∞} be such
that p ≥ 1 and f : E → R̄ be a ∆- measurable function. We say that f belongs to Lp

∆(E) provided
that either ∫

E

|f |p(s)∆s < ∞, if p ∈ [1,∞),

or there exists a constant M ∈ R such that

|f | ≤ M, ∆− a.e. on E if p = ∞.

3. KERNEL AND BOUNDS

Now, we express the solution of BVP as a solution of integral equation by determining
the Green’s function for the corresponding homogeneous BVP. We also establish certain
properties of Green’s function that are essential for subsequent discussions.

Lemma 3.1. Let Hj(r) ∈ Crd([0, w]T,R), 1 ⩽ j ⩽ n. Then the BVP

(3.2) (u
(1)
j )∆∆(r) + Hj(r) = 0, r ∈ [0, w]T,

(3.3) aju
(1)
j (0)− bj(uj

(1))∆(0) = 0, cju
(1)
j (w) + dj(uj

(1))∆(w) = 0,

has one and only one solution

(3.4) u
(1)
j (r) =

∫ w

0

Nj(r, s)Hj(s)∆s,

where

(3.5) Nj(r, s) =
1

Aj

{
(ajσ(s) + bj)(cj(w − r) + dj), if σ(s) ⩽ r,

(ajr + bj)(cj(w − σ(s)) + dj), if r ⩽ s,

and
Aj = ajdj + cjwaj + bjcj ̸= 0, j = 1, 2, ..., n.

Proof. An equivalent integral equation for (3.2) is

u
(1)
j (r) =−

∫ r

0

[r − σ(s)]Hj(s)∆s+ f1r + f2.

Applying the boundary conditions (3.3), we get

f1 =
aj
Aj

∫ w

0

[cj(w − σ(s)) + dj]Hj(s)∆s and f2 =
bjf1
aj

.

Then,

u
(1)
j (r) =−

∫ r

0

[r − σ(s)]Hj(s)∆s+
(ajr + bj)

Aj

∫ w

0

[cj(w − σ(s)) + dj]Hj(s)∆s

=

∫ w

0

Nj(r, s)Hj(s)∆s.

□
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Note that an mn-tuple
(
u
(1)
1 (r), u

(2)
1 (r), ..., u

(m)
1 (r), u

(1)
2 (r), u

(2)
2 (r), ..., u

(m)
2 (r), ..., u

(1)
n (r), u

(2)
n (r),

..., u
(m)
n (r)

)
is a solution of (1.1) if and only if

u
(i)
j (r) =

∫ w

0

Nj(r, s)Lj(s)f
(i)
j (u

(i+1)
j (s))∆s, 1 ⩽ j ⩽ n, 1 ⩽ i ⩽ m,

u
(m+1)
j (r) = u

(1)
j+1(r), u

(1)
n+1(r) = u

(1)
1 (r),

u
(1)
1 (r) =

∫ w

0

N1(r, s1)L1(s1)f
(1)
1

(∫ w

0

N1(s1, s2)L1(s2)f
(2)
1

(∫ w

0

N1(s2, s3)L1(s3)f
(3)
1 ...

f
(m−1)
1

(∫ w

0

N1(sm−1, sm)L1(sm)f
(m)
1

(∫ w

0

N2(sm, sm+1)L2(sm+1)f
(1)
2

(∫ w

0

N2(sm+2, sm+3)L2(sm+3)f
(2)
2 ...f

(m−1)
2

(∫ w

0

N2(s2m−1, s2m)L2(s2m)f
(m)
2 ...

...

...

...

f
(m)
n−1

(∫ w

0

Nn(smn−m, smn−m+1)Ln(smn−m+1)f
(1)
n

(∫ w

0

Nn(smn−m+1, smn−m+2)

Ln(smn−m+2)f
(2)
n ...f(m−1)

n

(∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

)
...

∆smn−m+2

)
∆smn−m+1

)
...∆s2m...

)
∆sm+2

)
∆sm+1

)
∆sm

)
...∆s3

)
∆s2

)
∆s1.

Lemma 3.2. Let Gj(pj) = min
{

ajpj+bj
ajw+bj

,
cjpj+dj
cjw+dj

}
< 1, where pj ∈ (0, w

2 )T, j = 1, 2, ..., n. Then
Nj(r, s) has the following properties:

(i) 0 ⩽ Nj(r, s) ⩽ Nj(s, s) for all r, s ∈ [0, w]T,
(ii) Gj(pj)Nj(s, s) ⩽ Nj(r, s) for all r ∈ [pj, w − pj]T and s ∈ [0, w]T.

Proof. We can establish the inequality (i) by algebraic computations. For the inequality
(ii), let r ∈ [pj, w − pj]T and r ≤ s, we obtain

Nj(r, s)

Nj(s, s)
=

ajr + bj
ajs+ bj

⩾
ajpj + bj
ajw + bj

⩾ Gj(pj).

Let r ∈ [pj, w − pj]T and r ≥ s, we obtain

Nj(r, s)

Nj(s, s)
=

cj(w − r) + dj
cj(w − s) + dj

⩾
cjpj + dj
cjw + dj

⩾ Gj(pj).

This completes the proof. □
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4. EXISTENCE OF AT LEAST ONE POSITIVE SOLUTION

In this section, we establish the presence of positive solution for (1.1) by employing the
Hölder’s inequality and Guo–Krasnosel’skii fixed point theorem.

Let B = Crd([0, w]T,R) be a Banach space with norm ∥uj∥ = max
r∈[0,w]T

|uj(r)|. For pj ∈

(0, w
2 )T, letting K = min {G1(p1),G2(p2), ...,Gn(pn)}, z = max {p1, p2, ..., pn}, define the

cone P ⊂ B as

P =
{
uj ∈ b : each uj(r) ⩾ 0 on [0, w]T, min

r∈[z,w−z]T
uj(r) ⩾ K∥uj∥B

}
.

For any u
(1)
1 ∈ P, define an operator T : P → B by

u
(1)
1 (r) =

∫ w

0

N1(r, s1)L1(s1)f
(1)
1

(∫ w

0

N1(s1, s2)L1(s2)f
(2)
1

(∫ w

0

N1(s2, s3)L1(s3)f
(3)
1 ...

f
(m−1)
1

(∫ w

0

N1(sm−1, sm)L1(sm)f
(m)
1

(∫ w

0

N2(sm, sm+1)L2(sm+1)f
(1)
2(∫ w

0

N2(sm+2, sm+3)L2(sm+3)f
(2)
2 ...f

(m−1)
2

(∫ w

0

N2(s2m−1, s2m)L2(s2m)f
(m)
2 ...

...

...

...

f
(m)
n−1

(∫ w

0

Nn(smn−m, smn−m+1)Ln(smn−m+1)f
(1)
n

(∫ w

0

Nn(smn−m+1, smn−m+2)

Ln(smn−m+2)f
(2)
n ...f(m−1)

n

(∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

)
...

∆smn−m+2

)
∆smn−m+1

)
...∆s2m...

)
∆sm+2

)
∆sm+1

)
∆sm

)
...∆s3

)
∆s2

)
∆s1.

Lemma 4.3. Assume that (L1)−(L2) hold. Then for each pj ∈ (0, w
2 )T, T(P) ⊂ P and T : P → P

is completely continuous.

