Principal functions of discrete Sturm-Liouville equations with hyperbolic eigenparameter


Yokus, Nihal and Coskun, Nimet


Abstract

creative_2017_26_3_353_359_abstract

Full PDF

creative_2017_26_3_353_359

In this study, we take under investigation principal functions corresponding to the eigenvalues and the spectral singularities of the boundary value problem (BVP) a_{n-1}y_{n-1}+b_{n}y_{n}+a_{n}y_{n+1}=\lambda y_{n}, n\in \mathbb{N} and \left( \gamma _{0}+\gamma _{1}\lambda \right) y_{1}+\left( \beta_{0}+\beta _{1}\lambda \right) y_{0}=0 where \left( a_{n}\right) and \left( b_{n}\right) are complex sequences, \lambda is a hyperbolic eigenparameter and \gamma _{i},\beta _{i}\in \mathbb{C} for i=0,1.

Additional Information

Author(s)

Yokus, Nihal, Coskun, Nimet