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Multiple positive solutions to n-component coupled system
of iterative systems on time scales

K. R. PRASAD! AND B. SRAVANI?

ABSTRACT. This study explores advances in detecting positive solutions for second order n-component cou-
pled system of iterative systems with two-point boundary conditions on time scales. In this system, each com-
ponent interacts with both itself and the next component in a cyclic manner. We establish criteria for existence of
at least one positive solution using Guo-Krasnosel’skii fixed point theorem and at least three positive solutions
utilizing Ren-Ge-Ren fixed point theorem.

1. INTRODUCTION

A time scale is a non-empty closed subset of the real numbers that represents the set
of points at which a dynamic system evolves. The idea behind time scales is to unify and
extend continuous and discrete time models into one framework, allowing for a more
versatile approach to modeling systems that can operate in both continuous and discrete
time. It provides a powerful tool for modeling and analyzing dynamic systems that ex-
hibit different types of time-dependent behavior. For more details, refer to [2, 3, 4, 13, 16].

A strong foundation for resolving dynamic equations in mixed discrete-continuous set-
tings is offered by the iterative system of boundary value problems (BVPs) on time scales.
Systems having recursive architecture or feedback loops are modeled using iterative dy-
namic equations. These systems often arise in optimization, numerical methods and sim-
ulations, where repeated steps are key to finding solutions and interpreting the solutions,
see [6, 12,17, 20, 22].

In an n-component system of iterative systems, where the last iteration of component
leads to the first iteration of the next component, the system evolves through interde-
pendencies between components. In such systems, each component’s iteration is tightly
tied to the iterations of its neighbors, resulting in a closed-loop interaction. The behavior
of each component is determined not just by its own state, but also by the states of the
other components. These interactive coupled systems are primarily used to model the
dynamics of multiple layers in a neural network, where the output of one layer becomes
the input for the next layer, to study the spread of diseases among multiple populations,
where the infection rate of one population affects the infection rate of the next population
and to model the dynamics of multiple species in an ecosystem, we refer to [1, 5, 8, 14, 19].

In 2006, Hao et. al, [11] established existence of positive solutions for the BVP on time
scales

w2 (1) +m(t)f(t,u(o(t) =0, t € [a,b]r,

au(a) — fu”(a) = 0,cu(o(b)) + du? (o (b)) =0,
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Recently, Prasad et al. [18] in 2022, considered the following two-point iterative BVP
on time scales

PA )+ L(Dge(vea (1) =0, 1< E<m, € (0,%)r,
Um+1(t) = Ul(t)a S (073)']1‘)
W(O) = ’UEA(O)’ W(T) = _WA({I)v I1<i<m,
where m € N, L(t H Li(¢) and each L;(t) € L% ([0, T]1) has m-singularities and estab-

lished infinitely many pos1t1ve solutions.

Based on the above studies, we wish to study the existence of positive solutions for
second order n-component coupled system of iterative system with two-point boundary
conditions on time scales

W22 + L4 W) =0, 1
1) ™) = (1), o) = u (),
N\A

aju” (0) — by (u”)2(0) = 0, Gu” (w) + d; () (w) =0,

N
N
3

_
N
S5

m
S
=

wheren,m € N,u J-(i) represents i iteration of j'" component of system and L;( H ik (r

and each pj(r) € LR([0,w]r) (px > 1) has s-singularities in the interval [0, w]r. Through—
out the study, we assume the following conditions hold:

(L1) each fj(') : [0,00) — [0, 00) is continuous for 1 <j < n, 1 <i<m,

(L2) }Lrﬁﬂjk(r) =oo,where0 <r, <r_1<---<rp<wforl<j<n 1<k<s,

(L3) there exists ej > 0 such that pj(r) > ej for1 <j<n, 1 <k < sforr e [0, w]r.

The rest of the paper is organized as follows: In section 2, we present some preliminar-
ies, which are used in the paper. In Section 3, we construct the Green’s function for the
homogeneous BVP corresponding to (1.1) and establish bounds for the Green’s function.
Section 4 is devoted to establish the criteria for the existence of positive solutions to (1.1)
using Guo—Krasnosel’skii fixed point theorem. In section 5, we establish the existence of
at least three positive solutions using Ren-Ge-Ren fixed point theorem. Finally, last section
provides examples to demonstrate our results.

2. PRELIMINARIES

In this section, we present some basic definitions and lemmas that will be useful in our
subsequent discussions.

Definition 2.1. [7] A time scale T is a non-empty closed subset of the real numbers R. T has the
topology that it inherits from the real numbers with the standard topology. It follows that the jump
operators o, p : T — T, are defined by

o(t)=inf{reT:7>t}, p(t)=sup{r € T:7 < t}
respectively.
o The point t € T is left-dense, left-scattered, right-dense, right-scattered if p(t) = t,
p(t) < t,o(t) =t,o(t) > t respectively.
o A function f : T — R is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. The set of all
rd-continuous functions f : T — R is denoted by C,y = Cry = Cy(T, R).
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o A function f : T — R is called ld-continuous provided it is continuous at left-dense
points in T and its right-sided limits exist (finite) at right-dense points in T. The set of all
ld-continuous functions f : T — R is denoted by Cig = Ciqg = Ciq(T, R).

e By an interval time scale, we mean the intersection of a real interval with a given time
scale, i.e., [a, bt = [a,b] N T. Other intervals can be defined similarly.

