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On Wiener Indices of Parikh Word Representable Graphs
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SUBRAMANIAN4

ABSTRACT. Graphs associated with finite sequences of symbols, called words, have been investigated in
various studies. A new class of graphs introduced in the study of words, called Parikh word representable
graphs, are defined using the number of symbols in the word and scattered subwords which are subsequences
of the word. On the other hand, various topological indices have been computed for different classes of graphs
in the area of chemical graph theory. Wiener indices of Parikh word representable graphs (PWRG) of binary
words have also been studied. Here we obtain the Wiener indices of PWRG of binary words resulting from
certain word operations.

1. INTRODUCTION

Graphs of different kinds related to words have been introduced and their properties
have been studied in detail [9, 8, 5, 14, 3]. In particular, a new class of graphs, called
Parikh word representable graphs (PWRG) have been introduced in [3] based on scat-
tered subwords of words and several graph properties have been studied. Following this
study, several investigations related to PWRG have been done [3, 16, 21, 22]. On the
other hand various topological indices [7] associated with graphs have been introduced
and investigated in the area of chemical graph theory [6]. The Wiener index [24] is the first
topological index introduced by Harold Wiener. Knor et al. [11] provide a comprehensive
account of results relating to Wiener index.

Studies on computing topological indices for different classes of graphs have been done
(see, for example, [23, 25]). Enriching the study of structural properties of Parikh word
representable graphs, expressions for computing topological indices of these graphs were
derived in [21, 22]. In fact formulas for computing the Wiener index and certain other
Wiener-type indices of the PWRG corresponding to a binary core word [20] are derived
in [21]. Motivated by these studies, here we derive formulas for computing Wiener index
and Hyper Wiener index [10] of Parikh word representable graphs (PWRG) correspond-
ing to binary core words formed under certain word operations. The main interest in
these formulas is that the expressions in the formulas involve only certain parameters
of the binary words which simplifies the computation of the indices and this is the ad-
vantage of the approach adopted here in comparison with the computation based on the
graphs themselves.

2. PRELIMINARIES

Basic notions and results related to words and graphs needed in the study undertaken
here are recalled in this section. For notions not recalled here, we refer to [13] for words
and to [4] for graphs.
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A finite set of symbols, called an alphabet, with an ordering on the symbols, denoted
by <, is referred to as an ordered alphabet. For example, the binary alphabet {a, b} with
an ordering a < b, is an ordered alphabet, written as {a < b}. In the subsequent sections,
we mainly deal with the binary ordered alphabet V = {a < b}. A word over an alphabet
V is a finite sequence of symbols belonging to V. The set of all words over V is denoted by
V ∗. The length of a word w is denoted by |w|. The reversal of a word w = a1a2 · · · an is the
word wR = anan−1 · · · a2a1. The dual d(w) of a binary word w over {a, b} is the reversal of
the word obtained from w by replacing a by b and b by a. The concatenation of two words
u = a1a2 · · · an and v = b1b2 · · · bm, (n,m ≥ 1) over an alphabet is the word, written as uv,
and is given by uv = a1 · · · anb1 · · · bm. A scattered subword x of a word w, called simply
as a subword x, is a subsequence of the word w. The number of subwords u in a word w is
denoted by |w|u. In particular, |w|a is the number of a′s in w. For example, w = babaabb is
a word over the alphabet {a, b}. If the ordering is a < b, the word aab is a subword of w. In
fact the number of such subwords aab in w is |w|aab = 6. Also |w|a = 3 and |w|b = 4. The
vector (|w|a, |w|b) is referred to as the Parikh vector [17] of the binary word w over {a < b}.

Two binary words u, v over {a < b} are said to satisfy a weak-ratio property [19], de-
noted by u ∼ v, if there exists a constant k > 0, such that |v|a = k|u|a and |v|b = k|u|b. The
Parikh matrix [15] M(w) of a word w over V = {a < b} is given by

M(w) =

 1 |w|a |w|ab
0 1 |w|b
0 0 1

 .

A binary word over {a < b} is called a core word [20] if it begins with a and ends with
b. For example, the binary word abaab is a core word. Two words w1, w2 over the binary
ordered alphabet V are said to be M -equivalent, if the Parikh matrices of w1 and w2 are
the same i.e. M(w1) = M(w2).

