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Some comments on reverse derivations in rings

G. S. SANDHU! AND M. S. TAMMAM EL-SAYIAD?

ABSTRACT. In this note, we explore scenarios in which the concepts of generalized reverse derivation, mul-
tiplicative generalized reverse derivation, and multiplicative (generalized) reverse derivation lose significance.
First, we extend a result of [Aboubakr A., Gonzdlez S., Generalized reverse derivations on semiprime rings.
Siberian Math. ]. 56 (2015), no. 2, 199-205]. Then, we demonstrate that in some previous studies, the assumptions
imposed on these mappings to establish commutativity (or closely related) theorems are, in fact, unnecessary.
Additionally, we provide insights into reverse *-derivations, where * denotes the involution.

1. INTRODUCTION

Throughout this study, we denote by R an associative ring with center Z(R). The
commutator of any two elements z,y € Ris defined as [z, y| := zy —yz. A ring R is called
prime if for any a,b € R, the condition aRb = {0} implies @ = 0 or b = 0. Similarly, R is
termed semiprime if aRa = {0} implies a = 0. Clearly, every prime ring is semiprime. A
derivation is an additive mapping d : R — R that satisfies

d(zy) = d(x)y + zd(y), VYz,y €R.

Moreover, d is called a Jordan derivation if it satisfies
d(z?) = d(z)x + zd(z), Vz€R.

The concept of a reverse derivation first appeared in the work of Herstein [6] while inves-
tigating Jordan derivations in prime rings; accordingly and additive mapping d : R — R
that satisfies

d(yz) = d(z)y + zd(y), Vz,y<€R.
It is evident that every derivation and every reverse derivation is a Jordan derivation;
however, the converse does not hold in general. Now let us recall from [5, Definition] that
if d is a derivation of R, then an additive mapping F' : R — R is called a left generalized
derivation if

Fay) = Fla)y +ad(y), Va,yeR,
and a right generalized derivation if

F(zy) =d(z)y +zF(y), Yz,y€R.

Perhaps inspired by this, Aboubakr and Gonzalez [1] extended the notion to reverse
derivations. Specifically, given a reverse derivation d of R, an additive mapping F' : R —
R is called an I-generalized reverse derivation if

F(zy) = F(y)r +yd(z), Vaz,yeR,
and an r-generalized reverse derivation if
F(zy) = d(y)r +yF(z), Vw,yek
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If we relax the assumption of additivity in [5, Definition], then the map is called multi-
plicative l-generalized derivation and multiplicative r-generalized derivation, respectively (cf.
[8, Definition 2.11]). Following the same approach, one can similarly define multiplicative
l-generalized reverse derivation and multiplicative r-generalized reverse derivation.

Moreover, let d : R — R be a mapping that is neither necessarily additive nor a deriva-
tion. A function F' : R — R (not necessarily additive) is called a multiplicative (generalized)-
derivation associated with d if it satisfies the functional equation

F(zy) = F(z)y + zd(y), forallz,y € R,

as introduced in [4]. Subsequent research has established that the mapping d must be
a multiplicative derivation, provided that R is semiprime (cf. [3, Lemma 2]). In 2018,
Tiwari et al. [11] introduced the notion of a multiplicative (generalized) reverse derivation
associated with a mapping d. While the properties of d remain largely unexplored in this
setting, the first author and Kumar provided insights into this matter for prime rings
(see [10, Proposition 3.12]). Consequently, it appears more natural to study multiplicative
(generalized) reverse derivations under the assumption that the associated mapping is a
reverse derivation.

The primary objective of this study is to demonstrate that the concept of reverse deriva-
tion, along with its generalizations, holds limited mathematical significance, particularly
in the framework of prime and semiprime rings. This is due to its intrinsic tendency to
impose a commutative-like structure on these rings, rendering further investigation into
its properties largely redundant.

2. MAIN RESULT

Let I be a nonempty subset of the ring R. Then the set Cr(I) :={z € R|zu=uzxVu €
I} is known as the centralizer of I in R. In [1, Theorem 3.1], Aboubakr and Gonzdlez
proved that, if R is a semiprime ring, I is a nonzero ideal of R, then the following asser-
tions are equivalent:
(i) F : I — R is an [-generalized reverse derivation (resp. r-generalized reverse
derivation) with associated reverse derivation d;
(i) d(I) € Cr(I),F(I) € Cr(I)and Fisar-generalized derivation (resp. l-generalized
reverse derivation) with respect to d on 1.
The authors assumed the additivity of F in their proof; however, we will now demon-
strate that this assumption is unnecessary. Consequently, the results remain valid for
multiplicative generalized reverse derivations.