Definition 2.2. [10] Let E C T be a A-measurable set and p € R = R U {—o0, +o0} be such
thatp > land f : E — R be a A- measurable function. We say that f belongs to L', (E) provided
that either

[1peas <o if pelio).
E
or there exists a constant M € R such that

|f|<M, A—ae. on E ifp=ococ.

3. KERNEL AND BOUNDS

Now, we express the solution of BVP as a solution of integral equation by determining
the Green’s function for the corresponding homogeneous BVP. We also establish certain
properties of Green’s function that are essential for subsequent discussions.

Lemma 3.1. Lef Hj(r) € C,4([0, w]r,R), 1 <j < n. Then the BVP

(3.2) ()22 (r) + Hi(r) = 0, r € [0,w]r,
(3.3) aju™ (0) — by(uV)2(0) = 0, u™ (w) + dj(1;M) A (w) = 0,
has one and only one solution
(34) o0 = [ e
where
1 | (qjo(s) +by)(cj(w —r) +dj), if o(s) <,
4 N =7 {(ajf+ b)) (6w — 0(8)) + &), if 1 <5
and

Aj = ajdj + cjwaj + bjCJ' #0,j=1,2,...,n.
Proof. An equivalent integral equation for (3.2) is
WD) = - / [ — o(s)Hi(s)As + £4r + £.
0
Applying the boundary conditions (3.3), we get

£,= 2 [ g(w=o(s)) + djH(s)As and £5 — 2L
AJ 0 aj
Then,
r . b
i) == [ -G as+ 22
i)

/ “les(w — () + dJH;(s) As

0 0

:/ Ni(r,s)H;(s)As.
0
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Note that an mn-tuple (u W), @), ul™ ), uV (), u2 (), uS™ (), ulP (1), U (),
ulm )( )) is a solution of (1.1) if and only if

/Nrs R (™ (s)As, 1<j<n, 1<i<m,

m+1
u™ () = w1, ul () = ufP (),

(1) / Ni(r,s1)La(s1)f 1) (/ Ni(s1,52)L1(s2) (2)</ N 52’53)L1(s3)f(3)-"

gm—n( Nl(sm_l,sm)Ll(sm)fgm)</ Na(Smy Smee1)La(Sms1)Ts”)
0 0

(/ No(Sm2, Sm3)La(5m3)f5) o o™ </ Na(am—1,52m)La (S2m ) 5™
0

w w
f,gn:)l (A Nn(smn7m7 Smn7m+1)|-n(smn7m+1)f$11) <‘/0 Nn(smnferl, Smn7m+2)
w
Ln<smnm+z>fﬁ2>...fﬁ"“”</ Na(Sran— 1 Sran) L (S ) ™ (1 <Smn>>ASm">
0

Asmnm+2> Asman) ...Aszm...) Asm+2> AsmH) Asm> ...As_:,) Asz> As;.

Lemma 3.2. Let Gj(p;) = min{%, %} < 1, where p; € (0, %), j=1,2,...,n. Then

Nj(r,s) has the following properties:

(i) 0< Ni(r,s) < Ni(s,s) forallr,s € [0, w]r,
(i) Gj(pj)Nj(s,s) < N(r s) forall r € [pj,w — pj|r and s € [0, w]y.

Proof. We can establish the inequality (i) by algebraic computations. For the inequality
(i), let r € [pj, w — pj]r and r < 's, we obtain

Ni(r,s air+b; _ ajp + b;
JVJ( ) _ 9 J > 1) J 2 Gj(pj)-
i(s,s)  ajs+by T ajw + by

Letr € [p;, w — pj]r and r > s, we obtain

Ni(r,s)  c¢j(w —r) +d
Nis,s)  cw—s)+d ~ qw—+d; ~

This completes the proof. O
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4. EXISTENCE OF AT LEAST ONE POSITIVE SOLUTION

In this section, we establish the presence of positive solution for (1.1) by employing the
Holder’s inequality and Guo-Krasnosel’skii fixed point theorem.
Let B = Cy([0, w]r, R) be a Banach space with norm ||uj|| = rﬁ)ax] luj(r)|. For p; €
re|0,wir

(0, %)r, letting K = min {G1(p1), G2(p2), ..., Gn(pn)}, z = max{p1, p2,..., Pn}, define the
cone P C Bas

P = {uj € b: each uj(r) > 0 on [0, w]r, mln] uj(r) = K|lujlls }-
T

re€lz,w

For any u1 ) € P, define an operator T : P — B by

(1) / Ni(r,s1)L1(s1) (1) </ Ni(s1,52)L1(s2) f( )(/ Ny ( 52753)L1(53)

f1m_1) </ Nl(sm—hsm)l—l(sm)flm < N2(5m7sm+1)|-2(sm+1)f§1)
0
(/ Na(Sm2,Sm3)L2(Sm3) s oY) (/ N(2m—1,5om)La(S2m) 5™ ..
0

f(T)l (/ Nn (Smnfma Smnfmjtl)l—n <5mnfm+1)fr(11) (/ Nn (smnfm+17 Smnfm+2)
0 0
w
I-n (Smn7m+2)f,(12)---f£1m_1) (/ Nn (smn717 Smn)l—n (Smn)f,gm) (Ugl) (Smn))Asmn)
0

Asmnm+2) Asmnmﬂ) ...Aszm..) Asm+2) Asm+1> Asm> ...A53> Asz> As;.

Lemma 4.3. Assume that (L1)—(L2) hold. Then for each p; € (0, 5 ), T(P) CPand T:P — P
is completely continuous.

