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Some comments on reverse derivations in rings

G. S. SANDHU1 AND M. S. TAMMAM EL-SAYIAD2

ABSTRACT. In this note, we explore scenarios in which the concepts of generalized reverse derivation, mul-
tiplicative generalized reverse derivation, and multiplicative (generalized) reverse derivation lose significance.
First, we extend a result of [Aboubakr A., González S., Generalized reverse derivations on semiprime rings.
Siberian Math. J. 56 (2015), no. 2, 199–205]. Then, we demonstrate that in some previous studies, the assumptions
imposed on these mappings to establish commutativity (or closely related) theorems are, in fact, unnecessary.
Additionally, we provide insights into reverse ∗-derivations, where ∗ denotes the involution.

1. INTRODUCTION

Throughout this study, we denote by R an associative ring with center Z(R). The
commutator of any two elements x, y ∈ R is defined as [x, y] := xy−yx. A ring R is called
prime if for any a, b ∈ R, the condition aRb = {0} implies a = 0 or b = 0. Similarly, R is
termed semiprime if aRa = {0} implies a = 0. Clearly, every prime ring is semiprime. A
derivation is an additive mapping d : R → R that satisfies

d(xy) = d(x)y + xd(y), ∀ x, y ∈ R.

Moreover, d is called a Jordan derivation if it satisfies

d(x2) = d(x)x+ xd(x), ∀ x ∈ R.

The concept of a reverse derivation first appeared in the work of Herstein [6] while inves-
tigating Jordan derivations in prime rings; accordingly and additive mapping d : R → R
that satisfies

d(yx) = d(x)y + xd(y), ∀ x, y ∈ R.

It is evident that every derivation and every reverse derivation is a Jordan derivation;
however, the converse does not hold in general. Now let us recall from [5, Definition] that
if d is a derivation of R, then an additive mapping F : R → R is called a left generalized
derivation if

F (xy) = F (x)y + xd(y), ∀ x, y ∈ R,

and a right generalized derivation if

F (xy) = d(x)y + xF (y), ∀ x, y ∈ R.

Perhaps inspired by this, Aboubakr and González [1] extended the notion to reverse
derivations. Specifically, given a reverse derivation d of R, an additive mapping F : R →
R is called an l-generalized reverse derivation if

F (xy) = F (y)x+ yd(x), ∀ x, y ∈ R,

and an r-generalized reverse derivation if

F (xy) = d(y)x+ yF (x), ∀ x, y ∈ R.
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If we relax the assumption of additivity in [5, Definition], then the map is called multi-
plicative l-generalized derivation and multiplicative r-generalized derivation, respectively (cf.
[8, Definition 2.11]). Following the same approach, one can similarly define multiplicative
l-generalized reverse derivation and multiplicative r-generalized reverse derivation.

Moreover, let d : R → R be a mapping that is neither necessarily additive nor a deriva-
tion. A function F : R → R (not necessarily additive) is called a multiplicative (generalized)-
derivation associated with d if it satisfies the functional equation

F (xy) = F (x)y + xd(y), for all x, y ∈ R,

as introduced in [4]. Subsequent research has established that the mapping d must be
a multiplicative derivation, provided that R is semiprime (cf. [3, Lemma 2]). In 2018,
Tiwari et al. [11] introduced the notion of a multiplicative (generalized) reverse derivation
associated with a mapping d. While the properties of d remain largely unexplored in this
setting, the first author and Kumar provided insights into this matter for prime rings
(see [10, Proposition 3.12]). Consequently, it appears more natural to study multiplicative
(generalized) reverse derivations under the assumption that the associated mapping is a
reverse derivation.

The primary objective of this study is to demonstrate that the concept of reverse deriva-
tion, along with its generalizations, holds limited mathematical significance, particularly
in the framework of prime and semiprime rings. This is due to its intrinsic tendency to
impose a commutative-like structure on these rings, rendering further investigation into
its properties largely redundant.

2. MAIN RESULT

Let I be a nonempty subset of the ring R. Then the set CR(I) := {x ∈ R | xu = ux ∀ u ∈
I} is known as the centralizer of I in R. In [1, Theorem 3.1], Aboubakr and González
proved that, if R is a semiprime ring, I is a nonzero ideal of R, then the following asser-
tions are equivalent:

(i) F : I → R is an l-generalized reverse derivation (resp. r-generalized reverse
derivation) with associated reverse derivation d;

(ii) d(I) ⊆ CR(I), F (I) ⊆ CR(I) and F is a r-generalized derivation (resp. l-generalized
reverse derivation) with respect to d on I .

The authors assumed the additivity of F in their proof; however, we will now demon-
strate that this assumption is unnecessary. Consequently, the results remain valid for
multiplicative generalized reverse derivations.

Theorem 2.1. Let R be a semiprime ring and I be a nonzero ideal of R. Then the following
assertions are equivalent:

(i) F : I → R is a multiplicative l-generalized reverse derivation with associated reverse
derivation d;

(ii) d(I) ⊆ CR(I), F (I) ⊆ CR(I) and F is a multiplicative r-generalized derivation with
respect to d on I .