Proof. From Lemma 3.2, we have Nj(r, s) ⩾ 0, for all r, s ∈ [0, w]T and so Tu
(1)
1 (r) ⩾ 0. We

can easily establish that T is completely continuous. For any u
(1)
1 ∈ P, we have

∥Tu(1)1 ∥ = max
r∈[0,w]T

∫ w

0

N1(r, s1)L1(s1)f
(1)
1

(∫ w

0

N1(s1, s2)L1(s2)f
(2)
1

(∫ w

0

N1(s2, s3)L1(s3)f
(3)
1 ...

f
(m−1)
1

(∫ w

0

N1(sm−1, sm)L1(sm)f
(m)
1

(∫ w

0

N2(sm, sm+1)L2(sm+1)f
(1)
2(∫ w

0

N2(sm+2, sm+3)L2(sm+3)f
(2)
2 ...f

(m−1)
2

(∫ w

0

N2(s2m−1, s2m)L2(s2m)f
(m)
2 ...

...

...

...

f
(m)
n−1

(∫ w

0

Nn(smn−m, smn−m+1)Ln(smn−m+1)f
(1)
n

(∫ w

0

Nn(smn−m+1, smn−m+2)

Ln(smn−m+2)f
(2)
n ...f(m−1)

n

(∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

)
...

∆smn−m+2

)
∆smn−m+1

)
...∆s2m...

)
∆sm+2

)
∆sm+1

)
∆sm

)
...∆s3

)
∆s2

)
∆s1.
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⩽
∫ w

0

N1(s1, s1)L1(s1)f
(1)
1

(∫ w

0

N1(s1, s2)L1(s2)f
(2)
1

(∫ w

0

N1(s2, s3)L1(s3)f
(3)
1 ...

f
(m−1)
1

(∫ w

0

N1(sm−1, sm)L1(sm)f
(m)
1

(∫ w

0

N2(sm, sm+1)L2(sm+1)f
(1)
2(∫ w

0

N2(sm+2, sm+3)L2(sm+3)f
(2)
2 ...f

(m−1)
2

(∫ w

0

N2(s2m−1, s2m)L2(s2m)f
(m)
2 ...

...

...

...

f
(m)
n−1

(∫ w

0

Nn(smn−m, smn−m+1)Ln(smn−m+1)f
(1)
n

(∫ w

0

Nn(smn−m+1, smn−m+2)

Ln(smn−m+2)f
(2)
n ...f(m−1)

n

(∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

)
...

∆smn−m+2

)
∆smn−m+1

)
...∆s2m...

)
∆sm+2

)
∆sm+1

)
∆sm

)
...∆s3

)
∆s2

)
∆s1.

min
r∈[z,w−z]T

Tu
(1)
1 (r) = min

r∈[z,w−z]T

∫ w

0

N1(r, s1)L1(s1)f
(1)
1

(∫ w

0

N1(s1, s2)L1(s2)f
(2)
1 ...

f
(m−1)
1

(∫ w

0

N1(sm−1, sm)L1(sm)f
(m)
1

(∫ w

0

N2(sm, sm+1)L2(sm+1)f
(1)
2(∫ w

0

N2(sm+2, sm+3)L2(sm+3)f
(2)
2 ...f

(m−1)
2

(∫ w

0

N2(s2m−1, s2m)L2(s2m)f
(m)
2 ...

...

...

...

f
(m)
n−1

(∫ w

0

Nn(smn−m, smn−m+1)Ln(smn−m+1)f
(1)
n

(∫ w

0

Nn(smn−m+1, smn−m+2)

Ln(smn−m+2)f
(2)
n ...f(m−1)

n

(∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

)
...

∆smn−m+2

)
∆smn−m+1

)
...∆s2m...

)
∆sm+2

)
∆sm+1

)
∆sm

)
...∆s3

)
∆s2

)
∆s1.

⩾ G1(p1)

∫ w

0

N1(s1, s1)L1(s1)f
(1)
1

(∫ w

0

N1(s1, s2)L1(s2)f
(2)
1

(∫ w

0

N1(s2, s3)L1(s3)

f
(3)
1 ...f

(m−1)
1

(∫ w

0

N1(sm−1, sm)L1(sm)f
(m)
1

(∫ w

0

N2(sm, sm+1)L2(sm+1)f
(1)
2(∫ w

0

N2(sm+2, sm+3)L2(sm+3)f
(3)
2 ...f

(m−1)
2

(∫ w

0

N2(s2m−1, s2m)L2(s2m)f
(m)
2 ...

...

...

...

f
(m)
n−1

(∫ w

0

Nn(smn−m, smn−m+1)Ln(smn−m+1)f
(1)
n

(∫ w

0

Nn(smn−m+1, smn−m+2)

Ln(smn−m+2)f
(2)
n ...f(m−1)

n

(∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

)
...

∆smn−m+2

)
∆smn−m+1

)
...∆s2m...

)
∆sm+2

)
∆sm+1

)
∆sm

)
...∆s3

)
∆s2

)
∆s1.
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⩾ K∥Tu(1)1 ∥.
Hence, min

r∈[z,w−z]T
Tu

(1)
1 (r) ⩾ K∥Tu(1)1 ∥B.

Therefore, T(P) ⊂ P and using Arzela-Ascoli theorem, it can be seen that T is completely
continuous. □

Theorem 4.1. [15] Let f ∈ Lp
∆(J) with p > 1, g ∈ Lq

∆(J) with q > 1, and 1
p + 1

q = 1. Then
fg ∈ L1

∆(J) and ||fg||L1
∆
≤ ||f ||Lp

∆
||g||Lq

∆
, where

||f ||Lp
∆
:=


[∫

J

|f |p(s)∆s

] 1
q

, if p ∈ R,

inf
{
M ∈ R/|f | ≤ M ∆− a.e on J

}
, if p = ∞,

andJ = [a, b).

Theorem 4.2. (Hölder’s inequality) [15] Let f ∈ L
pk

∆ [0, 1] with pk > 1, for k = 1, 2, ..., s and
s∑

k=1

1

pk
= 1. Then

s∏
k=1

fk ∈ L1∆[0, 1] and

∥∥∥∥∥
s∏

k=1

fk

∥∥∥∥∥
1

⩽
s∏

k=1

∥fk∥pk
. Further, if f ∈ L1∆[0, 1] and

g ∈ L∞∆ [0, 1], then fg ∈ L1∆[0, 1] and ∥fg∥1 ⩽ ∥f∥1∥g∥∞.

Theorem 4.3. [9] Let P be a cone in a Banach space B and R1,R2 are open sets with
0 ∈ R1, R̄1 ⊂ R2. Let T : P ∩ (R̄2 \ R1) → P be completely continuous operator such that

(i) ∥Tr∥ ⩽ ∥r∥, r ∈ P ∩ ∂R1, and ∥Tr∥ ⩾ ∥r∥, r ∈ P ∩ ∂R2, or
(ii) ∥Tr∥ ⩾ ∥r∥, r ∈ P ∩ ∂R1, and ∥Tr∥ ⩽ ∥r∥, r ∈ P ∩ ∂R2.

Then T has a fixed point in P ∩ (R̄2 \ R1).

We consider the cases for µjk(r) ∈ L
pk

∆ [0, w]T :

(i)
s∑

k=1

1

pk
< 1, (ii)

s∑
k=1

1

pk
= 1, (iii)

s∑
k=1

1

pk
> 1.

Firstly, we present a result to establish existence of positive solution when
s∑

k=1

1

pk
< 1.