Proof. From Lemma 3.2, we have Nj(r,s) > 0, forallr,s € [0, w]r and so Tugl)(r) > 0. We

(1)

can easily establish that T is completely continuous. For any u;”’ € P, we have

Tl = elow) / Na(r;s1) La(s1) (/ Ny(s1,52)La(s2)f 2)(/ Ni(s2,53)La(s3)f..
r w]r 0

i (/ Ni(Sm—1, 5m )L (5™ (/ Na(m, Sms1)La(5m41) 5
0 0
(/ Nz(sm+2,sm+3)Lz(sm+3)f§2)..-f§m1)(/ Na(S2m-1, 52m)La(s2m)Fs™ ..
0 0

f(T)l (/ Nn(smnfmySmn7m+1)|-n(5mn7m+l)f,(11) (/ Nn(smnfm+175mnfm+2)
L (Smn m+2)f(2) f(m 2 (/ N smn 175mn) (Smn)fn (u (Smn))Asmn)

Asman) Asmnmﬂ) ...Aszm...> Asm+2) Asm+1> Asm> ...A53> Asz) As;.
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< /Ow N1(51;51)L1(51)f§1) (/Ow Ni(s1,s2)L1(s2) §2)</0w N1(52,53)L1(s3)f§3)m

w w
(m- (/ Ny (sm—1,5m)L1(sm)i™ </ Na(5ms Smee1)La(Sms1)Fs”
0

(/ N (Sm+2,Sm+3)L2(Sm+3) (2)-~-f§m71) (/ Nz(Szm—LSzm)Lz(Szm)fgm)
0

n 1(/ N smn ms Smn— m+1)|- (smn m+1 (/ N smn m+1;Smn— m+2)
L (Smn m+2) 2. f(m 2 (/ N smn lasmn)l— (smn) (m)( gl)(smn))ASmn>---
Asmn_m+2) Asmn_m+1> ...ASQm...) Asm+2> Asm+1> Asm> ...A53) Asz> Asy.

w

min Tug)(r) = min Ni(r,s1)La(s1)f </ N ( 51,52)|—1(52)f1
r€lz,w—z|r relz,w—2]r Jo

§"“1) (/ Ni(Sm—1,5m)L1(sm)f; (m) (/ N, Sm7sm+1)|—2(sm+1)f( )

(/ N (Sm+2,Sm+3)L2(Sm+3) (2)-~-f2m71) (/ N2(S2m71552m)|—2(s2m)f§m)
0

W5 ( [ WG5s8 ([ Mol 5m-mic)

L (smn—m42) 2 F" ( / No(Smn-1. Smn) L (Smn) 127 (1 §”<smn>>ASm">'“

Asmn_m+2> Asmn_m+1) ...Aszm...) Asm+2> Asm_H) Asm> ...A53) Asz> As;.
1(;m / Ni(s1,s1)L1(s1) fl (/ Ni(s1,52)Li(s2) (2)</ Ni(s2,53)L1(s3)
§3). (m—1) </ Ni(Sm—1,5m)L1 (sm (/ N, sm,sm+1)L2(sm+1)f(l)

(/ Na(Smt2,5m43)La(Smia)fs o fom Y </ Na(Sam—1,52m)La(S2m) 5™ ...

f(m_)l </0 Nn (Smn—m7 Smn—m—&-l)l—n (Smn—m+1)fr(11) </0 Nn (Smn—m+17 Smn—m+2)
Ln(smn—m+2)fs2)---fr(1m71) (/ Nn(smn—h Smn)l—n (Smn)fgm)( (Smn))ASmn>
0

Asmnm+2> Asman) ...ASQm...) Asm+2> AsmH) Asm) ...AS3) Asz> Asy.
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> K|[Tu”|
Hence, min Tul"(r) > K||Tul" .

r€lz,w—z|r
Therefore, T(P) C P and using Arzela-Ascoli theorem, it can be seen that T is completely
continuous. O

Theorem 4.1. [15] Let f € LA (J) withp > 1,9 € LY (J) with q > 1, and % +% = 1. Then
fg € Ly(J) and || fglly, < IIf1y [l9llLy, where

T [/mesms] ifpER,

inf{MeR/|f\§MAfa.eonJ}, ifp=o0

andJ = [a,b).
Theorem 4.2. (Hi)'lder’s inequality) [15] Let f e LR0,1] with px > 1, fork = 1,2,..., s and
S 1 S
— = 1. Then || f € LA[0,1] and fil < fill,. . Further, if f € LL[0,1] and
k; o H al kH1 1 sz1 [ ficl, if al0,1]

g € LY[0,1], then fg € Lp[0, 1) and || fglly < || fll1llglloo-
Theorem 4.3. [9] Let P be a cone in a Banach space B and Ry, Ry are open sets with
0€ Ri,R1 C Ry. Let T : PN (R \ R1) — P be completely continuous operator such that

@) [Tl < [Irll,r € PN ORy, and | Tr|| = ||r]l,r € PN ORy, or
(ii) | Tr] = |Irll,r € PN ARy, and | Tr|| < ||r]l,r € P N IR,

Then T has a fixed point in P N (R \ Ry).