Proof. (i)→ (ii)
Let us assume that F : I → R be a multiplicative l-generalized reverse derivation. There-
fore, we see that

(2.1) F (x(yz)) = F (yz)x+ yzd(x) = F (z)yx+ zd(y)x+ yzd(x) ∀ x, y, z ∈ I.

Also,

(2.2) F ((xy)z) = F (z)xy + zd(xy) = F (z)xy + zd(y)x+ zyd(x) ∀ x, y, z ∈ I.
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Now jointly considering (2.1) and (2.2), we get

(2.3) F (z)[x, y] + [z, y]d(x) = 0 ∀ x, y, z ∈ I.

In particular, we have [z, y]d(y) = 0 for all y, z ∈ I. Since R is a semiprime ring, it contains
a family of prime ideals, i.e., Ω = {Pλ : λ ∈ Λ} with ∩λPλ = {0}. Let Pα ∈ Ω be
a typical member of the family. Thus, by our situation, we have [z, y]d(y) ∈ Pα for all
y, z ∈ I. Replacing z by wz, we get [w, y]Id(y) ⊆ Pα for all w, y ∈ I. It implies that for
each y ∈ I, either [w, y] ∈ Pα for all w, z ∈ I or d(y) ∈ Pα. Applying Brauer’s trick (i.e.,
union of additive subgroups of I is not a subgroup), we obtain that either [w, y] ∈ Pα for
all w, y ∈ I or d(I) ⊆ Pα. The latter case yields that d(I) ⊆ ∩λPλ = {0}, hence d(I) = {0}.

Now on the other hand, let us suppose that [w, y] ∈ Pα for all w, y ∈ I. Taking d(t)w
for w in the last expression, we get [d(t), y]w ∈ Pα for all t, y, w ∈ I. It forces that
[d(t), y]I[d(t), y] ⊆ Pα for all t, y ∈ I. It forces that [d(t), y] ∈ Pα for all t, y ∈ I. Since Pα

is an arbitrary member of Ω, we get [d(t), y] = 0 for all t, y ∈ I, and hence d(I) ⊆ CR(I).
Therefore, together both case imply d(I) ⊆ CR(I). In this view, let us replace y by yu in
Eq. (2.3), we get

(2.4) F (z)[x, y]u+ F (z)y[x, u] + [z, y]d(x)u+ y[z, u]d(x) = 0 ∀ x, y, z, u ∈ I.

Using (2.3), we arrive at

(2.5) [F (z), y][x, u] = 0 ∀ x, y, z, u ∈ I.

Putting xF (z) in place of x in (2.5), we see that (I[F (z), y])2 = {0} for all z, y ∈ I. It
forces I[F (z), y] = {0} for all z, y ∈ I. By Herstein’s Lemma, we get [F (I), I] = {0}. This
means that F (I) ⊆ CR(I). Thus F is a multiplicative r-generalized derivation of R with
associated derivation d.
(ii)→ (i) This part is trivial. □

Following the same terminology, we can observe the following result:

Theorem 2.2. Let R be a semiprime ring and I be a nonzero ideal of R. Then the following
assertions are equivalent:

(i) F : I → R is a multiplicative r-generalized reverse derivation with associated reverse
derivation d;

(ii) d(I) ⊆ CR(I), F (I) ⊆ CR(I) and F is a multiplicative l-generalized derivation with
respect to d on I .

Corollary 2.1. Let R be a semiprime ring. If F : R → R is a multiplicative l-generalized reverse
derivation with associated reverse derivation d of R. Then d(R) ⊆ Z(R) and F (R) ⊆ Z(R).
Moreover, R contains a nonzero central ideal.

Corollary 2.2. Let R be a prime ring. If F : R → R is a multiplicative l-generalized reverse
derivation with associated reverse derivation d of R. Then either F = 0 or R is commutative.

The following example shows that Corollary 2.2 can not hold true for arbitrary rings.

Example 2.1. Let F be a field, and let eij denote the standard matrix units. Consider the ring

R = {x(e12 + e34) + y(e13 − e24) + z(e14) | x, y, z ∈ F}.
It is straightforward to verify that R is not a prime ring. Define mappings F, d : R → R by

F (a) = x(e12 + e34) + y(−e13 + e24) + zy(e14),

d(a) = x(e12 + e34) + y(−e13 + e24) + 0(e14),

for all a ∈ R. Clearly, F is a nonzero multiplicative l-generalized reverse derivation associated
with the reverse derivation d. However, R is not commutative, illustrating that the existence of
such a mapping does not necessarily imply commutativity.
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In 2019, the author and Kumar [10] demonstrated that if a prime ring R admits a multi-
plicative generalized reverse derivation (i.e., a multiplicative l-generalized reverse deriva-
tion) F , associated with a reverse derivation d, and satisfies the following annihilator con-
ditions on a nonzero ideal of R: (i) a(F (xy) ± xy) = 0, (ii) a(F (x)F (y) ± xy) = 0, (iii)
a(F (xy)± F (y)F (x)) = 0, (iv) a(F (x)F (y)± yx) = 0, (v) a(F (xy)± yx) = 0, then R must
be commutative.