We next recall the notion of a morphism [13] on words. Let V1 and V2 be two alpha-
bets. A morphism on V ∗

1 is a mapping ϕ : V ∗
1 → V ∗

2 such that ϕ(uv) = ϕ(u)ϕ(v), for words
u, v ∈ V ∗

1 . Thue morphism [18] and Fibonacci morphism [18] are two well-known mor-
phisms. The Thue morphism t on {a, b}∗ is given by t(a) = ab, t(b) = ba. The Fibonacci
morphism f on {a, b}∗ is given by f(a) = ab, t(b) = a.

We consider simple graphs G with vertex set V and edge set E. We now recall the no-
tion of Parikh word representable graph (PWRG) [3], restricting the notion to the binary
ordered alphabet.

Definition [3]
For a word w = a1a2 · · · an of length n where for 1 ≤ i ≤ n, ai ∈ Σ = {a < b}, we associate
a simple graph G = G(w) with n vertices {1, 2, · · · , n}. Each vertex i has the label ai and
represents the position of the letter ai, 1 ≤ i ≤ n, in w. For each occurrence of the subword
ab in w, there is an edge in G(w) joining the vertices corresponding to the positions of a
and b in w. We say that the graph G is Parikh binary word representable by the binary
word w. In other words, we say that a graph G is Parikh binary word representable if there
exists a binary word w such that G is Parikh binary word representable by the binary word
w. It is known that [16] Parikh binary word representable graph corresponding to a core
word, is connected. We deal with only core words and the corresponding graphs in the
rest of this paper. We will call Parikh binary word representable graph simply as Parikh
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word representable graph. For example, if the core word is w = abaab, then in the Parikh
word representable graph as shown in Fig. 1, the vertices 1,3 and 4 have label a while the
vertices 2 and 5 have the label b. The graph has four edges as |w|ab = 4. Note that in the
graph there are edges joining the vertex 1 with the vertices 2 and 5 corresponding to the
subword ab in w formed by the symbol a in position 1 and the symbol b in positions 2 and
5.

In a connected graph G = (V,E) with vertex set V and edge set E, we denote by d(u, v),

2

1 43

5
G(abaab)

FIGURE 1. The Parikh word representable graph of the word abaab

the distance between the vertices u and v of G which is the length of a shortest path be-
tween u and v. The Wiener index W (G) of a connected graph G, is the sum of distances
d(u, v) between all the vertices u and v of G. In other words

W (G) =
∑

{u,v}⊆V (G)

d(u, v).

The Hyper-Wiener index of a connected graph G is given by

WW (G) =
∑

{u,v}⊆V (G)

d(u, v) + d2(u, v)

where d(u, v) is the distance between the vertices u and v of G.

We now recall the formulas [21] for computing the Wiener index and the Hyper-Wiener
index of Parikh word representable graph of a binary word w = an1ban2b · · · anlb, n1 ≥ 1,
nk ≥ 0 for 2 ≤ k ≤ l over {a < b}. The formulas involve only the parameters related to
the word.

Lemma 2.1. (i) The Wiener index of a Parikh word representable graph G(w), for
w = an1ban2b · · · anlb, n1 ≥ 1, nk ≥ 0 for 2 ≤ k ≤ l, is

W (G(w)) = |w|2 − |w|+ |w|a|w|b − 2|w|ab.
(ii) The Hyper-Wiener index of a Parikh word representable graph G(w)
for w = an1ban2b...anlb, n1 ≥ 1, nk ≥ 0 for 2 ≤ k ≤ l, is

WW (G(w)) = 3|w|2 − 3|w|+ 6|w|a|w|b − 10|w|ab.

We now illustrate computation of Wiener index of the Parikh word representable graph
in Figure 1, in the two approaches, directly from the graph and from the formula given in
Lemma 2.1.
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Example 2.1. Consider the Parikh word representable graph G(w) in Figure 1 which corresponds
to the word w = abaab. There are five vertices in G(w) labelled 1,2,3,4,5. The distances between
the vertices are listed below:

d(1, 2) = d(1, 5) = 1, d(1, 3) = d(1, 4) = 2, d(2, 5) = 2, d(2, 3) = d(2, 4) = 3,

d(3, 4) = 2, d(3, 5) = 1, d(4, 5) = 1

Hence the Wiener index of the graph G(w) is the sum of the distances between every two vertices
of the graph which equals 18.
On the other hand, using the formula in Lemma 2.1, we obtain the same value 18 for W (G(w))
since w = abaab, |w| = 5, |w|a = 3, |w|b = 2, |w|ab = 4. The calculations of the values of the
parameters from the word are simpler as the word is linear in comparison with the corresponding
calculations from the graph.

3. WORD OPERATIONS AND WIENER INDEX OF PWRG

We first consider the word operations of concatenation and strict shuffle [2] on core
words over the binary alphabet V = {a < b} and derive the Wiener index of PWRG
corresponding to the binary core word formed by these operations.