We consider the cases for pjx(r) € LR[0, w]p
°. 1 >, 1 °. 1
i — <1, (i — =1, (iii — > 1.
()k;pk ()k;pk ( )ém

Firstly, we present a result to establish existence of positive solution when Z ™ <1
k
k=1
Theorem 4.4. Suppose that (L1) — (L3) hold. Let {pje}72, be a sequence with pj; € (rey1,t¢),
zp = max {pi¢, P2, -, Pret, 0 < z1 < § for j=1,2,...,n. Let {D}32, and {E,}3, be such
that
Dg+1 < KiEy < Ep < Mj E, < Dg, { e N,

where )

1)

M; = max{ [Kl H ejk/ Ni(s,s)As

Assume that fj(i) satisfies
(H1) " (uj) < D¢ ¥ r € [0,w]r, 0 < uj < Dy, where

s —1
ny < (190 Tl

k=1

(H2) f(i)( i) = ME, Ve [zp,w —Zz]ﬂr, K(Er < uj < Eq.
Then (1. 1)hasposztwesolut10ns{ W W@, ™y e wHE L (u (m))m,
)

2
L) WPhE, E]} such that (uj(I WA(r) = 0 on [0,w]7, j=1,2,.
=12, mleN.
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Proof. Consider the sequences {E,}°, and {F,}?°, defined by

Eg:{UjGB ||UJ||\ g}
Fo={u€B: |yl <Ec},

which are open subsets of B. Let pj, be as in the hypothesis and note that
rF<rgp <pp<re<yg,VeLeN.
Denote, Py = {uj € E: uj(r) > 0on [0,w]rand min _ uj(r) = Kllu;(r)| }

r€lze,w—zgl
and let ugl) € Py N OE;. Then ugl)(smn) <Dg= ||u§1)|\ for all sy € [0, w]r.
By (H:) and for sms € [0, w]r, we have
w

N (Smn—1 Smn ) Ln (S ) 1™ (u (smn))Asmn</ Na(Smny Smn)Ln (Smn)BaDeAsinn

0
h DE/ N smmsmn) (Smn)ASmn —h Df/ N Smn>Smn H,U/nk smn)ASmn-

k=1

Since Z ? < 1, there exists q > 1 such that -+ Z — =1.So,

k k=1

s

/ N smn lasmn)l— (smn) (m)( ) (Smn))ASmn han”NnHLflA H,Unk g DZ~

k=1 L"Ak

/ Nn(smn—2,smn—l)l-n(smn—l)fgm_l) (/ Nn(smn—hSmn)Ln(Smn)fgm)(Uj([l)(smn))Asmn)Asmn—l
0

/ N smn 25 Smn— 1)'— (Smn 1) (mn—1) (DE)Asmn—l < DE-
Continuing in this way, we get (Tug ))( ) < Dy.
Since Dy = ||u; 1)|| for u(l) € P, N OE,, we get

(4.6) T < ().

Letr € [zg,w — z¢]T, then

Ec= ol > (> min w0 > min w02 G lu” ()] > K.

J re[pje,w—pjelr ] r€lze,w—zg]r
By (H2) and for sy, € [z¢, w — z¢]T, we have
/ Nn(smn—lvsmn)l— (Smn) (m)(ugl)(smn))ASmn
0

> Gu(pne) / T N5 S L (5o ) E™ (0 (50)) Ao

Zy

w—2zyp
2 Gn(an)Mn E@/ Nn(smnvsmn)Ln(smn)ASmn

Zp

S w—z1
2 Kan Eé H enk/ Nn(smnasmn)Asmn
k=1 =
> Ey.
Continuing in this way, we get (T, ugl))(r) > Ey.

Since E; = ||u§1)|| for ugl) € P, NOF,, we get

1 1
(4.7) Tul™ ) = [fulM].
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It is evident that 0 € 9F, C 9F, C OE,. Using (4.6) and (4.7), it follows from theorem 4.3
that T has a fixed point ((u ('))V]) € PN (E,\ Fg) such that (u ('))[5] > 0on[0,w]rand ¢ € N,
Next setting u(mﬂ)(r) (1) (r), uglﬁl( )= u1 ( ),forj=1,2,...,n, r € [0, w]r, we obtain

Uit
positive solutions { (u{™)14, (W), ... (™), (uf)E (u <2>)m o Sm™E e,
W i Ny for (1.1). Thus, the proof is complete. O

For Z i = 1, we have the following theorem.

Theorem 4.5. Suppose that (L1) — (L3) hold. Let {pj¢}32, be a sequence with py; € (rp41,re),
zp = max {pie, Pa¢, .y Pet, 0 < z1 < § for j=1,2,...,n. Let {D,}32, and {E;}72, be such
that

Dg+1 < KiEy < Ep < Mj E, < Dg, /e N.
Assume that fj(i) satisfies (H2)
(H3) fj(i)(Uj) < gDy Vr e [0,w]r, 0 < uj < Dy, where

s —1
< (1 T sy |
k=1

Then (1.1) has positive solutions { (u{")&, (WA, (™) WS, WSHE, L i™)E,
LA W ( &"”)[Q}H such that (u)0() > 0 on [0,w]r, j=1,2,....n,
i—1,2....m (€N

Proof. The proof is similar to the proof of Theorem 4.4. Therefore, we omit the details
here. O

~ 1
Lastly, the case Z — > 1
= Pk

Theorem 4.6. Suppose that (L1) — (L3) hold. Let {pje}7°, be a sequence with pj; € (re41,t¢),
zp = max {pi¢, P2, -, Pret, 0 < z1 < § for j=1,2,...,n. Let {D}32, and {E;}3, be such
that

Dg+1<KgEg<Eg<Mj E;, <Dy, £ €N.
Assume that fj(i) satisfies (H2)
(H4) fj(i)(uj) < 4Dy Vr e [0,w]r, 0 < uj < Dy, where

s —1
4 < [HNJHLZO 11 ||ujk<r>%] .