Moreover, in the same year, Huang [7] established certain central-valued conditions
involving generalized reverse derivations (i.e., l-generalized reverse derivations) that also
lead to the commutativity of R.

It is important to observe that Corollary 2.2 renders these studies redundant, as the
commutativity of R follows trivially.

Theorem 2.3. Let R be a semiprime ring and I a nonzero ideal of R. Suppose R admits a mul-
tiplicative (generalized) reverse derivation F : R → R with an associated mapping d : R → R.
Then, for all x ∈ I , the commutator identity

[d(x), x] = 0

holds.

Proof. Let F be a multiplicative (generalized) reverse derivation of R associated with a
mapping d. Then, for all x, y, z ∈ I , we have

(2.6) F (x(yz)) = F (yz)x+ yzd(x) = F (z)yx+ zd(y)x+ yzd(x).

Also,

(2.7) F ((xy)z) = F (z)xy + zd(xy).

From equations (2.6) and (2.7), it follows that

0 = F (z)[x, y] + z
(
d(xy)− d(y)x− yd(x)

)
+ [z, y]d(x),

for all x, y, z ∈ I .
Writing z by uz in the above equation, it gives

(2.8) 0 = (F (z)u− uF (z))[x, y] + zd(u)[x, y] + [u, y]zd(x),

for all x, y, z, u ∈ I .
Replacing y by yx in (2.8) and simplifying, we obtain

(2.9) [u, y][x, zd(x)] + y[u, x]zd(x) = 0,

for all x, y, z, u ∈ I .
Now, substituting y with zd(x)y in (2.9), we get

[u, zd(x)]y[x, zd(x)] = 0,

for all x, y, z, u ∈ I . In particular, this implies

[x, zd(x)]I[x, zd(x)] = {0},

for all x, z ∈ I , which leads to [x, zd(x)] = 0 for all x, z ∈ I .
Finally, replacing z with d(x)z in the last equation, we obtain

[x, d(x)]zd(x) = 0,

for all x, z ∈ I . This directly implies that

[d(x), x] = 0,

for all x ∈ I , completing the proof. □
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Remark 2.1. The preceding theorem yields a direct conclusion that stands independent of the
conditions imposed in Theorem 2.5, Corollary 2.6, Theorem 2.7, and Theorems 2.10-2.13 of [11].
Consequently, the identities established in these results by the authors are rendered superfluous.

Recall that an anti-automorphism of R of order 2 is called an involution. An additive
mapping δ : R → R is called a reverse ∗-derivation [2] if it satisfies the condition

δ(xy) = δ(y)x∗ + yδ(x), for all x, y ∈ R.

This definition can be seen as a modification of standard derivations, adjusting the order
in which elements are processed.

Moreover, it is important to note that if d is a derivation and δ is a reverse derivation,
then for any fixed n ∈ 2Z+, we have

dn(x) = δn(x), for all x ∈ R.

However, such a direct connection does not necessarily hold between ∗-derivations and
reverse ∗-derivations.

A result due to Samman [9] states that a mapping d on a semiprime ring R is a reverse
derivation if and only if it is a derivation that maps R into its center Z(R). This naturally
raises the question: What can we say about reverse ∗-derivations in this context?

To gain intuition, consider the field of complex numbers C, which is a semiprime ring.
The involution ∗ in this case is defined as the standard complex conjugation on C. Now,
define a mapping δ : C → C by

δ(a+ ib) = b, for a, b ∈ R.
We observe that δ is a reverse ∗-derivation and satisfies δ(C) ⊆ Z(C). This observation
motivates the following result.

Theorem 2.4. Let R be a semiprime ring with involution ∗. If δ : R → R is a reverse ∗-derivation
(not necessarily additive) of R, then δ maps R into the center Z(R) of R.

Proof. For any x, y, z ∈ R, using the associativity of R, we have

δ((xy)z) = δ(z)y∗x∗ + zδ(y)x∗ + zyδ(x),

δ(x(yz)) = δ(z)y∗x∗ + zδ(y)x∗ + yzδ(x).

Comparing both expressions, we obtain

[y, z]δ(x) = 0 for all x, y, z ∈ R.

Replacing y by ry, we get

[r, z]yδ(x) = 0 ∀ x, y, z, r ∈ R.

This implies that
δ(x)[r, z]Rδ(x)[r, z] = {0} for all x, r, z ∈ R.

Consequently, we deduce that

δ(x)[r, z] = 0 for all x, r, z ∈ R.

In view of [9, Lemma], we conclude that δ(x) ∈ Z(R) for all x ∈ R. □

Corollary 2.3. Let R be a prime ring with involution ∗. If δ : R → R is a reverse ∗-derivation
(not necessarily additive) of R, then either δ = 0 or R is commutative.
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