3.1. Concatenation and Strict shuffle. Let V be an alphabet. For two words u, v over V ,
the concatenation [13] of u with v is the word w = uv. The strict shuffle [2] of two words
u, v of the same length with u = a1a2 · · · an and v = b1b2 · · · bn where for 1 ≤ i ≤ n,
ai, bi ∈ V is given by SShuf(u, v) = a1b1a2b2 · · · anbn. A result on strict shuffle of two bi-
nary words, established in [2, Theorem 3.8], is stated in the following Lemma in a slightly
modified but an equivalent form.

Lemma 3.2. [2] For any two words u, v over {a < b} with the same Parikh vector,
|SShuf(u, v)|a = 2|u|a, |SShuf(u, v)|b = 2|u|b so that |SShuf(u, v)| = 2|u| and
|SShuf(u, v)|ab = 2|u|ab + 2|v|ab.

We obtain a formula for computing the Wiener index of the PWRG of the binary core
word uv.

Theorem 3.1. Let u, v be two binary core words over V = {a < b}. The Wiener index W (G(uv))
of the PWRG G(uv) corresponding to the binary word uv is given by

W (G(uv)) = W (G(u)) +W (G(v)) + 2|u||v|+ |v|a|u|b − |u|a|v|b.

When u ∼ v, then W (G(uv)) = W (G(u)) +W (G(v)) + 2|u||v|.

Proof. From Lemma 2.1, we have

W (G(uv)) = |uv|2 − |uv|+ |uv|a|uv|b − 2|uv|ab

= (|u|+ |v|)2 − (|u|+ |v|) + (|u|a + |v|a)(|u|b + |v|b)− 2(|u|ab + |v|ab + |u|a|v|b)
= W (G(u)) +W (G(v)) + 2|u||v|+ |v|a|u|b − |u|a|v|b.

□

Corollary 3.1. Let u be a binary core word over V = {a < b}. The Wiener index W (G(ud(u)))
of the PWRG G(ud(u)) corresponding to the binary word ud(u), where d(u) is the dual of the
word u, is given by

W (G(ud(u))) = 2W (G(u)) + 2|u|2 + |u|(|u|b − |u|a).
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Proof. The result is a consequence of Theorem 3.1 and the following facts: (i) d(u) is a
binary core word, (ii) |d(u)|a = |u|b and |d(u)|b = |u|a so that |d(u)| = |u| and (iii)
W (G(d(u))) = W (G(u)) since the graphs G(u) and G(d(u)) are isomorphic [16]. □

We now obtain a formula for computing the Wiener index of the PWRG of the strict
shuffle of two binary words.

Theorem 3.2. Let u, v be two binary core words over V = {a < b} having the same Parikh
vector. The Wiener index W (G(SShuf(u, v))) of the PWRGG(SShuf(u, v)) corresponding to
the binary core word SShuf(u, v) is given by

W (G(SShuf(u, v))) = W (G(u)) +W (G(v)) + 2|u|2 + 2|u|a|u|b − 2[|u|ab + |v|ab].

In particular, if the binary words are M−equivalent, then
W (G(SShuf(u, v))) = W (G(u)) +W (G(v)) + 2|u|2 + 2|u|a|u|b − 4|u|ab.

Proof. Since the binary words u and v have the same Parikh vector, we have |u|a = |v|a
and |u|b = |v|b so that |u| = |v|. From Lemma 2.1 and Lemma 3.2, we have

W (G(SShuf(u, v))) = |SShuf(u, v)|2 − |SShuf(u, v)|

+|SShuf(u, v)|a|SShuf(u, v)|b − 2|SShuf(u, v)|ab
= 4|u|2 − 2|u|+ 4|u|a|u|b − 4[|u|ab + |v|ab]

= W (G(u)) +W (G(v)) + 2|u|2 + 2|u|a|u|b − 2[|u|ab + |v|ab].
Also, if u and v are M−equivalent, then in addition, |u|ab = |v|ab and so

W (G(SShuf(u, v))) = W (G(u)) +W (G(v)) + 2|u|2 + 2|u|a|u|b − 4|u|ab.

□

Corollary 3.2. Let u be a binary core word over V = {a < b} with |u|a = |u|b. The Wiener index
W (G(SShuf(u, d(u)))) of the PWRG G(SShuf(u, d(u))) corresponding to the binary word
SShuf(u, d(u)) where d(u) is the dual of the word u, is given by

W (G(SShuf(u, d(u)))) = 2W (G(u)) + 2|u|2 + 2|u|a|u|b − 4|u|ab.