Then (1.1) hasposztwesolutlons{ ut), WP ™) W), ), i),
- (u gl))m,( 512))[ yeee ul™ z]}zzl such that ( J('))V](r) > 0on [0,w]r, j=1,2,...,n,
i=1,2,...m (€N

Proof. The proof is similar to the proof of Theorem 4.4. Therefore, we omit the details
here. O
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5. EXISTENCE OF AT LEAST TWO POSITIVE SOLUTIONS

Let v be a nonnegative continuous functional on a cone P of the real Banach space B.
Then for any two positive real numbers a’, ¢/, define the sets
P(v,d)={ueP:vyu)<d}tand Py ={ueP:|u| <d'}.

Define nonnegative, increasing, continuous functinals ., 8¢, a¢ by
o) = amin (" (), Belo) = max (0(0), (i’ () = max (1 (1)
It is obvious that for each ugl) eP, w(ugl)) < Bg(ugl)) = ag(ugl)).

In addition by lemma (2.2) for each u(l) e P, fyg(ugl)) = I[Iéin] (ugl)(r)) z KHu:(ll)H.
re(0,w|r

Thus, ||u§1)|| Kfyg(u1 )for uy M ep,

Theorem 5.7. (Ren-Ge-Ren) [21] Let P be a cone in a Banach space B. Let «, 3,7y be three
increasing, nonnegative and continuous functionals on P satisfying for some ¢’ > 0 and M > 0
such that v(z) < B(z) < a(z) and ||z|| < M~(2), for all z € P(v,¢'). Suppose there exists a
completely continuous operator N : P(y,¢') — Pand 0 < o’ < ¥ < ¢ such that
(i) y(z) >, forall z € OP(~, ),
(1) B(z) <V, forall z € OP(B,V),
(m) P(a,a’) # ¢pand a(z) < ', forall z € OP(«v,a’). Then, N has at least three fixed points 'z,
22,32 € P(’y, ") such that a(1z) < o’ < a(?z), 8(32) < b < B(32)) and v(32) < .
Theorem 5.8. Suppose that (L1) — (L3) hold. Let {pje}32, be a sequence with pjy € (rey1,re),
zg = max {pi, poe, ..y e}, 0 < z1 < 5 for j=1,2,...,n. Let {Re}72,, {Qe} 72, and {S¢}72, be
three sequences such that

Rg+1 < Qr<KiSp<Sp< Ry, Mj Sy < Re, £ € N,

where

w—2z1 -
M; = max{ [Kl H eJk/ Ni(s, s)As] , 1}.

f.(i) satisfies the following

Assume that i

(F1) 7 (u) < mRe Vr € [0,w]r, 0< uj < Ry, where

s —1
SIET%8 ) (2GR
k=1

(F2) fj(i)( ) > M;S,Vre [ze, w — zg]1, K¢Se < u; < S,
<

(F3) f(l( ;) <hQeVrel0, w]T70<u.<LQ[
Then (1.1) has at least three positive solutions { 1 (1) [4] (1 (2))[ Lo ( )[ . ('u (1))[4
2 m ) )
@), (O, (@) < Haye {ul) o Py, .,
(2u§m))[f]7(QUgl))[f],(Zuf))[f] .. (2 (m) . (2 (1))[]7<2 S\Z))[] B 2 (m) 14

} and
£

{Cuf)E, GuHE, L Fu™)H, (Gu <3 hia, . (Guf™)E, .<3 Sl <3 SO
/4

2

o Cus™)UYE | such that (*u _}))H( 1) =0, Cu)(r) > 0and ul)(r) = 00n [0,w]r,
w%wmmmgwgw%%Wmﬁﬁm<&<m()WW@'ngJ:m,
oni=12... m{eN.
Proof. Consider the completely continuous operator T and the cone P which was estab-

lished in previous section. So it is easy to check that T : P(8,R;) — P for £ € N.
In order to prove that all conditions of theorem (5.7) are satisfied, we choose
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1
u{") € 9P(B,R;). Then ﬁ(ugl)) = II[%)aX] W) =Ry, 0 < ult < KfRe for r € [0, w]r.
rel0,wr £

We have [|ul’ || < &8(u) =

1
< %Rg re [O w]']r, for 0 < smn_1 < w,

vr\

So we have, 0 < u (

/ Nn(smnflvsmn)l—n(smn)](nm ( (Smn))ASmn / Nn(smnaSmn)Ln(Smn)hanAsmn
0

LS

h Ré/ N Smnvsmn) (Smn)Asmn —h RZ/ N smnas‘mn Hﬂlnk smn)ASmn
k=1

1
Since Z — < 1, there exists q > 1 such that — + Z = 1. So,
k

Pk —
S
H Mnk

k=1

<Ry

/ Nn(smnflzSmn)l—n(smn)fr(]m)(ugl)(Smn))Asmn < 1'1nRZ||]\/vn||I_,“A
0

Pk
LA

w w
/ Nn(smn727Smnfl)Ln(smnflﬁﬁm_l) (/ Nn(smnflaSmn)l—n(smn)fr(]m)(ugl) (Smn))Asmn>ASmn1
0 0

< / Nn(smn—2asmn—l)l—n(Smn—l)fﬁm_l)(RZ)Asmn—l < RE-
0
Continuing in this way, we get (Tu{"))(r) < R,.