Theorem 4.4. Suppose that (L1) − (L3) hold. Let {pjℓ}∞ℓ=1 be a sequence with pjℓ ∈ (rℓ+1, rℓ),
zℓ = max {p1ℓ, p2ℓ, ..., pnℓ} , 0 < z1 < w

2 for j = 1, 2, ..., n. Let {Dℓ}∞ℓ=1 and {Eℓ}∞ℓ=1 be such
that

Dℓ+1 < KℓEℓ < Eℓ < Mj Eℓ < Dℓ, ℓ ∈ N,
where

Mj = max

{[
K1

s∏
k=1

ejk

∫ w−z1

z1

Nj(s, s)∆s

]−1

, 1

}
.

Assume that f(i)j satisfies

(H1) f
(i)
j (uj) ⩽ hjDℓ ∀ r ∈ [0, w]T, 0 ⩽ uj ⩽ Dℓ, where

hj <

[
∥Nj∥Lq∆

s∏
k=1

∥µjk(r)∥Lpk
∆

]−1

,

(H2) f
(i)
j (uj) ⩾ MjEℓ ∀ r ∈ [zℓ, w − zℓ]T, KℓEℓ ⩽ uj ⩽ Eℓ.

Then (1.1) has positive solutions
{
(u

(1)
1 )[ℓ], (u

(2)
1 )[ℓ], . . . , (u

(m)
1 )[ℓ], (u

(1)
2 )[ℓ], (u

(2)
2 )[ℓ], . . . , (u

(m)
2 )[ℓ],

. . . , (u
(1)
n )[ℓ], (u

(2)
n )[ℓ], . . . , (u

(m)
n )[ℓ]

}∞
ℓ=1

such that (u
(i)
j )[ℓ](r) ⩾ 0 on [0, w]T, j = 1, 2, . . . , n,

i = 1, 2, . . . ,m, ℓ ∈ N.
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Proof. Consider the sequences {Eℓ}∞ℓ=1 and {Fℓ}∞ℓ=1 defined by

Eℓ =
{
uj ∈ B : ∥uj∥ ⩽ Dℓ

}
,

Fℓ =
{
uj ∈ B : ∥uj∥ ⩽ Eℓ

}
,

which are open subsets of B. Let pjℓ be as in the hypothesis and note that
r∗ < rℓ+1 < pjℓ < rℓ <

w
2 , ∀ ℓ ∈ N.

Denote, Pℓ =
{
uj ∈ E : uj(r) ⩾ 0 on [0, w]T and min

r∈[zℓ,w−zℓ]T
uj(r) ⩾ Kℓ∥uj(r)∥

}
and let u(1)1 ∈ Pℓ ∩ ∂Eℓ. Then u

(1)
1 (smn) ⩽ Dℓ = ∥u(1)1 ∥ for all smn ∈ [0, w]T.

By (H1) and for smn ∈ [0, w]T, we have∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn ⩽

∫ w

0

Nn(smn, smn)Ln(smn)hnDℓ∆smn

⩽ hnDℓ

∫ w

0

Nn(smn, smn)Ln(smn)∆smn = hnDℓ

∫ w

0

Nn(smn, smn)

s∏
k=1

µnk(smn)∆smn.

Since
s∑

k=1

1

pk
< 1, there exists q > 1 such that

1

q
+

s∑
k=1

1

pk
= 1. So,∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn ⩽ hnDℓ∥Nn∥Lq∆

∥∥∥∥∥
s∏

k=1

µnk

∥∥∥∥∥
L
pk
∆

⩽ Dℓ.∫ w

0

Nn(smn−2, smn−1)Ln(smn−1)f
(m−1)
n

(∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

)
∆smn−1

⩽
∫ w

0

Nn(smn−2, smn−1)Ln(smn−1)f
(mn−1)
n (Dℓ)∆smn−1 ⩽ Dℓ.

Continuing in this way, we get (Tu(1)1 )(r) ⩽ Dℓ.

Since Dℓ = ∥u(1)1 ∥ for u(1)1 ∈ Pℓ ∩ ∂Eℓ, we get

(4.6) ∥T(u(1)1 )∥ ⩽ ∥(u(1)1 )∥.

Let r ∈ [zℓ, w − zℓ]T, then

Eℓ = ∥u(1)j ∥ ⩾ u
(1)
j (r) ⩾ min

r∈[pjℓ,w−pjℓ]T
u
(1)
j (r) ⩾ min

r∈[zℓ,w−zℓ]T
u
(1)
j (r) ⩾ Gj(pjℓ)∥u(1)j (r)∥ ⩾ KℓEℓ.

By (H2) and for smn ∈ [zℓ, w − zℓ]T, we have∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

⩾ Gn(pnℓ)

∫ w−zℓ

zℓ

Nn(smn, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

⩾ Gn(pnℓ)Mn Eℓ

∫ w−zℓ

zℓ

Nn(smn, smn)Ln(smn)∆smn

⩾ K1Mn Eℓ

s∏
k=1

enk

∫ w−z1

z1

Nn(smn, smn)∆smn

⩾ Eℓ.

Continuing in this way, we get (T1u
(1)
1 )(r) ⩾ Eℓ.

Since Eℓ = ∥u(1)1 ∥ for u(1)1 ∈ Pℓ ∩ ∂Fℓ, we get

(4.7) ∥Tu(1)1 ∥ ⩾ ∥u(1)1 ∥.
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It is evident that 0 ∈ ∂Fℓ ⊂ ∂F̄ℓ ⊂ ∂Eℓ. Using (4.6) and (4.7), it follows from theorem 4.3
that T has a fixed point ((u(i)j )[ℓ]) ∈ Pℓ∩(Ēℓ\ Fℓ) such that (u

(i)
j )[ℓ] ⩾ 0 on [0, w]T and ℓ ∈ N.

Next setting u
(m+1)
j (r) = u

(1)
j+1(r), u

(1)
n+1(r) = u

(1)
1 (r), for j = 1, 2, ..., n, r ∈ [0, w]T, we obtain

positive solutions
{
(u

(1)
1 )[ℓ], (u

(2)
1 )[ℓ], . . . , (u

(m)
1 )[ℓ], (u

(1)
2 )[ℓ], (u

(2)
2 )[ℓ], . . . , (u

(m)
2 )[ℓ], . . . , (u

(1)
n )[ℓ],

(u
(2)
n )[ℓ], . . . , (u

(m)
n )[ℓ]

}∞
ℓ=1

for (1.1). Thus, the proof is complete. □

For
s∑

k=1

1

pk
= 1, we have the following theorem.

Theorem 4.5. Suppose that (L1) − (L3) hold. Let {pjℓ}∞ℓ=1 be a sequence with pjℓ ∈ (rℓ+1, rℓ),
zℓ = max {p1ℓ, p2ℓ, ..., pnℓ} , 0 < z1 < w

2 for j = 1, 2, ..., n. Let {Dℓ}∞ℓ=1 and {Eℓ}∞ℓ=1 be such
that

Dℓ+1 < KℓEℓ < Eℓ < Mj Eℓ < Dℓ, ℓ ∈ N.

Assume that f(i)j satisfies (H2)

(H3) f
(i)
j (uj) ⩽ gjDℓ ∀ r ∈ [0, w]T, 0 ⩽ uj ⩽ Dℓ, where

gj <

[
∥Nj∥L∞∆

s∏
k=1

∥µjk(r)∥Lpk
∆

]−1

.