Example 3.2. Consider the binary core words u = aabab, v = aaabb so that uv = aababaaabb.
The Wiener indices of PWRGs G(u), G(v) and G(uv) are respectively 16, 14 and 80 on using
the formula in Lemma 2.1. From the formula in Theorem 3.1, W (G(uv)) = 16+14+50+6-6 = 80.

The strict shuffle SShuf(u, v) = aaaabaabbb. The Wiener index of the PWRG
G(SShuf(u, v)) is 70 on using the formula in Lemma 2.1. From the formula in Theorem 3.1,
W (G(SShuf(u, v))) = 16+14+50+12-22 = 70. Thus the formulas in Theorem 3.1 and Theorem
3.2 are verified.

3.2. Thue morphism. We now derive formulas for computing the Wiener index of the
PWRG of the images under Thue morphism t and Fibonacci morphism f of binary words
of the form awa over the binary ordered alphabet {a < b}. We note that the images of awa
under these morphisms are core words.

We recall a result established in [1] on the count of subwords of length two in the morphic
images of binary words restricting the alphabet as the binary alphabet.
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Lemma 3.3. Let ϕ be a morphism from V ∗ to V ∗ where V = {a, b}. For a non-empty word w
over V, we have

|ϕ(w)|ab =
∑
x∈V

|w|x|ϕ(x)|ab +
∑

x,y∈V

|w|xy|ϕ(x)|a|ϕ(y)|b.

We now obtain formulas for computing the number of a′s, b′s and subword ab′s in the
binary core word t(awa) where t is the Thue morphism.

Lemma 3.4. For a binary word w over the binary ordered alphabet V = {a < b},
(i) |t(awa)|x = |w|+ 2 for x ∈ {a < b} so that |t(awa)| = 2|w|+ 4
(ii) |t(awa)|ab = 1

2 |w|
2 + 1

2 (|w|a − |w|b) + 2|w|+ 3
where t is the Thue morphism.

Proof. Since t(a) = ab, t(b) = ba, we have |t(awa)|a = 2|t(a)|a+ |t(w)|a = 2+ |w|. Similarly,
|t(awa)|b = 2 + |w|.
Also

|t(awa)|ab = 2|t(a)|ab + |t(w)|ab + |t(a)|a(|t(w)|b + |t(a)|b) + |t(w)|a|t(a)|b

= |t(w)|ab + 2|w|+ 3.

Now using Lemma 3.3,

|t(w)|ab =
∑
x∈V

|w|x|t(x)|ab +
∑

x,y∈V

|w|xy|t(x)|a|t(y)|b

= |w|a + |w|aa + |w|bb + |w|ab + |w|ba

=
1

2
|w|2 + 1

2
(|w|a − |w|b)

since |w|aa = 1
2 (|w|a − 1)|w|a, |w|bb = 1

2 (|w|b − 1)|w|b and |w|ab + |w|ba = |w|a|w|b. This
proves the formula in statement (ii). □

We derive a formula for computing the Wiener index of the PWRG G(t(awa)) of the
binary core word t(awa), where w is a binary word over {a < b} and t is the Thue mor-
phism.

Theorem 3.3. Let V = {a < b} and w be a non-empty binary word in V ∗. The Wiener index
W (G(t(awa))) of the PWRG G(t(awa)) where t is the Thue morphism, is given by the formula

W (G(t(awa))) = 4|w|2 + 14|w| − |w|a + |w|b + 10.

Proof. From Lemma 2.1 and Lemma 3.4, we have

W (G(t(awa))) = |t(awa)|2 − |t(awa)|+ |t(awa)|a|t(awa)|b − 2|t(awa)|ab

= (2|w|+ 4)2 − (2|w|+ 4) + (|w|+ 2)2

−2[
1

2
|w|2 + 1

2
(|w|a − |w|b) + 2|w|+ 3]

= 4|w|2 + 14|w| − |w|a + |w|b + 10.

□
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3.3. Fibonacci morphism. We now obtain formulas for computing the number of a′s, b′s
and subword ab′s in the binary core word f(awa) where f is the Fibonacci morphism.

Lemma 3.5. For a binary word w over the binary ordered alphabet V = {a < b},
(i) |f(awa)|a = |w|+ 2, |f(awa)|b = |w|a + 2, so that |f(awa)| = |w|+ |w|a + 4
(ii) |f(awa)|ab = 1

2 (|w|
2
a + |w|a) + |w|ba + |w|+ |w|a + 3

where f is the Fibonacci morphism.