Theorem 2.1. Let R be a semiprime ring and I be a nonzero ideal of R. Then the following
assertions are equivalent:
(i) F : I — R is a multiplicative l-generalized reverse derivation with associated reverse
derivation d;
(i) d(I) € Cr(I), F(I) C Cr(I) and F' is a multiplicative r-generalized derivation with
respect to d on 1.
Proof. (i)— (ii)
Let us assume that F' : I — R be a multiplicative /-generalized reverse derivation. There-
fore, we see that

2.1) F(z(yz)) = F(yz)z + yzd(z) = F(2)yr + zd(y)z + yzd(z) V z,y,z € I.
Also,
(2.2) F((zy)z) = F(z)zy + zd(zy) = F(2)zy + zd(y)x + zyd(z) ¥V z,y,z € I.
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Now jointly considering (2.1) and (2.2), we get
(2.3) F(2)[z,y] + [z, y]d(x) =0V z,y,z € 1.
In particular, we have [z,y]d(y) = 0 forall y, z € I. Since R is a semiprime ring, it contains
a family of prime ideals, i.e, Q@ = {Py : X € A} with NyPy = {0}. Let P, € Q be
a typical member of the family. Thus, by our situation, we have [z,y]d(y) € P, for all
y,z € I. Replacing z by wz, we get [w,y]Id(y) C P, for all w,y € I. It implies that for
each y € I, either [w,y] € P, forall w,z € I or d(y) € P,. Applying Brauer’s trick (i.e.,
union of additive subgroups of I is not a subgroup), we obtain that either [w,y] € P, for
allw,y € I ord(I) C P,. The latter case yields that d(I) C NxPy = {0}, hence d(I) = {0}.

Now on the other hand, let us suppose that [w,y] € P, for all w,y € I. Taking d(t)w
for w in the last expression, we get [d(t),ylw € P, for all t,y,w € I. It forces that
[d(t),y]I[d(t),y] C P, forall t,y € I. It forces that [d(t),y] € P, for all t,y € I. Since P,
is an arbitrary member of 2, we get [d(¢),y] = 0 for all ¢,y € I, and hence d(I) C Cgr(I).
Therefore, together both case imply d(I) C Cr(I). In this view, let us replace y by yu in
Eq. (2.3), we get
24)  FQE)rylut Fz)yle,u + [z yld@)u + ylz uld@) =0V 2y, 2,u € 1.
Using (2.3), we arrive at
(2.5) [F(2)yllz,u] =0V z,y,2,u € I
Putting zF(z) in place of z in (2.5), we see that (I[F(z),y])> = {0} for all z,y € I. It
forces I[F'(z),y] = {0} for all z,y € I. By Herstein’s Lemma, we get [F'(I), I] = {0}. This
means that F'(I) C Cg(I). Thus F is a multiplicative r-generalized derivation of R with
associated derivation d.
(ii)— (i) This part is trivial. |

Following the same terminology, we can observe the following result:

Theorem 2.2. Let R be a semiprime ring and I be a nonzero ideal of R. Then the following
assertions are equivalent:

(i) F : I — R is a multiplicative r-generalized reverse derivation with associated reverse
derivation d;

(i) d(I) C Cr(I), F(I) C Cgr(I) and F is a multiplicative l-generalized derivation with
respect to d on 1.

Corollary 2.1. Let R be a semiprime ring. If F' : R — R is a multiplicative l-generalized reverse
derivation with associated reverse derivation d of R. Then d(R) C Z(R) and F(R) C Z(R).
Moreover, R contains a nonzero central ideal.

Corollary 2.2. Let R be a prime ring. If F' : R — R is a multiplicative [-generalized reverse
derivation with associated reverse derivation d of R. Then either F' = 0 or R is commutative.

The following example shows that Corollary 2.2 can not hold true for arbitrary rings.
Example 2.1. Let I be a field, and let e;; denote the standard matrix units. Consider the ring
R = {z(e12 + e34) +yle1s — e2a) + z(e14) | 2,9, 2 € F}.
It is straightforward to verify that R is not a prime ring. Define mappings F,d : R — R by
F(a) = z(e12 + e34) + y(—e13 + e21) + 2y(e14),

d(a) = $(€12 + 634) + y(—613 + 624) + 0(614>,
forall a € R. Clearly, F is a nonzero multiplicative l-generalized reverse derivation associated
with the reverse derivation d. However, R is not commutative, illustrating that the existence of
such a mapping does not necessarily imply commutativity.
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In 2019, the author and Kumar [10] demonstrated that if a prime ring R admits a multi-
plicative generalized reverse derivation (i.e., a multiplicative [-generalized reverse deriva-
tion) F', associated with a reverse derivation d, and satisfies the following annihilator con-
ditions on a nonzero ideal of R: (i) a(F(xy) £ zy) = 0, (ii) a(F(z)F(y) £ zy) = 0, (iii)
a(F(zy) £ F(y)F(x)) =0, (v) a(F(z)F(y) £ yx) =0, (v) a(F(xy) + yx) = 0, then R must
be commutative.

