Existence of countably many symmetric positive solutions for system of even order time scale boundary value problems in Banach spaces


Prsad, K. R. and Khuddush, Md.


Abstract

creative_2019_28_2_163_182_abstract

Full PDF

creative_2019_28_2_163_182

This paper establishes the existence and uniqueness of the solutions to the system of even order differential equations on time scales,

    \[\begin{aligned} (-1)^n&u_1^{{(\Delta\nabla)}^n}(t)=\omega_1(t)f_1\big(u_1(t), u_2(t)\big), \; t \in [0, T]_{\T},\, n\in \Z^+,\\ (-1)^n&u_2^{{(\Delta\nabla)}^m}(t)=\omega_2(t)f_2\big(u_1(t), u_2(t)\big), \; t \in [0, T]_{\T},\, m\in \Z^+,\\ \end{aligned}\]

satisfying two-point Sturm–-Liouville integral boundary conditions

    \[\begin{aligned} \alpha_{i+1}u_1^{{(\Delta \nabla)}^i}(0)&-\beta_{i+1}u_1^{{(\Delta \nabla)}^i\Delta}(0)=\int_0^T a_{i+1}(s) u_1^{{(\Delta \nabla)}^i}(s)\nabla s, ~~0\leq i \leq n-1,\\ \alpha_{i+1}u_1^{{(\Delta \nabla)}^i}(T)&+\beta_{i+1}u_1^{{(\Delta \nabla)}^i\Delta}(T)=\int_0^T a_{i+1}(s) u_1^{{(\Delta \nabla)}^i}(s)\nabla s, ~~0\leq i \leq n-1,\\ \gamma_{j+1}u_2^{{(\Delta \nabla)}^j}(0)&-\delta_{j+1}u_2^{{(\Delta \nabla)}^j\Delta}(0)=\int_0^T b_{j+1}(s) u_2^{{(\Delta \nabla)}^j}(s)\nabla s, ~~0\leq j \leq m-1,\\ \gamma_{j+1}u_2^{{(\Delta \nabla)}^j}(T)&+\delta_{j+1}u_2^{{(\Delta \nabla)}^j\Delta}(T)=\int_0^T b_{j+1}(s) u_2^{{(\Delta \nabla)}^j}(s)\nabla s, ~~0\leq j \leq m-1, \end{aligned}\]

by utilizing Schauder fixed point theorem. We also establish the existence of countably many symmetric positive solutions for the above problem by applying Hölder’s inequality and Krasnoselskii’s fixed point theorem.

 

 

Additional Information

Author(s)

Khuddush, Md., Prsad, K. R.