Then (1.1) has positive solutions
{
(u

(1)
1 )[ℓ], (u

(2)
1 )[ℓ], . . . , (u

(m)
1 )[ℓ], (u

(1)
2 )[ℓ], (u

(2)
2 )[ℓ], . . . , (u

(m)
2 )[ℓ],

. . . , (u1n)
[ℓ], (u

(2)
n )[ℓ], . . . , (u

(m)
n )[ℓ]

}∞
ℓ=1

such that (u
(i)
j )[ℓ](r) ⩾ 0 on [0, w]T, j = 1, 2, ..., n,

i = 1, 2, ...,m, ℓ ∈ N.

Proof. The proof is similar to the proof of Theorem 4.4. Therefore, we omit the details
here. □

Lastly, the case
s∑

k=1

1

pk
> 1.

Theorem 4.6. Suppose that (L1) − (L3) hold. Let {pjℓ}∞ℓ=1 be a sequence with pjℓ ∈ (rℓ+1, rℓ),
zℓ = max {p1ℓ, p2ℓ, ..., pnℓ} , 0 < z1 < w

2 for j = 1, 2, ..., n. Let {Dℓ}∞ℓ=1 and {Eℓ}∞ℓ=1 be such
that

Dℓ+1 < KℓEℓ < E ℓ < Mj Eℓ < Dℓ, ℓ ∈ N.

Assume that f(i)j satisfies (H2)

(H4) f
(i)
j (uj) ⩽ djDℓ ∀ r ∈ [0, w]T, 0 ⩽ uj ⩽ Dℓ, where

dj <

[
∥Nj∥L∞∆

s∏
k=1

∥µjk(r)∥L1∆

]−1

.

Then (1.1) has positive solutions
{
(u

(1)
1 )[ℓ], (u

(2)
1 )[ℓ], . . . , (u

(m)
1 )[ℓ], (u

(1)
2 )[ℓ], (u

(2)
2 )[ℓ], . . . , (u

(m)
2 )[ℓ],

. . . , (u
(1)
n )[ℓ], (u

(2)
n )[ℓ], . . . , (u

(m)
n )[ℓ]

}∞
ℓ=1

such that (u
(i)
j )[ℓ](r) ⩾ 0 on [0, w]T, j = 1, 2, ..., n,

i = 1, 2, ...,m, ℓ ∈ N.

Proof. The proof is similar to the proof of Theorem 4.4. Therefore, we omit the details
here. □



64 K. R. PRASAD, B. SRAVANI

5. EXISTENCE OF AT LEAST TWO POSITIVE SOLUTIONS

Let γ be a nonnegative continuous functional on a cone P of the real Banach space B.
Then for any two positive real numbers a′, c′, define the sets
P(γ, c′) = {u ∈ P : γ(u) < c′} and Pa′ = {u ∈ P : ∥u∥ < a′}.
Define nonnegative, increasing, continuous functinals γℓ, βℓ, αℓ by
γℓ(u

(1)
1 ) = min

r∈[0,w]T
(u

(1)
1 (r)), βℓ(u

(i)
1 ) = max

r∈[0,w]T
(u

(1)
1 (r)), αℓ(u

(1)
1 (r)) = max

r∈[0,w]T
(u

(1)
1 (r)).

It is obvious that for each u
(1)
1 ∈ P, γℓ(u

(1)
1 ) ⩽ βℓ(u

(1)
1 ) = αℓ(u

(1)
1 ).

In addition by lemma (2.2) for each u
(1)
1 ∈ P, γℓ(u

(1)
1 ) = min

r∈[0,w]T
(u

(1)
1 (r)) ⩾ K∥u(1)1 ∥.

Thus, ∥u(1)1 ∥ ⩽ 1
Kγℓ(u

(1)
1 ) for u(1)1 ∈ P.

Theorem 5.7. (Ren-Ge-Ren) [21] Let P be a cone in a Banach space B. Let α, β, γ be three
increasing, nonnegative and continuous functionals on P satisfying for some c′ > 0 and M > 0

such that γ(z) ⩽ β(z) ⩽ α(z) and ∥z∥ ⩽ Mγ(z), for all z ∈ ¯P (γ, c′). Suppose there exists a
completely continuous operator N : ¯P(γ, c′) → P and 0 < a′ < b′ < c′ such that
(i) γ(z) > c′, for all z ∈ ∂P(γ, c′),
(ii) β(z) < b′, for all z ∈ ∂P(β, b′),
(iii) P(α, a′) ̸= ϕ and α(z) < a′, for all z ∈ ∂P(α, a′). Then, N has at least three fixed points 1z,
2z, 3z ∈ P(γ, c′) such that α(1z) < a′ < α(2z), β(2z) < b′ < β(3z)) and γ(3z) < c′.

Theorem 5.8. Suppose that (L1) − (L3) hold. Let {pjℓ}∞ℓ=1 be a sequence with pjℓ ∈ (rℓ+1, rℓ),
zℓ = max {p1ℓ, p2ℓ, ..., pnℓ}, 0 < z1 <

w
2 for j = 1, 2, ..., n. Let {Rℓ}∞ℓ=1, {Qℓ}∞ℓ=1 and {Sℓ}∞ℓ=1 be

three sequences such that

Rℓ+1 < Qℓ < KℓSℓ < Sℓ < Rℓ, Mj Sℓ < Rℓ, ℓ ∈ N,
where

Mj = max

{[
K1

s∏
k=1

ejk

∫ w−z1

z1

Nj(s, s)∆s

]−1

, 1

}
.

Assume that f(i)j satisfies the following

(F1) f
(i)
j (uj) ⩽ hjRℓ ∀ r ∈ [0, w]T, 0 ⩽ uj ⩽ 1

Kℓ
Rℓ, where

hj <

[
∥Nj∥Lq∆

s∏
k=1

∥µjk(r)∥Lpk
∆

]−1

,

(F2) f
(i)
j (uj) ⩾ MjSℓ ∀ r ∈ [zℓ, w − zℓ]T, KℓSℓ ⩽ uj ⩽ Sℓ,

(F3) f
(i)
j (uj) ⩽ hjQℓ ∀ r ∈ [0, w]T, 0 ⩽ uj ⩽ 1

Kℓ
Qℓ.

Then (1.1) has at least three positive solutions
{
(1u

(1)
1 )[ℓ], (1u

(2)
1 )[ℓ], . . . , (1u

(m)
1 )[ℓ], (1u

(1)
2 )[ℓ],

(1u
(2)
2 )[ℓ], . . . , (1u

(m)
2 )[ℓ], . . . , (1u

(1)
n )[ℓ], (1u

(2)
n )[ℓ], . . . , (1u

(m)
n )[ℓ]

}∞
ℓ=1

,
{
(2u

(1)
1 )[ℓ], (2u

(2)
1 )[ℓ], . . . ,

(2u
(m)
1 )[ℓ], (2u

(1)
2 )[ℓ], (2u

(2)
2 )[ℓ], . . . , (2u

(m)
2 )[ℓ], . . . , (2u

(1)
n )[ℓ], (2u

(2)
n )[ℓ], . . . , (2u

(m)
n )[ℓ]

}∞
ℓ=1

and{
(3u

(1)
1 )[ℓ], (3u

(2)
1 )[ℓ], . . . , (3u

(m)
1 )[ℓ], (3u

(1)
2 )[ℓ], (3u

(2)
2 )[ℓ], . . . , (3u

(m)
2 )[ℓ], . . . , (3u

(1)
n )[ℓ], (3u

(2)
n )[ℓ],

. . . , (3u
(m)
n )[ℓ]

}∞
ℓ=1

such that (1u(i)j )[ℓ](r) ⩾ 0, (2u(i)j )[ℓ](r) ⩾ 0 and (3u
(i)
j )[ℓ](r) ⩾ 0 on [0, w]T,

with αℓ(
1u

(i)
j )[ℓ] ⩽ Qℓ ⩽ αℓ(

2u
(i)
j )[ℓ], βℓ(

2u
(i)
j )[ℓ] ⩽ Sℓ ⩽ βℓ(

3u
(i)
j )[ℓ], γℓ(

3u
(i)
j )[ℓ] ⩽ Rℓ, j = 1, 2,

. . . , n, i = 1, 2, . . . ,m, ℓ ∈ N.