ﬂg(Tugl))(r) = %ax] (Tugl))(r) < Ry, Hence condition (a) is satisfied.
re T

s

(1) € OP(v,Se). Then

1 1

Sy =)= min W) < W )y = [uV] < Wy ¢« g,

e =7(u;”) rer[rémh(u (r) rerl[fg)%r(ul (r) = llu;”[| < Kv(ul) K,
1

We have [[uf” | < Eye(ul?) < Ebe(uf?) = £Se. . Sp <ufP (1) < ESp,r € [0,0)r.
By (F2) and for smn € [z¢, w — z4]T, We have

/ Nn (Smnfla Smn)l—n (Smn)f(m) (Ug ) (Smn))Asmn
0

> Go(pue) / N (s S )L (S )™ (0 (5 ) A

Zp

2 Gn(an)Mn SE/ 4Nn(smn7smn)Ln(5mn)Asmn

Zy
S w—z3
2 Kan SZ H enk/ Nn(smmsmn)ASmn 2 SZ~
k=1

Continuing in this way, we get (Tugl))(r) > S,.

A (Tu)(r) = Jmin TM(r) = Se.
r ,wlT
Hence condition (b) is satisfied. Finally we verify that (c) of theorem 5.7 is also satisfied.

Since 0 € P, Q, > 0, it follows that P(«ay, Qp) # ¢.

Now letu(l) € 9P(ay, Q¢). Then ap(ul?(r)) = max W) = vl = Q..
r ,2W|T

For [lu{!]| < fyg(ugl)) < K%ag(ugl)) = 1 Qr, then we get 0 < ul? < & Re, 1€ [0, wlr.
For 0 < spn_1 <w,
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/ N smn lvsmn) (Smn)fnm ( (smn))Asmn / N smnasmn)L (smn)h QZASmn

h QZ/ N Smmsmn) (smn)ASmn —h Qé/ N smnasmn H//'nk Smn)Asmn

k=1
1
Since Z — < 1, there exists q > 1 such that — + Z = 1. So,
Pk 9 = Pk
/ Nn(smn—laSmn)l—n(smn)fgm)(ugl) (Smn))ASmn g thZHNn Ll Hﬂnk < Q£~
0 k=1 L"Ak

/ Nn(smn—27Smn—l)l—n(smn—1>f£m71) (/ Nn(smn—laSmn)l—n(smn)fnm)(ugl) (Smn))ASmn)ASmn—l
0 0

< / Nn(smn727Smnfl)Ln(smnfl)fgm_l)(QZ)Asmnfl < Q€~
0

Continuing in this way, we get (Tugl))(r) < Qe
ag(Tugl))(r) = rﬁ)ax] (Tugl))(r) < Qg, hence condition (c) is satisfied.
re T

)

Thus, all the conditions of Theorem 5.7 are satisfied. Hence, there exists at least three fixed
points of T which are positive solutions of (1.1) such that

ar(u) < Qr < arCu), Bt < Sy < B, U < Ry j=1.2
co,ni=12 ... m/feN. a

Theorem 5.9. Suppose that (L1) — (L3) hold. Let {p;e}32, be a sequence with p;y € (rpy1,re),

Zy = max {pleap2€a -"apné}/ 0< 71 < %forj = ]-7 27 ey N Let {Re}?ilr {Qe}l?il and {Sé}?il be
three sequences such that

Re+1 <Qe< KgSg<Sg< Rg, Mj S@< Re, KEN,

M; —max{ lKlneJk/zw Zle(s,s)As]I, 1}.

Assume that fj(i) satisfies
(F4) 1 (u) <mRe Vr € [0,w]r, 0< uj < Ry, where

s —1
< |1z T Il |
k=1

where

(F5) 57 (u)) = MiS, V r € [z, w — 2]z, KeSe < uj < Sy,
(F6) f-(i)(u-) <mQeVr e [0,w]r, 0 < uj < ng.
Then (1.1) has at least three positive solutions {(*u{™)! (1 @via - u{myE 2 (1))[4
(lu 52))[]7__.7(1 gm))[]7.'.7(1 511))[@] (‘u (2))[5]7.” 1 (m) }e » {2 (1)) (2u12))
(Cu (m))[] (2 (1))[2],(%5))[4] (2 (m))[]’” ( (1))[] (Cu (2))[] NG (m) E]};i and
]

{(u&”)[h(u§2>>[fl,...,<u5m>>[l< L Gu@H L Gug™)l, <3 S, (Bu@he,

1 h
L (BuS™)EL%°  such that (ul”) ()20, u <>) (r) >Oand( u') I(r) > 0 on [0, w]r,
with a (lu(l) 0 « <Q < (2 J(I )e] Be (2 ())[e] <S8 < ﬁé(S )@] ’V( u())[é < Ry j=1,2,

i)
Lni=12,. ..,m,ZEN.
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1
Lastly, the case Z — > 1.
= Pk

Theorem 5.10. Suppose that (L1) — (L3) hold. Let {p;j;}?°, be a sequence with pj; € (rp41,re),

Zy = max {p1€7p2€7 ~"7pn€}/ 0< 71 < %forj = 1727 ceey N Let {RK}?.;I/ {QK}?il and {Sf}ﬁl be
three sequences such that

Rg+1 < Qg < K@S@ <Se < Rg, Mj Sg < Rg, KEN,

where
—1

)