Proof. Since f(a) = ab, f(b) = b, we have |f(awa)|a = 2 + |w| and |f(awa)|b = 2 + |w|a.
Also

|f(awa)|ab = 2 + |f(w)|ab + (|f(w)|b + 1) + |f(w)|a

= |f(w)|ab + |w|+ |w|a + 3.

Now using Lemma 3.3,

|f(w)|ab = |w|a + |w|aa + |w|ba

=
1

2
(|w|2a + |w|a) + |w|ba.

This proves the formula in statement (ii). □

We derive a formula for computing the Wiener index of the PWRG G(f(awa)) of the
binary core word f(awa), where w is a binary word over {a < b} and f is the Fibonacci
morphism.

Theorem 3.4. Let V = {a < b} and w be a non-empty binary word in V ∗. The Wiener index
W (G(f(awa))) of the PWRG G(f(awa)) where f is the Fibonacci morphism, is given by the
formula

W (G(f(awa))) = |w|2 + 7|w|+ 6|w|a + 3|w||w|a − 2|w|ba + 10.

Proof. From Lemma 2.1 and Lemma 3.5, we have

W (G(f(awa))) = |f(awa)|2 − |f(awa)|+ |f(awa)|a|f(awa)|b − 2|f(awa)|ab

= (|w|+ |w|a + 4)2 − (|w|+ |w|a + 4) + (|w|+ 2)(|w|a + 2)

−2[
1

2
|w|2a + |w|a) + |w|ba + |w|+ |w|a + 3]

= |w|2 + 7|w|+ 6|w|a + 3|w||w|a − 2|w|ba + 10.

□

Example 3.3. Consider the binary core word w = aabab so that t(awa) = abababaabaab. The
Wiener index of PWRG of t(awa) is 179 on using the formula in Lemma 2.1. From the formula
in Theorem 3.3, W (G(t(awa))) = 100+70-3+2+10 = 179. This verifies the formula in Theorem
3.3.
The Wiener index of PWRG of f(awa) is 131 on using the formula in Lemma 2.1. From the
formula in Theorem 3.4, W (G(f(awa))) = 25+35+18+45-2+10 = 131. This verifies the formula
in Theorem 3.4.
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4. WORD OPERATIONS AND HYPER-WIENER INDEX OF PWRG

Formulas for computing the Hyper-Wiener index of PWRG of concatenation, strict
shuffle of two binary core words and images under Thue morphism and Fibonacci mor-
phism of a binary core word are now stated in the following Theorems. We omit the
proofs as the proofs are analogous to the proofs of the corresponding results in the case of
Wiener index dealt with in Section 3.

Theorem 4.5. Let u, v be two binary core words over V = {a < b}. The Hyper-Wiener index
WW (G(uv)) of the PWRG G(uv) corresponding to the binary word uv is given by

WW (G(uv)) = WW (G(u)) +WW (G(v)) + 6|u||v|+ 6|v|a|u|b − 4|u|a|v|b.

Theorem 4.6. Let u, v be two binary core words over V = {a < b} having the same Parikh vector.
The Hyper-Wiener index WW (G(SShuf(u, v))) of the PWRGG(SShuf(u, v)) corresponding
to the binary core word SShuf(u, v) is given by

WW (G(SShuf(u, v))) = WW (G(u)) +WW (G(v)) + 6|u|2 + 12|u|a|u|b − 10[|u|ab + |v|ab].

Theorem 4.7. Let V = {a < b} and w be a non-empty binary word in V ∗. The Hyper-Wiener
index WW (G(t(awa))) of the PWRG G(t(awa)) where t is the Thue morphism, is given by the
formula

WW (G(t(awa))) = 13|w|2 + 46|w| − 5|w|a + 5|w|b + 30.

Theorem 4.8. Let V = {a < b} and w be a non-empty binary word in V ∗. The Hyper-Wiener
index WW (G(f(awa))) of the PWRG G(f(awa)) where f is the Fibonacci morphism, is given
by the formula

WW (G(f(awa))) = 3|w|2 − 2|w|2a + 23|w|+ 18|w|a + 12|w||w|a − 10|w|ba + 30.

5. CONCLUSION

We have obtained formulas for computing Wiener and Hyper-Wiener indices of Parikh
word representable graphs of binary core words under certain word operations. The for-
mulas involve only certain parameters of the words considered. It will be of interest to
study other word operations not considered here. Also other types of topological indices
of PWRG that can be expressed as formulas in terms of the word parameters can be con-
sidered.
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