Proof. Consider the completely continuous operator T and the cone P which was estab-
lished in previous section. So it is easy to check that T : P(β,Rℓ) → P for ℓ ∈ N.
In order to prove that all conditions of theorem (5.7) are satisfied, we choose
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u
(1)
1 ∈ ∂P(β,Rℓ). Then β(u

(1)
1 ) = max

r∈[0,w]T
(u

(1)
1 (r)) = Rℓ, 0 ⩽ u

(1)
1 ⩽

1

Kℓ
Rℓ for r ∈ [0, w]T.

We have ∥u(1)1 ∥ ⩽ 1
Kℓ
β(u

(1)
1 ) = 1

Kℓ
Rℓ.

So we have, 0 ⩽ u
(1)
1 ⩽ 1

Kℓ
Rℓ, r ∈ [0, w]T, for 0 ⩽ smn−1 < w,∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn ⩽

∫ w

0

Nn(smn, smn)Ln(smn)hnRℓ∆smn

⩽ hnRℓ

∫ w

0

Nn(smn, smn)Ln(smn)∆smn = hnRℓ

∫ w

0

Nn(smn, smn)

s∏
k=1

µnk(smn)∆smn.

Since
s∑

k=1

1

pk
< 1, there exists q > 1 such that

1

q
+

s∑
k=1

1

pk
= 1. So,∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn ⩽ hnRℓ∥Nn∥Lq∆

∥∥∥∥∥
s∏

k=1

µnk

∥∥∥∥∥
L
pk
∆

⩽ Rℓ.∫ w

0

Nn(smn−2, smn−1)Ln(smn−1)f
(m−1)
n

(∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

)
∆smn−1

⩽
∫ w

0

Nn(smn−2, smn−1)Ln(smn−1)f
(m−1)
n (Rℓ)∆smn−1 ⩽ Rℓ.

Continuing in this way, we get (Tu(1)1 )(r) ⩽ Rℓ.

βℓ(Tu
(1)
1 )(r) = max

r∈[0,w]T
(Tu

(1)
1 )(r) ⩽ Rℓ, Hence condition (a) is satisfied.

u
(1)
1 ∈ ∂P(γ,Sℓ). Then

Sℓ = γ(u
(1)
1 ) = min

r∈[0,w]T
(u

(1)
1 (r)) ⩽ max

r∈[0,w]T
(u

(1)
1 (r)) = ∥u(1)1 ∥ ⩽

1

Kℓ
γ(u

(1)
1 ) ⩽

1

Kℓ
Sℓ.

We have ∥u(1)1 ∥ ⩽ 1
Kℓ
γℓ(u

(1)
1 ) ⩽ 1

Kℓ
bℓ(u

(1)
1 ) = 1

Kℓ
Sℓ. ∴ Sℓ ⩽ u

(1)
1 (r) ⩽ 1

Kℓ
Sℓ, r ∈ [0, w]T.

By (F2) and for smn ∈ [zℓ, w − zℓ]T, we have∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

⩾ Gn(pnℓ)

∫ w−zℓ

zℓ

Nn(smn, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

⩾ Gn(pnℓ)Mn Sℓ

∫ w−zℓ

zℓ

Nn(smn, smn)Ln(smn)∆smn

⩾ K1Mn Sℓ

s∏
k=1

enk

∫ w−z1

z1

Nn(smn, smn)∆smn ⩾ Sℓ.

Continuing in this way, we get (Tu(1)1 )(r) ⩾ Sℓ.

γ(Tu
(1)
1 )(r) = min

r∈[0,w]T
T(u

(1)
1 (r)) ⩾ Sℓ.

Hence condition (b) is satisfied. Finally we verify that (c) of theorem 5.7 is also satisfied.
Since 0 ∈ P,Qℓ > 0, it follows that P(αℓ,Qℓ) ̸= ϕ.

Now let u(1)1 ∈ ∂P(αℓ,Qℓ). Then αℓ(u
(1)
1 (r)) = max

r∈[0,w]T
(u

(1)
1 (r)) = ∥u(1)1 ∥ = Qℓ.

For ∥u(1)1 ∥ ⩽ 1
Kℓ
γℓ(u

(1)
1 ) ⩽ 1

Kℓ
αℓ(u

(1)
1 ) = 1

Kℓ
Qℓ, then we get 0 ⩽ u

(1)
1 ⩽ 1

Kℓ
Rℓ, r ∈ [0, w]T.

For 0 ⩽ smn−1 < w,
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0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn ⩽

∫ w

0

Nn(smn, smn)Ln(smn)hnQℓ∆smn

⩽ hnQℓ

∫ w

0

Nn(smn, smn)Ln(smn)∆smn = hnQℓ

∫ w

0

Nn(smn, smn)

s∏
k=1

µnk(smn)∆smn.

Since
s∑

k=1

1

pk
< 1, there exists q > 1 such that

1

q
+

s∑
k=1

1

pk
= 1. So,∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn ⩽ hnQℓ∥Nn∥Lq∆

∥∥∥∥∥
s∏

k=1

µnk

∥∥∥∥∥
L
pk
∆

⩽ Qℓ.∫ w

0

Nn(smn−2, smn−1)Ln(smn−1)f
(m−1)
n

(∫ w

0

Nn(smn−1, smn)Ln(smn)f
(m)
n (u

(1)
1 (smn))∆smn

)
∆smn−1

⩽
∫ w

0

Nn(smn−2, smn−1)Ln(smn−1)f
(m−1)
n (Qℓ)∆smn−1 ⩽ Qℓ.

Continuing in this way, we get (Tu(1)1 )(r) ⩽ Qℓ.

αℓ(Tu
(1)
1 )(r) = max

r∈[0,w]T
(Tu

(1)
1 )(r) ⩽ Qℓ, hence condition (c) is satisfied.

Thus, all the conditions of Theorem 5.7 are satisfied. Hence, there exists at least three fixed
points of T which are positive solutions of (1.1) such that
αℓ(

1u
(i)
j )[ℓ] ⩽ Qℓ ⩽ αℓ(

2u
(i)
j )[ℓ], βℓ(

2u
(i)
j )[ℓ] ⩽ Sℓ ⩽ βℓ(

3u
(i)
j )[ℓ], γℓ(

3u
(i)
j )[ℓ] ⩽ Rℓ, j = 1, 2,

. . . , n, i = 1, 2, . . . ,m, ℓ ∈ N. □

Theorem 5.9. Suppose that (L1) − (L3) hold. Let {pjℓ}∞ℓ=1 be a sequence with pjℓ ∈ (rℓ+1, rℓ),
zℓ = max {p1ℓ, p2ℓ, ..., pnℓ}, 0 < z1 <

w
2 for j = 1, 2, ..., n. Let {Rℓ}∞ℓ=1, {Qℓ}∞ℓ=1 and {Sℓ}∞ℓ=1 be

three sequences such that

Rℓ+1 < Qℓ < KℓSℓ < Sℓ < Rℓ, Mj Sℓ < Rℓ, ℓ ∈ N,

where

Mj = max

{[
K1

s∏
k=1

ejk

∫ w−z1

z1

Nj(s, s)∆s

]−1

, 1

}
.