M; = max{ [Kl H ejk/ Ni(s,s)As

Assume that fj(i) satisfies

(F7) fj(i)(uj) <Ry Vre [0,w]r, 0 <y < %ZR(, where

S —1
n<®MWWIIWWO)%],
k=1

(F8) (1)) = MjS ¥ r € [z, w — z]r, KeSe < uy < Sy,

(F9) f-(')(u-) njQ, Vr e [0,w]r, 0 < uy; < ng.
Then (1.1) has at least three positive solutions {(*u (1) @ (‘u (2))[“ .. (1u§m))[e],(1ugl))[f],
Cu)E, L (uS™)E L CufE e 1“>4h 1,{29»w4%9wa~w

m 1 2 m 1 m o]
(Cu{™), Cuf)A, u)E, Cuf™E, ), Eu) L Cu™) Y and

2
<

«%9M¢@q%w ~A3“W”@QWW&%gmﬁnw@émWhuiug),( D)
fl} such that ('u)1(r) = 0, Cu)(r) = 0 and Cu)E(r) = 0 0n [0, wh,
with ae(l w1 < Q< apCu) I, B Pu) < Sy < BrPu) 4 (Bul) I < Ry, j=1,2,
.o,ni=12 .. ,mJEN
6. NUMERICAL EXAMPLES
In this section, we consider certain problems to verify our results.
Example 6.1. Consider the BVP
W22 + L) FP WP () =0, i=1,j=1,2r€[0,1]r,
(S22 (1) + La(n) B (ui? (1) =0,
6:8) u? (1) = u$ (0, 05 (1) = uiP (1),
1 1 1 1
uM(0) — (M)A (0) = 0, uP (1) + ()2 (1) =0,
1 1 1 1
us?(0) — (W)2(0) = 0, u (1) + ()2 (1) =0,
where T =1 [0, U ﬁ%%}l U [3,1], L(r) 1= paa(r)paz(r), |-12(r) = par(r)p22(r),
M11(r) = 1,1 Mlz(f) = 11 ,uzl(r) = 110 Mzz(r) = rane
=37 r— 37 I r— g1
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0.05 x 107%, uy € (1074, 00),

17 x 10~ (4+3) — 0.05 x 10~ (0
10— (4€+3) — 10— (46)

u; € [107(45%»3)’ 107(4[)]7

W () = 417 x 107y € <; x 107 (4H3) 10<4f+3>),

(ug — 107(49) +0.05 x 10769,

17 x 10~@H43) —0.05 x 10~
0.05 x 10— (4£+3) — 10— (44+4)

up € (10-@H9 £ 10~ @49
) 5 3

0, u; = 0,

0.05 x 107%, up € (107%, 00),

16 x 10~ (46+3) — .05 x 10~ 40
10— (44+3) — 10— (46)
up € [10~ (33 10~ (@0],

1
—(40+3 043) (1043
HD (uy) = { 16 x 107049 1y, € <5 « 10~(46+3) 109 )))

(ug — 10~ () 4 0.05 x 10769,

(uz —10~19) 4+ 0.05 x 10739,

16 x 10~ (4+3) —0.05 x 10~
0.05 x 10— (4643) — 10— (4+4)

up € (10-@HD Iy 10~ @3]
) 5 )

(up — 10~ AHDY 4 0.05 x 10769,

0, Uy = 0.
L 1
aL ot P —
Letrp = ;m, pjg—2(rg+rg+1),J—1,2,6—17273,...7
ﬂ’l@?lpjl::l?g*@< andrz+1<pjg<rgl, pjg>5, :%*Tig.
It is clear that r = ﬁ < 5, rg —re41 = m
e S L™ it ollowws
Smcezgz Zﬁzf’ltﬁ) ows that
k=1 k=1
- O S|
= lim rp = = -
Pt Zl 4(k+ T 64 360 5
Gi(pjn) = 0.7336033951, €1 = ejp = (g)%,and en =exn = (3)3,

w‘»—A
o

toi (2 —s)(1+s)

3 ds = 0.04918197801.

w—2z1 1—
[ mssas— /

Thus, we obtain

1
648

M; = 25.557267815288, My = 26.212302578035.
It follows that

kﬁkaHLPk . /0411 pax(r)paz(r)Ar + /; pia1(r)paz(r) Ar + {U(i) - ﬂ””(i)’m <i)+
()3 (e (5) o () (B () () 5o (5 5)
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2 2
2
TT lrsnillime =~ 12.004 T llszkllio = 8.57 and || N[l oo = =
k=1 k=1 3

We have gy < 0.1249560140438, g, < 0.1751029108175, taking g1 = 1,82 = =.
In addition, if we take Dy = 10~%¢, E; = 10~ (4¢3 then

1

Dey1 = 1074+ < = % 10~ < KBy < Ep = 1078+ < D, = 1074,
1

M; E; = 25.557267815288 x 10~ (4+3) < o ¥ 1074 = gDy, £=1,2,3,...,

1
Dyyq = 107D < = % 10~ W43 < KB, < B = 107343 < D, = 1074,

3
M, E, = 26.212302578035 x 10~ (4+3) <« 30 ¥ 1074 = g,Dy, £=1,2,3,...,

and fj(i) satisfies the following growth conditions:

M) < g1 De =4 x 1074, uy € [0,107%],

U (uy) > My E, = 25.557267815288 x 10~“4643) ;¢ [ x 10-(+3) 10-(e+3)]

H(u2) SgaDe =25 x 1074, up € 0,107,

f$9 (u2) = My E¢ = 26.212302578035. x 10~ (443) |y, € [ x 10-(4443) 10~ (46+9)],
Hence, all conditions in Theorem 4.5 are satisfied. Therefore, by Theorem 4.5 the system of iterative
BVP (6.8) has at least one positive solution {(ugl))[‘z], (uél))[é]};il such that (uj('))[e](r) > 0on
[0,1]r, j=1,2,i=1and ¢ € N.