Moreover, in the same year, Huang [7] established certain central-valued conditions
involving generalized reverse derivations (i.e., [-generalized reverse derivations) that also
lead to the commutativity of R.

It is important to observe that Corollary 2.2 renders these studies redundant, as the
commutativity of R follows trivially.

Theorem 2.3. Let R be a semiprime ring and I a nonzero ideal of R. Suppose R admits a mul-
tiplicative (generalized) reverse derivation F' : R — R with an associated mapping d : R — R.
Then, for all x € I, the commutator identity

[d(z),z] =0
holds.

Proof. Let F be a multiplicative (generalized) reverse derivation of R associated with a
mapping d. Then, for all z,y, z € I, we have

2.6) F(a(y2)) = F(y2)a + yzd(z) = F(2)yz + zd(y)s + y=d(z),
Also,
2.7) F((zy)z) = F(2)xy + zd(zy).

From equations (2.6) and (2.7), it follows that

0= F(2)[x,y] + z(d(zy) — d(y)x — yd(x)) + [z, y]d(x),

forall z,y,z € I.
Writing z by uz in the above equation, it gives

(2.8) 0= (F(2)u —uF(2))[z,y] + zd(uw)[z,y] + [u, y]zd(z),

forall z,y,z,u € I.
Replacing y by yz in (2.8) and simplifying, we obtain

29 [u, yl[z, 2d(2)] + y[u, x]zd(x) = 0,

forall z,y,z,u € I.
Now, substituting y with zd(z)y in (2.9), we get

[u, zd(z)]ylz, 2d(z)] = 0,
forall z,y, z,u € I. In particular, this implies
[, zd(x) [z, zd(x)] = {0},

for all z, z € I, which leads to [z, zd(z)] =0 for all z, z € I.
Finally, replacing z with d(z)z in the last equation, we obtain

[z, d(z)]zd(x) = 0,
for all z, z € I. This directly implies that

for all « € I, completing the proof. O
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Remark 2.1. The preceding theorem yields a direct conclusion that stands independent of the
conditions imposed in Theorem 2.5, Corollary 2.6, Theorem 2.7, and Theorems 2.10-2.13 of [11].
Consequently, the identities established in these results by the authors are rendered superfluous.

Recall that an anti-automorphism of R of order 2 is called an involution. An additive
mapping § : R — R is called a reverse x-derivation [2] if it satisfies the condition
0(zy) = 0(y)z* +yd(x), forallz,y € R.
This definition can be seen as a modification of standard derivations, adjusting the order
in which elements are processed.

Moreover, it is important to note that if d is a derivation and ¢ is a reverse derivation,
then for any fixed n € 2Z", we have

d"(z) =0"(z), forallz € R.

However, such a direct connection does not necessarily hold between *-derivations and
reverse *-derivations.

A result due to Samman [9] states that a mapping d on a semiprime ring R is a reverse
derivation if and only if it is a derivation that maps R into its center Z(R). This naturally
raises the question: What can we say about reverse x-derivations in this context?

To gain intuition, consider the field of complex numbers C, which is a semiprime ring.
The involution * in this case is defined as the standard complex conjugation on C. Now,
define a mapping § : C — C by

d(a+1ib) =b, fora,beR.

We observe that ¢ is a reverse x-derivation and satisfies §(C) C Z(C). This observation
motivates the following result.

Theorem 2.4. Let R be a semiprime ring with involution . If § : R — R is a reverse x-derivation
(not necessarily additive) of R, then § maps R into the center Z(R) of R.

Proof. For any x,y, z € R, using the associativity of R, we have
((zy)z) = 8(2)y"a" + 26(y)a” + zyé(),
6(z(y2)) = 0(2)y ™ + z6(y)a™ + yzd(z).

Comparing both expressions, we obtain

[y,2z]6(x) =0 forall z,y,z € R.
Replacing y by ry, we get

[r,z]yd(z) =0 Vua,y,zr € R.
This implies that

0(x)[r, z]RO(x)[r, z] = {0} forallz,r, z € R.

Consequently, we deduce that

d(z)[r,2] =0 forallz,r,z € R.
In view of [9, Lemma], we conclude that §(z) € Z(R) forall z € R. O

Corollary 2.3. Let R be a prime ring with involution . If 6 : R — R is a reverse x-derivation
(not necessarily additive) of R, then either 6 = 0 or R is commutative.
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