Assume that f(i)j satisfies

(F4) f
(i)
j (uj) ⩽ mjRℓ ∀ r ∈ [0, w]T, 0 ⩽ uj ⩽ 1

Kℓ
Rℓ, where

mj <

[
∥Nj∥L∞∆

s∏
k=1

∥µjk(r)∥Lpk
∆

]−1

,

(F5) f
(i)
j (uj) ⩾ MjSℓ ∀ r ∈ [zℓ, w − zℓ]T, KℓSℓ ⩽ uj ⩽ Sℓ,

(F6) f
(i)
j (uj) ⩽ mjQℓ ∀ r ∈ [0, w]T, 0 ⩽ uj ⩽ 1

Kℓ
Qℓ.

Then (1.1) has at least three positive solutions
{
(1u

(1)
1 )[ℓ], (1u

(2)
1 )[ℓ], . . . , (1u

(m)
1 )[ℓ], (1u

(1)
2 )[ℓ],

(1u
(2)
2 )[ℓ], . . . , (1u

(m)
2 )[ℓ], . . . , (1u

(1)
n )[ℓ], (1u

(2)
n )[ℓ], . . . , (1u

(m)
n )[ℓ]

}∞
ℓ=1

,
{
(2u

(1)
1 )[ℓ], (2u

(2)
1 )[ℓ], . . . ,

(2u
(m)
1 )[ℓ], (2u

(1)
2 )[ℓ], (2u

(2)
2 )[ℓ], . . . , (2u

(m)
2 )[ℓ], . . . , (2u

(1)
n )[ℓ], (2u

(2)
n )[ℓ], . . . , (2u

(m)
n )[ℓ]

}∞
ℓ=1

and{
(3u

(1)
1 )[ℓ], (3u

(2)
1 )[ℓ], . . . , (3u

(m)
1 )[ℓ], (3u

(1)
2 )[ℓ], (3u

(2)
2 )[ℓ], . . . , (3u

(m)
2 )[ℓ], . . . , (3u

(1)
n )[ℓ], (3u

(2)
n )[ℓ],

. . . , (3u
(m)
n )[ℓ]

}∞
ℓ=1

such that (1u(i)j )[ℓ](r) ⩾ 0, (2u(i)j )[ℓ](r) ⩾ 0 and (3u
(i)
j )[ℓ](r) ⩾ 0 on [0, w]T,

with αℓ(
1u

(i)
j )[ℓ] ⩽ Qℓ ⩽ αℓ(

2u
(i)
j )[ℓ], βℓ(

2u
(i)
j )[ℓ] ⩽ Sℓ ⩽ βℓ(

3u
(i)
j )[ℓ], γℓ(

3u
(i)
j )[ℓ] ⩽ Rℓ, j = 1, 2,

. . . , n, i = 1, 2, . . . ,m, ℓ ∈ N.
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Lastly, the case
s∑

k=1

1

pk
> 1.

Theorem 5.10. Suppose that (L1) − (L3) hold. Let {pjℓ}∞ℓ=1 be a sequence with pjℓ ∈ (rℓ+1, rℓ),
zℓ = max {p1ℓ, p2ℓ, ..., pnℓ}, 0 < z1 <

w
2 for j = 1, 2, ..., n. Let {Rℓ}∞ℓ=1, {Qℓ}∞ℓ=1 and {Sℓ}∞ℓ=1 be

three sequences such that

Rℓ+1 < Qℓ < KℓSℓ < Sℓ < Rℓ, Mj Sℓ < Rℓ, ℓ ∈ N,

where

Mj = max

{[
K1

s∏
k=1

ejk

∫ w−z1

z1

Nj(s, s)∆s

]−1

, 1

}
.

Assume that f(i)j satisfies

(F7) f
(i)
j (uj) ⩽ njRℓ ∀ r ∈ [0, w]T, 0 ⩽ uj ⩽ 1

Kℓ
Rℓ, where

nj <

[
∥Nj∥L∞∆

s∏
k=1

∥µjk(r)∥L1∆

]−1

,

(F8) f
(i)
j (uj) ⩾ MjSℓ ∀ r ∈ [zℓ, w − zℓ]T, KℓSℓ ⩽ uj ⩽ Sℓ,

(F9) f
(i)
j (uj) ⩽ njQℓ ∀ r ∈ [0, w]T, 0 ⩽ uj ⩽ 1

Kℓ
Qℓ.

Then (1.1) has at least three positive solutions
{
(1u

(1)
1 )[ℓ], (1u

(2)
1 )[ℓ], . . . , (1u

(m)
1 )[ℓ], (1u

(1)
2 )[ℓ],

(1u
(2)
2 )[ℓ], . . . , (1u

(m)
2 )[ℓ], . . . , (1u

(1)
n )[ℓ], (1u

(2)
n )[ℓ], . . . , (1u

(m)
n )[ℓ]

}∞
ℓ=1

,
{
(2u

(1)
1 )[ℓ], (2u

(2)
1 )[ℓ], . . . ,

(2u
(m)
1 )[ℓ], (2u

(1)
2 )[ℓ], (2u

(2)
2 )[ℓ], . . . , (2u

(m)
2 )[ℓ], . . . , (2u

(1)
n )[ℓ], (2u

(2)
n )[ℓ], . . . , (2u

(m)
n )[ℓ]

}∞
ℓ=1

and{
(3u

(1)
1 )[ℓ], (3u

(2)
1 )[ℓ], . . . , (3u

(m)
1 )[ℓ], (3u

(1)
2 )[ℓ], (3u

(2)
2 )[ℓ], . . . , (3u

(m)
2 )[ℓ], . . . , (3u

(1)
n )[ℓ], (3u

(2)
n )[ℓ],

. . . , (3u
(m)
n )[ℓ]

}∞
ℓ=1

such that (1u(i)j )[ℓ](r) ⩾ 0, (2u(i)j )[ℓ](r) ⩾ 0 and (3u
(i)
j )[ℓ](r) ⩾ 0 on [0, w]T,

with αℓ(
1u

(i)
j )[ℓ] ⩽ Qℓ ⩽ αℓ(

2u
(i)
j )[ℓ], βℓ(

2u
(i)
j )[ℓ] ⩽ Sℓ ⩽ βℓ(

3u
(i)
j )[ℓ], γℓ(

3u
(i)
j )[ℓ] ⩽ Rℓ, j = 1, 2,

. . . , n, i = 1, 2, . . . ,m, ℓ ∈ N.

6. NUMERICAL EXAMPLES

In this section, we consider certain problems to verify our results.