Example 6.2. Consider the BVP

W22 + L) FP WP () =0, i=1,j=1,2r€[0,1]r,
(S22 (r) + La(r) 157 (uS (n) = 0,
6.9) u? (r) = ulV (1), u$? () = u{V (1),
u(0) — (uf?)2(0) = 0, uP (1) + (M)A (1) =0,
us” (0) — (us”)2(0) = 0, u$! (1) + (u$)2 (1) =0,
where T = |0, %] U {%,%,%} U [%,1], Li(r) = pa(npia(r), La(r) = por(r)pea(r),
1 1 1
pai(r) = 1;7/112(()— 41,/121()— 11’#22()2 51
r— 13 r— &3 r— 3|2 r— 2l
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0.05 x 107%, uy € (1074, 00),

25 x 10~ (*#+3) — .05 x 10~ (44
10— (4€+3) — 10— (46)

u; € [107(45%»3)’ 107(42)]7

W) =25 x 107y € <; x 107 (4643) 10<44+3>),

(ug — 107(49) +0.05 x 10769,

25 x 10~(4+3) — 0.05 x 10~(®9
0.05 x 10— (4£+3) — 10— (44+4)

up € (10-@H9 £ 10~ @49
) 5 )

07 u; = 07

0.05 x 107%, up € (1074, 00),

32 x 10~ (“+3) — .05 x 10~(“0
10— (44+3) — 10— (46)

up € [10~ (33 10~ (@0],

1
—(40+3 043) (1043
# (uy) = 32 x 1070449y € <5 « 10~(46+3) 109 ))7

(ug — 10~ () 4 0.05 x 10769,

(uz —10~19) 4+ 0.05 x 10739,

32 x 10~ (4+3) — .05 x 10~ (89
0.05 x 10— (46+3) — 10— (46+4)

up € (107D Ly 10~ (46+3)]
) 5 )

(up — 10~ AHDY 4 0.05 x 10769,

0, uo = 0.
o 1
Letry = 31 Zmu Pje = §(rﬂ+rz+1)7 J = 172a l= 1,2,3,...,
k=1
thenpﬂ:é—gf@< andrz+1<pjg<rgl, pjg>5, :%*Tig.

It is clear that r| = @ < 5, re —rey1 = m'

— 1 1 2
Since Z o Z ol %, it follows that
k=1 =

_hmr_ﬁ_z _ar_xt 1
Timee 64 Ad(k+1)T T 64 360 5

w\»—a

Gj (pjl) = 0.7336033951, €11 = €12 = (

w—2z1 1—
[ mssas— /

Thus, we obtain

)%,and €21 = €90 = (g)

Tos (2-5)(1+5)
3

g\; Wl

ds = 0.04918197801.

1
648

M; = 24.393296158, My = 31.392175118.
It follows that

i o st (3Gl

(8) 3l () ) () o (55 o (2) o (3)me(3)
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2
2
T lslies ~ 5.68 T luawllos ~ 5.04 and || Niloo = %
k=1 k=1 3

We have m; < 0.2641395704,mp < 0.2976190476, taking m; = z,my = 7.
In addition, if we take R, = 1074/, Q, = 10~ (40+3) ,Sp = 1074E+2) then

Rprl < Q< K/Sy<Sy< Ry, Mj S < Ry,

\\U\h—l

Repr = 1073FY <« Q= 107U < K,S, < Sp = 107 WH+2) < R, = 1074,

M; S, = 24.393206158 x 10~ 42 < % «10~4f —mR,, £ =1,2,3.. ...
M, S, = 31.392175118 x 10~ (*+2) < i x 107% =mRy, £=1,2,3,...,
and fj(i) satisfies the following growth conditions:
i (u) <m Re = £ x107%, uy € (0,107,
M (1) > My S, = 24.393296158 x 10~ (46+2) uy € [L x 10-(4+2) 10~ (@6+2)],
fi () <mp Qe = Lo 107403) uy € [0,1074(EH3)),
757 (uz) <mp Ry = 1% 1074 up € [0,1074],
(D (up) > My Sy = 31.392175118 x 10~ (442, € [L x 10-(46+2) 10— (46+2)]
75 (u2) <mp Qp = 1 x 10743 yy € (0,107 43,

Hence, all conditions in Theorem 5.9 are satisfied. Therefore by Theorem 5.9 the system of iterative
BVP (6.9) has at least three positive solutions { 4, (u (1))[5]} such that ( j('))m(r) > 0on
[0,1]r, j=1,2,i=1and ¢ € N.

CONCLUSION

This paper aims to extend and generalize the existing results in the literature, see [6,
18, 19]. For instance, if j = 1, then the system reduces to an iterative system of two-point
boundary value problem on time scales with one component. And also, if i = 1, then
the system becomes a system of dynamical equations with n components. The present
paper establishes the existence of positive solutions for an n-component coupled system
of iterative system associated with two-point boundary conditions on time scales. The
approach is based on the application of the Guo—Krasnosel’skii fixed point theorem and
Holder’s inequality. Further, by applying the Ren-Ge-Ren fixed point theorem, we also
establish the multiple positive solutions of the problem. Moreover, the present work can
be further extended to multi-point boundary value problems and integral-type boundary
value problems by applying various new fixed point theorems.
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