Principal functions of discrete Sturm-Liouville equations with hyperbolic eigenparameter

Yokus, Nihal and Coskun, Nimet

Full PDF


In this study, we take under investigation principal functions corresponding to the eigenvalues and the spectral singularities of the boundary value problem (BVP) a_{n-1}y_{n-1}+b_{n}y_{n}+a_{n}y_{n+1}=\lambda y_{n}, n\in \mathbb{N} and \left( \gamma _{0}+\gamma _{1}\lambda \right) y_{1}+\left( \beta_{0}+\beta _{1}\lambda \right) y_{0}=0 where \left( a_{n}\right) and \left( b_{n}\right) are complex sequences, \lambda is a hyperbolic eigenparameter and \gamma _{i},\beta _{i}\in \mathbb{C} for i=0,1.

Additional Information


Coskun, Nimet, Yokus, Nihal