Example 6.1. Consider the BVP

(6.8)

(u
(1)
1 )∆∆(r) + L1(r) f

(1)
1 (u

(1)
2 (r)) = 0, i = 1, j = 1, 2 r ∈ [0, 1]T,

(u
(1)
2 )∆∆(r) + L2(r) f

(1)
2 (u

(1)
1 (r)) = 0,

u
(2)
1 (r) = u

(1)
2 (r), u

(1)
3 (r) = u

(1)
1 (r),

u
(1)
1 (0)− (u

(1)
1 )∆(0) = 0, u

(1)
1 (1) + (u

(1)
1 )∆(1) = 0,

u
(1)
2 (0)− (u

(1)
2 )∆(0) = 0, u

(1)
2 (1) + (u

(1)
2 )∆(1) = 0,


where T = [0, 1

5 ] ∪ { 1
4 ,

2
5 ,

3
5} ∪ [ 34 , 1], L1(r) = µ11(r)µ12(r), L2(r) = µ21(r)µ22(r),

µ11(r) =
1

|r − 1
8 |

1
2

, µ12(r) =
1

|r − 1
6 |

1
2

, µ21(r) =
1

|r − 4
5 |

1
2

, µ22(r) =
1

|r − 7
8 |

1
2

,
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f
(1)
1 (u1) =



0.05× 10−4, u1 ∈ (10−4,∞),

17× 10−(4ℓ+3) − 0.05× 10−(4ℓ)

10−(4ℓ+3) − 10−(4ℓ)
(u1 − 10−(4ℓ)) + 0.05× 10−(8ℓ),

u1 ∈
[
10−(4ℓ+3), 10−(4ℓ)

]
,

17× 10−(4ℓ+3), u1 ∈
(
1

5
× 10−(4ℓ+3), 10−(4ℓ+3)

)
,

17× 10−(4ℓ+3) − 0.05× 10−(8ℓ)

0.05× 10−(4ℓ+3) − 10−(4ℓ+4)
(u1 − 10−(4ℓ+4)) + 0.05× 10−(8ℓ),

u1 ∈ (10−(4ℓ+4),
1

5
× 10−(4ℓ+3)],

0, u1 = 0,

f
(1)
2 (u2) =



0.05× 10−4, u2 ∈ (10−4,∞),

16× 10−(4ℓ+3) − 0.05× 10−(4ℓ)

10−(4ℓ+3) − 10−(4ℓ)
(u2 − 10−(4ℓ)) + 0.05× 10−(8ℓ),

u2 ∈ [10−(4ℓ+3), 10−(4ℓ)],

16× 10−(4ℓ+3), u2 ∈
(
1

5
× 10−(4ℓ+3), 10−(4ℓ+3)

)
,

16× 10−(4ℓ+3) − 0.05× 10−(8ℓ)

0.05× 10−(4ℓ+3) − 10−(4ℓ+4)
(u2 − 10−(4ℓ+4)) + 0.05× 10−(8ℓ),

u2 ∈ (10−(4ℓ+4),
1

5
× 10−(4ℓ+3)],

0, u2 = 0.

Let rℓ = 31
64 −

ℓ∑
k=1

1

4(k+ 1)4
, pjℓ =

1

2
(rℓ + rℓ+1), j = 1, 2, ℓ = 1, 2, 3, . . . ,

then pj1 =
15
32 − 1

648 < 15
32 and rℓ+1 < pjℓ < rℓ, pjℓ >

1
5 , z1 =

15
32 − 1

648 .

It is clear that r1 = 15
32 < 1

2 , rℓ − rℓ+1 =
1

4(ℓ+ 2)4
.

Since
∞∑
k=1

1

k4
=

π4

90
and

∞∑
k=1

1

k2
=

π2

6
, it follows that

r∗ = lim
ℓ→∞

rℓ =
31

64
−

∞∑
k=1

1

4(k+ 1)4
=

47

64
− π4

360
>

1

5
.

Gj(pj1) = 0.7336033951, e11 = e12 = ( 53 )
1
2 , and e21 = e22 = ( 52 )

1
3 ,∫ w−z1

z1

Nj(s, s)ds =

∫ 1− 15
32+

1
648

15
32−

1
648

(2− s)(1 + s)

3
ds = 0.04918197801.

Thus, we obtain
M1 = 25.557267815288, M2 = 26.212302578035.

It follows that
2∏

k=1

∥µ1k∥Lpk =

∫ 1
4

0

µ11(r)µ12(r)∆r +

∫ 1

3
4

µ11(r)µ12(r)∆r +

[
σ

(
1

4

)
− 1

4

]
µ11

(
1

4

)
µ12

(
1

4

)
+

[
σ

(
2

5

)
−2

5

]
µ11

(
2

5

)
µ12

(
2

5

)
+

[
σ

(
3

5

)
−3

5

]
µ11

(
3

5

)
µ12

(
3

5

)
+

[
σ

(
1

5

)
−1

5

]
µ11

(
1

5

)
µ12

(
1

5

)
,
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2∏
k=1

∥µ1k∥Lpk ≈ 12.004

2∏
k=1

∥µ2k∥Lpk ≈ 8.57 and ∥Nj∥∞ =
2

3
.

We have g1 < 0.1249560140438, g2 < 0.1751029108175, taking g1 =
1
10 , g2 =

3
20 .

In addition, if we take Dℓ = 10−4ℓ, Eℓ = 10−(4ℓ+3), then

Dℓ+1 = 10−(4ℓ+4) <
1

5
× 10−(4ℓ+3) < KℓEℓ < Eℓ = 10−(4ℓ+3) < Dℓ = 10−4ℓ,

M1 Eℓ = 25.557267815288× 10−(4ℓ+3) <
1

10
× 10−4ℓ = g1Dℓ, ℓ = 1, 2, 3, . . . ,

Dℓ+1 = 10−(4ℓ+4) <
1

5
× 10−(4ℓ+3) < KℓEℓ < Eℓ = 10−(4ℓ+3) < Dℓ = 10−4ℓ,

M2 Eℓ = 26.212302578035× 10−(4ℓ+3) <
3

20
× 10−4ℓ = g2Dℓ, ℓ = 1, 2, 3, . . . ,

and f
(i)
j satisfies the following growth conditions:

f
(1)
1 (u1) ⩽ g1 Dℓ =

1
10 × 10−4ℓ, u1 ∈ [0, 10−4ℓ],

f
(1)
1 (u1) ⩾ M1 Eℓ = 25.557267815288× 10−(4ℓ+3), u1 ∈

[
1
5 × 10−(4ℓ+3), 10−(4ℓ+3)

]
,

f
(1)
2 (u2) ⩽ g2 Dℓ =

3
20 × 10−4ℓ, u2 ∈ [0, 10−4ℓ],

f
(1)
2 (u2) ⩾ M2 Eℓ = 26.212302578035.× 10−(4ℓ+3), u2 ∈

[
1
5 × 10−(4ℓ+3), 10−(4ℓ+3)

]
.

Hence, all conditions in Theorem 4.5 are satisfied. Therefore, by Theorem 4.5 the system of iterative
BVP (6.8) has at least one positive solution

{
(u

(1)
1 )[ℓ], (u

(1)
2 )[ℓ]

}∞
ℓ=1

such that (u(i)j )[ℓ](r) ⩾ 0 on
[0, 1]T, j = 1, 2, i = 1 and ℓ ∈ N.

Example 6.2. Consider the BVP

(6.9)

(u
(1)
1 )∆∆(r) + L1(r) f

(1)
1 (u

(1)
2 (r)) = 0, i = 1, j = 1, 2 r ∈ [0, 1]T,

(u
(1)
2 )∆∆(r) + L2(r) f

(1)
2 (u

(1)
1 (r)) = 0,

u
(2)
1 (r) = u

(1)
2 (r), u

(1)
3 (r) = u

(1)
1 (r),

u
(1)
1 (0)− (u

(1)
1 )∆(0) = 0, u

(1)
1 (1) + (u

(1)
1 )∆(1) = 0,

u
(1)
2 (0)− (u

(1)
2 )∆(0) = 0, u

(1)
2 (1) + (u

(1)
2 )∆(1) = 0,


where T = [0, 1

4 ] ∪ { 1
3 ,

2
5 ,

1
2} ∪ [ 34 , 1], L1(r) = µ11(r)µ12(r), L2(r) = µ21(r)µ22(r),

µ11(r) =
1

|r − 1
5 |

1
2

, µ12(r) =
1

|r − 4
5 |

1
2

, µ21(r) =
1

|r − 1
6 |

1
2

, µ22(r) =
1

|r − 5
6 |

1
2

,
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f
(1)
1 (u1) =



0.05× 10−4, u1 ∈ (10−4,∞),

25× 10−(4ℓ+3) − 0.05× 10−(4ℓ)

10−(4ℓ+3) − 10−(4ℓ)
(u1 − 10−(4ℓ)) + 0.05× 10−(8ℓ),

u1 ∈
[
10−(4ℓ+3), 10−(4ℓ)

]
,

25× 10−(4ℓ+3), u1 ∈
(
1

5
× 10−(4ℓ+3), 10−(4ℓ+3)

)
,

25× 10−(4ℓ+3) − 0.05× 10−(8ℓ)

0.05× 10−(4ℓ+3) − 10−(4ℓ+4)
(u1 − 10−(4ℓ+4)) + 0.05× 10−(8ℓ),

u1 ∈ (10−(4ℓ+4),
1

5
× 10−(4ℓ+3)],

0, u1 = 0,

f
(1)
2 (u2) =



0.05× 10−4, u2 ∈ (10−4,∞),

32× 10−(4ℓ+3) − 0.05× 10−(4ℓ)

10−(4ℓ+3) − 10−(4ℓ)
(u2 − 10−(4ℓ)) + 0.05× 10−(8ℓ),

u2 ∈ [10−(4ℓ+3), 10−(4ℓ)],

32× 10−(4ℓ+3), u2 ∈
(
1

5
× 10−(4ℓ+3), 10−(4ℓ+3)

)
,

32× 10−(4ℓ+3) − 0.05× 10−(8ℓ)

0.05× 10−(4ℓ+3) − 10−(4ℓ+4)
(u2 − 10−(4ℓ+4)) + 0.05× 10−(8ℓ),

u2 ∈ (10−(4ℓ+4),
1

5
× 10−(4ℓ+3)],

0, u2 = 0.

Let rℓ = 31
64 −

ℓ∑
k=1

1

4(k+ 1)4
, pjℓ =

1

2
(rℓ + rℓ+1), j = 1, 2, ℓ = 1, 2, 3, . . . ,

then pj1 =
15
32 − 1

648 < 15
32 and rℓ+1 < pjℓ < rℓ, pjℓ >

1
5 , z1 =

15
32 − 1

648 .

It is clear that r1 = 15
32 < 1

2 , rℓ − rℓ+1 =
1

4(ℓ+ 2)4
.

Since
∞∑
k=1

1

k4
=

π4

90
and

∞∑
k=1

1

k2
=

π2

6
, it follows that

r∗ = lim
ℓ→∞

rℓ =
31

64
−

∞∑
k=1

1

4(k+ 1)4
=

47

64
− π4

360
>

1

5
.

Gj(pj1) = 0.7336033951, e11 = e12 = ( 53 )
1
2 , and e21 = e22 = ( 52 )

1
3 ,∫ w−z1

z1

Nj(s, s)ds =

∫ 1− 15
32+

1
648

15
32−

1
648

(2− s)(1 + s)

3
ds = 0.04918197801.

Thus, we obtain
M1 = 24.393296158, M2 = 31.392175118.

It follows that
2∏

k=1

∥µ1k∥Lpk =

∫ 1
4

0

µ11(r)µ12(r)∆r +

∫ 1

3
4

µ11(r)µ12(r)∆r +

[
σ

(
1

4

)
− 1

4

]
µ11

(
1

4

)
µ12

(
1

4

)
+

[
σ

(
1

3

)
−1

3

]
µ11

(
1

3

)
µ12

(
1

3

)
+

[
σ

(
2

5

)
−2

5

]
µ11

(
2

5

)
µ12

(
2

5

)
+

[
σ

(
1

2

)
−1

2

]
µ11

(
1

2

)
µ12

(
1

2

)
,



Multiple positive solutions 71

2∏
k=1

∥µ1k∥Lpk ≈ 5.68

2∏
k=1

∥µ2k∥Lpk ≈ 5.04 and ∥Nj∥∞ =
2

3
.

We have m1 < 0.2641395704, m2 < 0.2976190476, taking m1 =
1
5 , m2 =

1
4 .

In addition, if we take Rℓ = 10−4ℓ, Qℓ = 10−(4ℓ+3),Sℓ = 10−4(ℓ+2) then

Rℓ+1 < Qℓ < KℓSℓ < Sℓ < Rℓ, Mj Sℓ < Rℓ,

Rℓ+1 = 10−(4ℓ+4) < Qℓ = 10−(4ℓ+3) < KℓSℓ < Sℓ = 10−(4ℓ+2) < Rℓ = 10−4ℓ,

M1 Sℓ = 24.393296158× 10−(4ℓ+2) <
1

5
× 10−4 ℓ = m1Rℓ, ℓ = 1, 2, 3, . . . ,

M2 Sℓ = 31.392175118× 10−(4ℓ+2) <
1

4
× 10−4ℓ = m2Rℓ, ℓ = 1, 2, 3, . . . ,

and f
(i)
j satisfies the following growth conditions:

f
(1)
1 (u1) ⩽ m1 Rℓ =

1
5 × 10−4ℓ, u1 ∈ [0, 10−4ℓ],

f
(1)
1 (u1) ⩾ M1 Sℓ = 24.393296158× 10−(4ℓ+2), u1 ∈

[
1
5 × 10−(4ℓ+2), 10−(4ℓ+2)

]
,

f
(1)
1 (u1) ⩽ m1 Qℓ =

1
5 × 10−4(ℓ+3), u1 ∈ [0, 10−4(ℓ+3)],

f
(1)
2 (u2) ⩽ m2 Rℓ =

1
4 × 10−4ℓ, u2 ∈ [0, 10−4ℓ],

f
(1)
2 (u2) ⩾ M2 Sℓ = 31.392175118× 10−(4ℓ+2), u2 ∈

[
1
5 × 10−(4ℓ+2), 10−(4ℓ+2)

]
,

f
(1)
2 (u2) ⩽ m2 Qℓ =

1
4 × 10−4(ℓ+3), u2 ∈ [0, 10−4(ℓ+3)].

Hence, all conditions in Theorem 5.9 are satisfied. Therefore, by Theorem 5.9 the system of iterative
BVP (6.9) has at least three positive solutions

{
(u

(1)
1 )[ℓ], (u

(1)
2 )[ℓ]

}∞
ℓ=1

such that (u(i)j )[ℓ](r) ⩾ 0 on
[0, 1]T, j = 1, 2, i = 1 and ℓ ∈ N.

CONCLUSION

This paper aims to extend and generalize the existing results in the literature, see [6,
18, 19]. For instance, if j = 1, then the system reduces to an iterative system of two-point
boundary value problem on time scales with one component. And also, if i = 1, then
the system becomes a system of dynamical equations with n components. The present
paper establishes the existence of positive solutions for an n-component coupled system
of iterative system associated with two-point boundary conditions on time scales. The
approach is based on the application of the Guo–Krasnosel’skii fixed point theorem and
Hölder’s inequality. Further, by applying the Ren-Ge-Ren fixed point theorem, we also
establish the multiple positive solutions of the problem. Moreover, the present work can
be further extended to multi-point boundary value problems and integral-type boundary
value problems by applying various new fixed point theorems.
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